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Abstract

Background: Functional neuroimaging has great potential to inform clinical

decisions, whether by identifying neural biomarkers of illness progression and

severity, predicting therapeutic response, or selecting suitable patients for surgi-

cal interventions. Yet a persisting barrier to functional neuroimaging’s clinical

translation is our incomplete understanding of how normative variance in cog-

nition, personality, and behavior shape the brain’s structural and functional

organization. We propose that modeling individual differences in these brain–
behavior relationships is crucial for improving the accuracy of neuroimaging bi-

omarkers for neurologic and psychiatric disorders. Methods: We addressed this

goal by initiating the Cognitive Connectome Project, which bridges neuropsy-

chology and neuroimaging by pairing nine cognitive domains typically assessed

by clinically validated neuropsychological measures with those tapped by

canonical neuroimaging tasks (motor, visuospatial perception, attention, lan-

guage, memory, affective processing, decision making, working memory, and

executive function). To date, we have recruited a diverse sample of 53 partici-

pants (mean [SD], age = 32 [9.7] years, 31 females). Results: As a proof of

concept, we first demonstrate that our neuroimaging task battery can replicate

previous findings that task performance recruits intrinsic brain networks identi-

fied during wakeful rest. We then expand upon these previous findings by

showing that the extent to which these networks are recruited by task reflects

individual differences in cognitive ability. Specifically, performance on the Judg-

ment of Line Orientation task (a clinically validated measure of visuospatial

perception) administered outside of the MRI scanner predicts the magnitude of

task-induced activity of the dorsal visual network when performing a direct

replication of this task within the MRI scanner. Other networks (such as default

mode and right frontoparietal) showed task-induced changes in activity that

were unrelated to task performance, suggesting these networks to not be

involved in visuospatial perception. Conclusion: These findings establish a

methodological framework by which clinical neuropsychology and functional

neuroimaging may mutually inform one another, thus enhancing the transla-

tion of functional neuroimaging into clinical decision making.

Introduction

The use of functional magnetic resonance imaging (fMRI)

to map the neurobiological correlates of behavior, emo-

tion, and cognition has rapidly grown over the past two

decades (Ogawa et al. 1993; Cabeza and Nyberg 2000;

Smith et al. 2009). Yet fMRI research has predominantly

focused upon group-level neural representations of cogni-

tion, with surprisingly little emphasis placed upon how

the brain encodes normative variance in cognition; as

evidence, less than 2% of journal articles indexed by

PubMed with the search term “functional MRI” or

“fMRI” also included the search term “individual differ-

ences.” Our incomplete understanding of how brain func-

tion is shaped by normative variance in cognition,

personality, and behavior remains a persisting barrier to

the clinical translation of fMRI. For example, an exagger-

ated amygdala response to negatively valent images (e.g.,

sad or fearful faces) is a hallmark characteristic of depres-

sion (Fu et al. 2004; Leppanen 2006; Lee et al. 2007;
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Stuhrmann et al. 2013) but has also been associated in

nonclinical populations with neuroticism (Stein et al.

2007) and trait anxiety (Hare et al. 2008; Ewbank et al.

2009). The high comorbidity of neuroticism and anxiety

with depression (Roy 1990; Maier et al. 1992; Beautrais

et al. 1999; Bienvenu et al. 2001; Jylha et al. 2009) obvi-

ates the need to understand how personality traits influ-

ence brain function in normative and clinical

populations, lest our search for neural biomarkers of

depression uncover biomarkers of neuroticism. The neu-

roimaging research literature is replete with similar exam-

ples for other clinical disorders, arguing that the mapping

of brain function to normative cognitive variance is nec-

essary before functional neuroimaging findings can be

meaningfully translated into patient-oriented clinical deci-

sion making.

To address this need, we have initiated the Cognitive

Connectome Project, a merging of clinically validated

neuropsychological tests, personality assessments, and

canonical fMRI tasks purported to assess similar cognitive

domains. The Cognitive Connectome evaluates cognition

across nine domains: motor, visuospatial, attention, lan-

guage and cognitive fluency, memory, affective processing,

decision making and reward processing, working memory,

and executive function. These assessments of cognitive

function include direct replications of neuropsychological

evaluations within the MRI scanner when available and/

or feasible (such as the Judgment of Line Orientation

Task) as well as conceptual replications (such as the

D-KEFS Tower task outside the scanner and Tower of

London task inside the scanner). By focusing on neuroi-

maging tasks inspired by age-normed neuropsychological

instruments that are broadly used for clinical evaluation

of cognitively impaired populations, we seek to (1) map

the neural representation of individual differences in cog-

nitive ability across defined behavioral domains (Fox

et al. 2005), and (2) initiate the development of an inter-

pretive framework for the translation of functional neu-

roimaging into clinical care settings.

As a demonstration of the Cognitive Connectome’s

utility, we sought to replicate previous findings that

intrinsic brain networks identified during wakeful rest are

also recruited during task demands. We then expanded

upon these findings by modeling how individual differ-

ences in cognitive ability influence the degree to which

tasks recruit brain networks, an advantage the Cognitive

Connectome offers over group-derived meta-analytic

approaches. Overall, we sought to characterize the neural

correlates of individual differences in cognitive ability by

studying a sample of carefully screened and characterized

healthy adults to initiate a functional connectome of

eventual application to the neuroscience of individual

clinical patients with disorders of cognition.

Methods

Participants

Demographics

Participants were recruited from community advertise-

ments in accordance with University of Arkansas for

Medical Sciences (UAMS) Institutional Review Board

approval and oversight. Fifty-three participants (mean

[SD], age = 32 [9.7] years; range = 19–50 years; 31

female, 22 male; 22 self-reporting as African-American, 31

Caucasian, 1 Hispanic) consented to participate in the

study, met inclusion and exclusion criteria, and com-

pleted at least one study session. Sample demographics

are provided in Table 1. Inclusion criteria for this study

were healthy men and women, aged 18–50 years, without

histories of psychiatric or neurologic illness, and who

were native English speakers with at least an eighth grade

reading and writing proficiency. Exclusion criteria were

presence of DSM-IV psychiatric disorders as determined

by structured clinical interview (SCID-I NP), self-reported

history of neurological disorders or loss of consciousness

exceeding 10 min, substance abuse or dependence

(excluding nicotine dependence), and contraindications to

the high-field MRI environment such as ferromagnetic

implants (determined through self-reported medical

history and screening with the SAFESCAN� Target

Table 1. Participant demographics.

Number of participants 53

Age (years)

Mean (SD) 32 (9.7)

Range 19–50

Sex, n (%)

Female 31 (58)

Male 22 (42)

Ethnicity, n (%)

African American 22 (42)1

Caucasian 31 (58)1

Hispanic/Latino 1 (2)

Terminal education, n (%)

Grade 7–12 (without graduation) 3 (6)

High school or certificate of high school equivalency 5 (9)

Partial college or currently enrolled 20 (38)

Graduation from 2-year college 4 (8)

Graduation from 4-year college 7 (13)

Partial graduate/Professional school 8 (15)

Degree from graduate/Professional school 6 (11)

Handedness, n (%)

Left 6 (11)

Right 45 (85)

Unreported 2 (4)

1Includes one participant self-reporting as both African American and

Caucasian.
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ScannerTM, Mednovus, Inc., Escondido, CA) and preg-

nancy (determined through urinalysis).

Recruitment and procedures

All procedures were performed at the Brain Imaging

Research Center (BIRC) of the Psychiatric Research Insti-

tute at UAMS. Participants first underwent a brief tele-

phone interview to determine eligibility. Eligible

participants were invited to the BIRC, where they pro-

vided written informed consent to participate in the

study, followed by the SCID-NP and medical history

(1 h) to determine if participants met exclusion criteria.

Eligible participants then underwent a battery of comput-

erized assessments (1 h), two MRI sessions (1 h each;

session order was randomly counterbalanced across par-

ticipants), and comprehensive neuropsychological assess-

ment (2–4 h), scheduled at the participants’ convenience

across 1–4 sessions. Urinalysis was conducted prior to

each MRI session to determine pregnancy or illicit drug

use (both exclusionary criteria). Table 2 provides a full

list of neuroimaging tasks and testing batteries for each

cognitive domain, with full descriptions in the Supporting

Information. A measure of general intelligence (such as

IQ) was not administered due to time constraints, since

this measure can be derived via factor analysis of the

administered tests.

Study completion and missing data

The Cognitive Connectome required 6–8 h of assess-

ments per individual. Of the 53 participants who met

inclusion and exclusion criteria, all (100%) completed

the computerized testing batteries and questionnaires, 46

(87%) completed session A fMRI tasks, 41 (77%) com-

pleted session B fMRI tasks, 38 (75%) completed both

fMRI sessions, 43 (81%) completed all neuropsychologi-

cal assessments, and 42 (79%) completed all study assess-

ments. However, performance and feedback from the

first five pilot participants (001–007) led to changes in

fMRI task designs of the following tasks: Tower of Lon-

don, n-back, visual affective processing, visual memory,

verbal memory, visual checkerboard, and motor tasks.

Consequently, these participants’ data were not included

Table 2. Cognitive connectome tasks and instruments.

Cognition/Modality Neuropsychological assessments fMRI tasks

Motor Grooved Pegboard

Halstead–Reitan Finger-Tapping Test

Finger-Tapping Task

Visuospatial Judgment of Line Orientation Task

Rey–Osterrieth Complex Figure (copy)

Judgment of Line Orientation Task

Flashing Checkerboard Task

Attention Test of Everyday Attention (TEA)

Digit Span (WAIS-IV): forward subtest

Spatial Span (WMS-III): forward subtest

n-back (0-back condition)

Language and

cognitive fluency

D-KEFS Verbal Fluency

Boston Naming Task

Letters and Category Verbal Fluency

(Controlled Oral Word Association Task)

Memory Verbal Paired Associates Task (WMS-IV)

California Verbal Learning Test

Brief Visuospatial Memory Test Revised

Verbal Paired Associates Task

Encoding International Affective

Picture System (IAPS) stimuli

Recognition of IAPS stimuli

Affective Emotion Regulation Questionnaire (ERQ) Rating emotional IAPS pictures

Decision making Intertemporal Choice

Behavior (delayed discounting)

Iowa Gambling Task

Working memory Digit Span (WAIS-IV): backward, sequence

Spatial Span (WMS-III): reverse

n-back (2-back condition)

Metacognition and

executive function

D-KEFS Tower Test

D-KEFS Color–Word Test

Wisconsin Card Sorting Task

Booklet Category Test

D-KEFS Trails Test

D-KEFS Proverbs Test

Tower of London Task

Multi-Source Interference Task (MSIT)

Additional individual

variables and MRI scans

Big Five Inventory (BFI)

Beck Depression Inventory (BDI)

Childhood Trauma Questionnaire (CTQ)

State-Trait Anxiety Inventory (STAI)

Leisure Time Exercise Questionnaire

Resting-state scan (92)

Magnetization prepared rapid

acquisition gradient echo (MPRAGE)

anatomic scan (92)

Diffusion tensor Imaging
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in the respective task analyses. The analyses below used

all available data.

Neuroimaging

Acquisition

Imaging data were acquired using a Philips 3T Achieva

X-series MRI scanner (Philips Healthcare, Eindhoven, The

Netherlands). Anatomic images were acquired with a

MPRAGE sequence (matrix = 256 9 256, 220 sagittal

slices, TR/TE/FA = shortest/shortest/8°, final resolution =
0.94 90.94 9 1 mm3 resolution). Functional images for

early participants (001–050) were acquired using an

8-channel head coil with an echo planar imaging

(EPI) sequence (TR/TE/FA = 2000 msec/30 msec/90°,
FOV=240 9 240 mm, matrix = 80 9 80, 37 oblique slices

[parallel to orbitofrontal cortex to reduce sinus artifact],

interleaved ascending slice acquisition, slice thick-

ness = 4 mm, final resolution 3.0 9 3.0 9 4.0 mm3). For

these subjects, session B’s resting-state scan was acquired

with these parameters but with 3-mm slice thickness, to be

consistent with data acquired for other BIRC studies. Func-

tional images for later participants (051+) were acquired

using a 32-channel head coil with the following EPI

sequence parameters: TR/TE/FA = 2000 msec/30 msec/

90°, FOV = 240 9 240 mm, matrix = 80 9 80, 37 oblique

slices, ascending sequential slice acquisition, slice thick-

ness = 2.5 mm with 0.5 mm gap, final resolution

3.0 9 3.0 9 3.0 mm3. Parameters for the 32-channel coil

were selected to reduce orbitofrontal signal loss due to sinus

artifact. All analyses included head coil as a covariate of no

interest. Diffusion tensor imaging data were also collected

(32 directions, TR/TE/FA = 6228 msec/71 msec/90°,
FOV = 224 9 224 9 120, matrix = 128 9 128 9 120,

final resolution 1.75 9 1.75 9 2.0 mm3, 60 slices of 2 mm

thickness), and will be discussed in future work.

Data preprocessing

All MRI data preprocessing was performed using AFNI

(Cox 1996). Anatomic data underwent skull stripping,

spatial normalization to the icbm452 brain atlas, and seg-

mentation into white matter (WM), gray matter (GM),

and cerebrospinal fluid (CSF) with FSL (Jenkinson et al.

2012). Functional data underwent despiking; slice correc-

tion; deobliquing (to 3 9 3 9 3 mm3 voxels); motion

correction; transformation to the spatially normalized

anatomic image; regression of motion parameters, mean

timecourse of WM voxels, and mean timecourse of CSF

voxels; spatial smoothing with a 6-mm FWHM Gaussian

kernel; scaling to percent signal change. Preprocessing

scripts are available upon request.

Assessing motion artifact

After data preprocessing, independent component analysis

(ICA) was used to identify and remove motion-related

noise components with the Group ICA of fMRI Toolbox

(GIFT v1.3) for Matlab (Calhoun et al. 2001). Head

motion artifact manifests in the functional data as alter-

nating “bands” or “stripes” of correlated activity corre-

sponding to the order of slice acquisition. For each

functional dataset, ICA solved for the optimal number of

components as determined by GIFT’s MDL algorithm

(typically 100–200 components). Because the pattern of

slice acquisition (e.g., all even slices or all odd slices) does

not represent biologically plausible brain activity, a liberal

threshold (r > 0.05) was used to identify components that

correlated with slice acquisition. These components were

removed from the preprocessed functional data using the

“icatb_removeArtifact.m” command in Matlab. Motion

artifact was assessed before and after ICA “stripe” removal

using single voxel seed-based correlation analyses via

AFNI’s “InstaCorr” function. Any dataset that continued

to have alternating “stripes” of correlated activity were

removed from further analysis. All included datasets had

less than 3-mm longitudinal movement and less than 3°
rotational movement.

Independent component analyses

Because a goal of this study was to replicate the finding

of task-based recruitment of intrinsic brain networks

reported previously by Smith et al. (2009), the same net-

works reported for that analysis were used for this study.

As described previously, these networks were derived

from ICA of resting-state fMRI data from an independent

sample of 36 healthy adults using the FSL program

MELODIC; for full details, please see Smith et al. (2009).

Smith et al. identified 20 components, with 10 “judged to

be artifactual or of more complex interpretation” and dis-

cussed only in Supporting Information (Smith et al.

2009). The remaining 10 networks have been well repli-

cated in the literature (Beckmann et al. 2005; Damoiseaux

et al. 2006) and were demonstrated to be task recruited;

these 10 canonical networks are depicted in Figure 1 and

were used for the current analyses.

Extracting component activity timecourses

Timecourses of component activity during the functional

tasks were generated as follows. First, ICA components

were resampled to the postprocessed fMRI data resolution

(3 9 3 9 3 mm3). Given ICA component X and fMRI

dataset Y, the voxelwise dot product was calculated

between X and each image (1 � N) of Y. Thus, the voxel-
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wise intensities of each image in Y are weighted by that

voxel’s contribution to component X. This process was

repeated for all participants, components, and task fMRI

datasets. Figure S1 illustrates this process, which is vali-

dated and fully described elsewhere (James et al. 2014).

Statistical analyses of tasks

The resulting fMRI timecourses underwent block- or

event-related general linear modeling (GLM) as appropri-

ate with AFNI’s 3dDeconvolve program (see Supporting

Information for deconvolution details; code available upon

request). All GLMs incorporated six head motion parame-

ters (x, y, z, roll, pitch, yaw) into the baseline model. GLM

yielded a beta value (bM,N,P) and t-score (tM,N,P) for each

component XM, task condition TN, and participant ZP that

describes the component’s task-dependent recruitment for

that participant. These component, task condition, and

participant-specific bs were used for subsequent analyses.

Performance-independent task-dependent
recruitment

For a given component Xi and task condition Tj, group

t-tests assessed if participant bi,j values significantly differed

from zero. Figure 2 depicts group-level activation of the

canonical resting-state networks across a range of Cognitive

Connectome task contrasts, selected as most representative

of the following BrainMap behavioral domains: Finger

Tapping versus Rest (Action_Execution), MSIT Incongruent

versus Congruent (Cognition_Attention), COWAT Letter

versus Rest (Cognition_Language_Phonology), COWAT

Category versus Rest (Cognition_Language_Semantics),

Word Pair Recall versus Rest (Cognition_Memory_Explicit),

n-Back 2-Back versus 0-Back (Cognition_Memory_Work-

ing), IAPS Emotional versus Neutral Images (Emotion),

Flashing Checkerboard versus Rest (Perception_Vision), and

Judgment of Line Orientation versus Rest (Percep-

tion_Vision_Shape). Similarly, Figure 3 depicts individual

variance in participant b scores and group t-statistics for

four n-Back task contrasts and all 10 components.

Performance-dependent task-dependent
recruitment

The influence of participant performance upon task-

dependent recruitment of intrinsic brain networks was

assessed as follows. First, stepwise linear regression was

conducted to relate the dependent variable (participants’

b scores for a component and task) to the independent

Figure 1. Canonical intrinsic networks

identified via ICA. These analyses used the

10 canonical resting-state networks

reported by Smith et al. (2009).

Component maps depict voxels with

positive contributions (t-scores ≥4) to each

component timecourse. Components are

depicted in neurological convention using

representative axial and coronal slices at

the MNI coordinates provided beneath the

coronal image. Top to bottom, left to

right: C1, primary visual network; C2,

ventral visual network; C3, dorsal visual

network; C4, default mode network; C5,

cerebellar network; C6, motor network; C7:

temporal network; C8: frontocingulate

network; C9: right frontoparietal network;

C10: left frontoparietal network.
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variables of performance (neuropsychological test score),

age, sex, education, handedness, head coil, and session

order. Statistical thresholds for inclusion and exclusion of

independent variables in the stepwise linear regression

were P < 0.05 and P > 0.10, respectively. The Judgment

of Line Orientation task (JLO) was analyzed because, of

Figure 2. Task-dependent recruitment of

intrinsic networks. Task-dependent

recruitment of the 10 canonical intrinsic

networks was assessed for several

Cognitive Connectome fMRI tasks. The

ordinate axis provides task contrasts and

the BrainMap behavioral domain best

matched by each contrast, and the abscissa

indicates component/network number.

Color coding indicates the significance of

contrast-dependent activations (comparing

group bs against 0), with orange indicating

t ≥ 5 and blue indicating t ≤ �5.

Figure 3. Individual and group activation of canonical intrinsic networks across n-back task contrasts. Component b values are depicted for each

participant (ordinate axis) and component/network (abscissas) for four n-Back task contrasts, from left to right: Instructions versus Rest, 0-Back

versus Rest, 2-Back versus Rest, and 2-Back versus 0-Back. Color coding indicates b value magnitude, with orange indicating relative activation for

the contrast (b ≥ 3 9 103) and blue indicating relative deactivation (b ≤ �3 9 103). Group-level significance of activation is also depicted for

each network and contrast, with orange indicating t ≥ 5 and blue indicating t < �5.
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all Cognitive Connectome tasks, its administration as an

fMRI task most closely mirrored its administration as a

neuropsychological task. Participants’ mean duration for

JLO trials was also included as a covariate, since brain

activity has been shown to increase linearly with longer

reaction times (Yarkoni et al. 2009).

Independent variables that significantly predicted com-

ponent b activity in the stepwise linear regression were

then selected as independent variables for a robust linear

regression, which was chosen for its ability to minimize the

influence of outliers (Wager et al. 2005). Robust linear

regression was conducted using Huber M-estimation,

which is more resilient to outliers in the response variable

(brain activity) than the default Tukey bisquare estimator,

and the default tuning constant of 1.345 (Huber and Ron-

chetti 2009). Stepwise and robust linear regressions were

performed using Matlab (code available upon request).

Figure 4 depicts the influence of JLO neuropsychological

testing accuracy upon brain network recruitment during

the JLO fMRI task.

Results

Task-dependent activation of intrinsic
networks

Figure 3 depicts task-dependent recruitment of intrinsic

networks across a broad range of fMRI tasks. Compo-

nents 1–3 (C1, C2, C3) represent the primary visual, ven-

tral visual, and dorsal visual networks, respectively. All

three networks were significantly activated during the

viewing of positive or negative visual stimuli (all t > 5.7).

C2 and C3 were also activated during the Flashing Check-

board and Judgment of Line Orientation tasks (t > 6.6),

with lesser activation of C1 for these tasks (t > 2.8). C2

and C3 were more active than rest during viewing of

MSIT (t > 5.7), COWAT (t > 7.5), and Word Pair

stimuli (t > 4.7); conversely, C1 was variably activated (or

deactivated) for these contrasts.

Component 4 (C4) represented default mode network

and was consistently less active during task than rest

Figure 4. Relationship of brain activity to

neuropsychological performance for

Judgment of Line Orientation task. (Left)

Component b values and group t-statistics

are depicted for each participant (ordinate)

and component (abscissas) for the task

contrast of Judgment of Line Orientation

(JLO) versus Rest, using the same color

coding as Figure 2. (Right) Robust linear

regression related out-of-scanner JLO

performance to component activity for

(top) the dorsal visual network C3, (middle)

the motor network C6, and (bottom) right

frontoparietal network C9. Scatterplots use

participant ID code to indicate each

participant’s accuracy (abscissas) and

component/network activity (ordinates).

Trendlines depict the robust regression of

bs to accuracy, along with t-statistics and

P-values testing the hypothesis that slope

6¼ 0. Component 3 activity significantly

regressed only to JLO accuracy

(Puncorrected < 0.001), whereas component

6 activity significantly regressed to both

JLO accuracy (Puncorrected < 0.002) and

mean JLO trial duration

(Puncorrected < 0.017). The regression

trendline for component 6 is plotted for

mean JLO trial duration (4.78 sec).

Component 9 showed significant task-

related activity, but the extent of activity

did not significantly relate to task

(Puncorrected < 0.31).
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(t < �4.0). The depicted exceptions are Left or Right

Finger Tapping and viewing of Emotional versus Neutral

IAPS stimuli, for which C4 was nonsignificant. Component

5 (C5) represented bilateral cerebellum and was signifi-

cantly more active than Rest during Left or Right Finger

Tapping (t > 4.0), MSIT Congruent or Incongruent stim-

uli (t > 4.5), COWAT Letter or Category tasks (t > 4.7)

and Flashing Checkerboard (t > 4.5). Component 6 (C6),

representing bilateral primary motor and premotor areas,

and was significantly more active than rest for Left Finger

Tapping (t > 3.6) – but not Right Finger Tapping

(t > 1.6) – and for 0-Back trials (t > 3.4), rating Positive

Emotional stimuli (t > 3.2), and during Judgment of Line

Orientation (t > 3.2). C6 was less active than 2-Back dur-

ing Rest (t < �6.8) and during 0-Back (t < �8.5).

Component 7 (C7) represented bilateral temporal cor-

tices and was significantly more active during Right or

Left Finger Tapping than Rest (t > 5.7) and more active

during viewing of Emotional (Positive or Negative)

Images than Neutral Images (t > 4.9). C7 was less active

than rest during MSIT trials (t < �4.6), 2-Back trials

(t < �5.7), viewing Positive or Negative Images

(t < �5.8), and during Flashing Checkerboard or Judg-

ment of Line Orientation tasks (t < �2.9). Component 8

(C8) consisted of medial frontal, dorsal frontal, and ante-

rior cingulate; C8 was less active than Rest for most con-

trasts, including MSIT (t < �4.2), 0-Back and 2-Back

(t < �3.4), and Positive and Negative images (t < �2.7).

Components 9 and 10 (C9 and C10) represent left and

right frontoparietal networks, respectively. C9 shows sig-

nificant activation during the Flashing Checkerboard task

(t > 4.6) and 2-Back condition (t > 4.0), and deactivation

during COWAT Letter and COWAT Category (t < �5.6)

and Judgment of Line Orientation (t < �5.4). Conversely,

C10 shows broad activation across most tasks, including

2-Back (t > 6.7), MSIT (t > 5.1), and COWAT Letter and

Category (t > 8.4).

Individual differences in task-dependent
network activation

The n-back task offers many task contrasts, and is thus

ideal for demonstrating individual differences in perfor-

mance. Figure 3 depicts group variation in network

recruitment across n-back task conditions.

Instructions versus rest

The instructions preceding each task block (during which

the words “0-back” or “2-back” instructed participants

which task to perform) caused robust group activation of

visual networks C1 (t > 6.6), C2 (t > 16.9), C3 (t > 10.6),

and C10 (t > 6.6), with most or all subjects showing task

recruitment (87%, 100%, 92%, and 89% of sample for

each network, respectively). Components with less activity

during Instructions than Rest (C4 and C7) were less sig-

nificant (t < �5.5) than positively-activated components,

but with comparable intersubject variability (76% and

87% of sample).

0-Back versus rest

C3 and C6 showed overall task-related activation (t > 4.0

and 3.4, respectively) with 77% and 74% of sample

showing positive activation for this contrast. C1, C4, and C8

were less active during 0-Back than Rest (t < �8.8, �6.9,

and �3.4, respectively), with strong consistency across

subjects (95%, 87%, and 74% of sample showing deactiva-

tion).

2-Back versus rest

C9 and C10 showed task-related activation (t > 4.1 and

7.3, respectively) with 71% and 95% of sample showing

positive activation for this contrast. C4 showed greater

activity for rest than task for all participants (t < �10.6,

100%). C1, C6, C7, and C8 were deactivated for 97%,

76%, 87%, and 89% of the sample (t < �9.9, �4.3, �5.7,

and �6.5, respectively).

2-Back versus 0-back

C10 was most significantly (t > 6.7) and consistently (87%

of sample) activated component for this contrast, fol-

lowed by C9 (t > 4.0, 76% of sample). Greater activity for

0-Back than 2-Back was observed for C4 (t < �7.9, 92%),

C6 (t < �8.1, 95%), C7 (t < �9.3, 95%) and visual net-

works C1–C3 (t < �2.6, range 63–73% of sample).

Performance-dependent recruitment of
intrinsic networks

Figure 4 depicts network recruitment during the JLO

fMRI task as a function of performance on the JLO neu-

ropsychological test. Thirty-eight participants had usable

data for both sessions. Participant accuracy for the JLO

neuropsychological test was highly correlated with accu-

racy for the JLO fMRI task (r = 0.80, P < 1 9 10�8),

indicating that the JLO fMRI task was a successful direct

replication of the neuropsychological measure.

Group t-tests showed the ventral (C2) and dorsal (C3)

visual networks as having the greatest activity during task

than rest (t > 8.2 with 92% and t > 6.7 with 97% of sam-

ple showing recruitment, respectively). Task-related deac-

tivation (greater activity for Rest than JLO) was observed

for default mode (C4, t < �4.7, 82% of sample), temporal
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(C7, t < �4.6, 87% of sample), and right frontoparietal

networks (C9, t < �5.5, 87% of sample).

Judgment of Line Orientation task accuracy significantly

predicted activity of the dorsal visual network C3 (t(36) =
�3.65, P < 0.001) and ventral visual network C2 (t(36) =
�2.41, P = 0.021), although the latter does not survive

FDR correction for 10 comparisons. In contrast, the motor

network C6 activity was significantly predicted by JLO

accuracy (t(35) = �4.20, P < 0.001) and mean JLO trial

duration (t(35) = �2.50, P = 0.017). Head coil (8- or 32-

channel), age, handedness, education, and sex did not pre-

dict brain activity for any components. Finally, the right

frontoparietal network C9 had the greatest task-related

deactivation (t < �4.6), but extent of deactivation was

unrelated to task performance (t(31) = 0.80, P = 0.43).

Additionally, poor performers demonstrated greater

variance in brain activity than high performers. Partici-

pants who performed below the median accuracy (83%;

n = 20) had significantly greater variability in brain activ-

ity (r = 740) than participants with accuracy greater than

or equal to 83% (n = 20; r = 408; F(1, 37) = 10.5,

P = 0.003). This greater variability – particularly for par-

ticipants 12, 22, and 35 – could reflect maladaptive strate-

gies for task performance. The strong correlation of JLO

performance inside and outside the scanner rules out

scanner environment as explaining the difference in brain

variability among high and low performers.

Discussion

We introduce the Cognitive Connectome Project as a

methodological framework for translating functional MRI

into clinical decision making. We have recruited a sample

diverse in age, education, sex, and ethnicity, which we

contend is crucial for ecologically valid investigations of

individual differences in the neural representation of cog-

nitive variance. Using the same 10 canonical resting-state

components, we have replicated many of Smith and col-

leagues’ findings: the three visual networks (C1–C3) were

activated during processing of visual stimuli; the default

mode network (C4) was consistently deactivated (more

active during rest than task) across domains; and left

frontoparietal network (C10) showed considerable breadth

of activation, whereas right frontoparietal network (C9)

recruitment was largely constrained to working memory

tasks. Our independent replication of these meta-analytic

findings supports the construct validity of the Cognitive

Connectome.

Our replication of Smith et al. (2009) bore some differ-

ences that warrant attention. Notably, the motor (C6) and

executive function networks (C8) were minimally

recruited by task. We offer two explanations for these

findings. First, components derived from ICA of resting-

state data may be suboptimal for describing task-elicited

activity. For example, ICA of resting-state datasets consis-

tently depict motor networks as bilateral (Beckmann et al.

2005; Wisner et al. 2013), but unimanual tasks asymmet-

rically recruit contralateral primary motor cortex (Catalan

et al. 1998; Gordon et al. 1998). This resulting inhibition

of ipsilateral primary motor cortex would diminish the

activation magnitude (and significance) of a bilateral

motor component. Of note, movements of the nondomi-

nant hand are less asymmetric (more bilateral) than dom-

inant hand movements (Hayashi et al. 2008); accordingly,

left-hand finger tapping in our predominantly right-

handed sample led to greater C6 recruitment (t > 3.1)

than right-hand finger tapping. Likewise, the executive

function component consists of orbitofrontal, ventrome-

dial, and dorsolateral prefrontal networks, which have dis-

sociable roles in emotional and cognitive processing

(Robinson et al. 2014). Thus, the merging of these dis-

tinct networks into a single component may be too gen-

eral to adequately capture the complexity that we as a

field refer to as executive function. Future work will

explore task-dependent variation in the neural representa-

tion of executive function.

Second, in an effort to minimize participant burden by

limiting MRI scanning to two 1-h sessions, the Cognitive

Connectome represents some cognitive domains using a

single task. This over-generalization undoubtedly leads to

experiment-specific nuances in brain activation that are

evident in Figure 2. For example, the MSIT was chosen

from roughly a dozen well-characterized attentional con-

flict tasks (Oddball, Flanker, Stroop, Simon, etc.) for its

standardized administration and incorporation of multi-

ple forms of attention. Consequently, MSIT elicited

greater activation of C2 and C3 than Smith and colleagues

had reported for attentional conflict tasks. We attribute

this unexpectedly strong visual activity to the visuospatial

properties of MSIT’s horizontally arranged numerical

stimuli. Incorporating multiple diverse attentional tasks

(e.g., tasks using verbal stimuli) may have resolved this

discrepancy; however, this would have required a third

MRI session, resulting in greater participant attrition. We

again stress the importance of group-level meta-analyses

and conceptual replications to dissociate neural activity

globally involved in a cognitive domain from activity that

is specific to a given neuroimaging paradigm.

Our analysis of intersubject variability (Fig. 3) shows

that brain networks may show significant task recruitment

for a group yet still vary considerably across individuals.

Although we replicated the group finding of greater left

frontoparietal activity during 2-Back versus 0-Back condi-

tions (t > 6.7), 5 (13%) of 38 participants showed left

frontoparietal deactivation (i.e., greater activity for 0-Back

than 2-Back). As t-statistics reflect both magnitude and
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standard deviation of activation, a high t-score could

result from a few subjects with exceptionally high-compo-

nent activations, subjects with moderate but consistent

activations, or both. For the tasks discussed, the visual net-

works (when showing significant group activation) dem-

onstrated greatest intersubject consistency in activation

(range 67–100% of sample; mean [SD] = 87% [11%]),

and the default mode network showed comparable deacti-

vation (range 74–100%, mean [SD] = 85% [10%]).

We further demonstrated that for the Judgment of Line

Orientation task, our most direct replication of a neuro-

psychological test, task performance scaled with recruit-

ment of some (but not all) networks. Dorsal visual

network was most significantly recruited by task, which is

consistent with its role in judging visuospatial orientation

(Buchel et al. 1999; Sack et al. 2002). Dorsal visual net-

work activity negatively regressed to JLO accuracy, which

we interpret as high performers requiring less network

recruitment during task. Conversely, task recruitment of

the motor network negatively regressed to both JLO accu-

racy and mean JLO trial duration. Our finding is consis-

tent with reports of motor network involvement in

visuospatial processing (di Pellegrino and Wise 1993;

Vingerhoets et al. 2002; Rushworth et al. 2003; Lamm

et al. 2007) as well as reports of greater motor network

activity with prolonged duration of motor response

(Yarkoni et al. 2009).

Conversely, networks such as right frontoparietal and

default mode showed task-related decreases in activity, but

these task-related changes in activity were unrelated to

performance. Although changes in default mode network

connectivity have been reported for numerous neurologic

and psychiatric conditions including epilepsy (Liao et al.

2010; James et al. 2013), schizophrenia (Hasenkamp et al.

2011; van Lutterveld et al. 2014), Alzheimer’s disease

(Greicius et al. 2004; Jones et al. 2012), and depression

(Guo et al. 2013; Sambataro et al. 2013), the extent to

which these changes encode symptom severity or cognitive

impairment is unknown. We provide a framework by

which task-dependent changes in default mode can be

associated to symptom in clinical populations.

Caveats and limitations

The Cognitive Connectome Project was designed to sam-

ple cognition as broadly as possible while minimizing par-

ticipant burden. Furthermore, fMRI tasks were designed

with the limitations of clinical populations taken into

consideration. For these reasons, fMRI tasks were opti-

mized to give greatest detection power in the shortest

timeframe, as is typical of block designs (Hagberg et al.

2001). For example, working memory would be more

completely characterized by an n-back task with

parametrically varied loads (i.e., 0-, 1-, 2-, and 3-back

conditions). We instead opted for an n-back task with

only 0-back and 2-back conditions, as the 1-back condi-

tion is trivial for healthy adults, and the 3-back condition

is too difficult for cognitively impaired patients. Nonethe-

less, numerous studies have used the contrast of 2-back

versus 0-back to map working memory function (Owen

et al. 2005), and this strategy has recently been adopted

by the Human Connectome Project (Barch et al. 2013).

Similarly, many of the Cognitive Connectome Project’s

fMRI tasks use a fixation cross as a low-level control con-

dition, whereas high-level control conditions are generally

more preferable because they capture task-irrelevant cog-

nitive processes (Price et al. 2005). For example, 2-back

trials require multiple cognitive processes (such as motor

execution, visual processing, and working memory) which

could not be fully dissociated with comparison to fixation

trials; thus, 0-back trials are included to control for

2-back cognitive demands that are unrelated to working

memory. While it would be ideal to include high-level

control conditions for all tasks (such as nonsense words

for the COWAT task, passive viewing of a motor cue

without response for the finger tapping task, etc.), the

inclusion of these additional high-level controls would

have dramatically inflated task duration by an estimated

30–40% – necessitating an additional hour of MRI testing

(and exacerbating participant dropout while diminishing

sample size) or reducing the number of cognitions stud-

ied. We instead opted to use a fixation cross as a standard

low-level control across all tasks (including tasks with

high-level controls, such as the n-back), thus improving

our ability to make inferences between tasks.

Our usage of low-level baseline conditions was also

motivated by the eventual translation of the Cognitive

Connectome Project into clinical decision making. One

could argue that a low-level baseline condition is prefera-

ble for surgical preplanning (such as mapping a language

network), as it would capture all aspects of language

(from recognizing a letter from its visual features to

retrieving a word’s semantic associations to accessing the

word’s phonetic properties). Mapping language networks

using high-level baseline condition could miss some of

these more basic cognitive processes, potentially resulting

in postsurgical deficits. This argument is supported by

recent evidence that the COWAT task with low-level

baseline condition more robustly activated language-asso-

ciated brain regions than tasks with high-level baseline

conditions such as the sentence completion task and

noun–verb association (Zaca et al. 2013).

Finally, no single fMRI task can fully capture the com-

plexity of an entire cognitive domain. Our selection of

the MSIT for modeling anterior cingulate activity during

conflict processing was largely motivated by MSIT’s
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standardized administration. Conflict modeling would

ideally be modeled using multiple fMRI paradigms (such

as Stroop, Ericksen flanker, and Simon tasks) with both

auditory and visual administration. Additionally, every

fMRI task design may elicit unique task-specific activa-

tions. For these reasons, meta-analyses will always be

valuable for mapping commonalities in cognition-depen-

dent neural recruitment.

Future directions

The clinical success of the Cognitive Connectome rests

upon its ability to map normative variance in cognition,

particularly with regard to diverse demographic variables.

The strongest demographic influence on neuropsychologi-

cal performance is age, followed by education. Other fac-

tors such as sex and ethnicity have negligible influence

upon cognitive measures after controlling for these two

variables. Most of the Cognitive Connectome’s neuropsy-

chological instruments have normative values for age

only, although some instruments (particularly those mea-

suring language and executive function) have normative

values for both age and education. The normative scoring

for these instruments typically bins adult participants into

class intervals of 8–10 years. (Children are typically bin-

ned into narrower intervals of 2–4 years.) Based on our

findings of stable brain–behavior relationships for 30–40
healthy adults per task, we estimate that – in order to

make clinical inferences for a single patient – we would

need roughly 30–40 healthy adults of that participant’s

age �5 years. In other words, an estimated 30–40 partici-

pants per decade of life, or 210–280 participants aged 20–
90, would be needed for the Cognitive Connectome to

reach its full translational potential.

Conclusions

We introduce the Cognitive Connectome as a tool for

comprehensively mapping the neural basis for normative

variance in cognition, behavior, and personality. The Cog-

nitive Connectome represents a novel collaboration

between neuroimaging and clinical neuropsychology to

mutually inform each field, and in doing so provide a

broader understanding of cognition and its neural repre-

sentations. We believe our efforts to capture a diverse

sample representative of the general population is crucial

for neuroimaging’s clinical translation and its future use

in personalized medicine.
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