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A B S T R A C T   

Predicting landslides is becoming a crucial global challenge for sustainable development in 
mountainous areas. This research compares the landslide susceptibility maps (LSMs) prepared 
from five GIS-based data-driven bivariate statistical models, namely, (a) Frequency Ratio (FR), (b) 
Index of Entropy (IOE), (c) Statistical Index (SI), (d) Modified Information Value Model (MIV) and 
(e) Evidential Belief Function (EBF). These five models were tested in the high landslides-prone 
humid sub-tropical type Upper Tista basin of the Darjeeling-Sikkim Himalaya by integrating 
the GIS and remote sensing. The landslide inventory map consisting of 477 landslide locations 
was prepared, and about 70% of all landslide data was utilized for training the model, and 30% 
was used to validate it after training. A total of fourteen landslide triggering parameters (eleva-
tion, slope, aspect, curvature, roughness, stream power index, TWI, distance to stream, distance to 
road, NDVI, LULC, rainfall, modified fournier index, and lithology) were taken into consideration 
for preparing the LSMs. The multicollinearity statistics revealed no collinearity problem among 
the fourteen causative factors used in this study. Based on the FR, MIV, IOE, SI, and EBF ap-
proaches, 12.00%, 21.46%, 28.53%, 31.42%, and 14.17% areas, respectively, identified in the 
high and very high landslide-prone zones. The research also revealed that the IOE model has the 
highest training accuracy of 95.80%, followed by SI (92.60%), MIV (92.20%), FR (91.50%), and 
EBF (89.90%) models. Consistent with the actual distribution of landslides, the very high, high, 
and medium hazardous zones stretch along the Tista River and major roads. The suggested 
landslide susceptibility models have enough accuracy for usage in landslide mitigation and long- 
term land use planning in the study area. Decision-makers and local planners may utilise the 
study’s findings. The techniques for determining landslide susceptibility can also be employed in 
other Himalayan regions to manage and evaluate landslide hazards.   

1. Introduction 

Our natural environment faces severe natural hazards such as cyclones, drought, earthquakes, and landslides in different parts of 
the globe [1]. High rates of inherent risk are present in many parts of the world, including those prone to landslides [2]. Landslides are 
significant natural catastrophes that typically occur on natural slopes in hilly regions and are caused by various triggering factors, 
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including rainfall and earthquakes [3]. The fundamental cause of landslides is slope instability, which occurs when the slope shifts 
from stable to unstable conditions due to gravitational force [4]. The hilly regions of the world are the most probable locations to be 
impacted by landslides, which are responsible for enormous damage to both property and human life [5]. As most of the hilly areas, 
such as the Himalayas, Rocky, Alps and Andes Mountains, are prone to landslides, countries such as India, the United States, China, and 
the Philippines have been impacted the hardest in recent years [6]. An estimated 100 million people were affected by the 346 disasters 
included in the 2015–2016 International Disaster Analysis (IDA) report, which led to the deaths of 22,773 persons across the globe [7]. 
According to the National Aeronautics and Space Administration (NASA) records of 10,084 landslide incidents from 2007 to 2017, the 
world experiences significant economic damage every year due to landslide hazards [8]. 

Landslides often cause the most significant amount of damage in Asia. India experiences most of its landslides during the monsoon 
season. There is a potential for landslides to occur over up to 15% of the total land area in India [9]. There are frequent landslides that 
occur mainly in the mountainous parts of the Himalaya and the Western Ghats of India. The Himalayan region accounts for around 
80% of all landslides in India [10]. Approximately 43% of India’s total landslide-prone area is located in the Darjeeling-Sikkim Hi-
malayan region [11]. Landslides are the most severe geohazards at the top of rug cliffs in Sikkim Himalaya due to earthquakes, extreme 
rainfall, and anthropogenic activities [12]. In the landlocked state, due to the complicated geological setting and substantial rain in the 
terrain, the extent of damage caused by rapid earth movements in several parts of Sikkim each year is quite significant. In addition, 
unsustainable development practices, particularly the construction of haphazardly built settlements and roads, have further 
contributed to the frequent incidents of landslides in this area. Therefore, it is essential to identify locations vulnerable to landslides to 
prevent potential damage. Future landslide hazards must also be predicted in mountainous regions to ensure sustainable development. 
Forecasting future landslide occurrences is becoming essential to prevent the detrimental effects of landslides. It is necessary to identify 
the conditioning factors impacting slope stability to analyse the vulnerability of landslides and limit damages using suitable mitigation 
strategies. 

Landslide investigations have recently begun to be conducted in a RS and GIS environment in order to acquire more accurate results 
[4,13,14]. Landslide studies can be classified as pre-disaster or post-disaster studies, with landslide prediction falling under 
pre-disaster studies [15,11]. In landslide prediction, a specific region may be classified into homogenous zones depending on the 
likelihood of landslide occurrences based on several conditional factors. The heuristic, deterministic, probabilistic, and machine 
learning approaches are the four main approaches used by many researchers to predict landslides [3,15,9,16]. The expert opinion is 
employed to provide weightage to various triggering factors in the heuristic method [17,18,19,20,2]; however, in the deterministic 
approach like safety factor calculation, the parameters may be figured out either on the field or in the laboratory [21]. The basic 
foundation of the probabilistic approach is the established association between landslide distribution and causative factors in a specific 
location. Some of the most used probabilistic models for studies of landslide prediction are the Weight of Evidence (WoE) [22,15,7], 
Frequency Ratio (FR) [23,11,24,25,26], Evidential Belief Function (EBF) [12], Statistical Index (SI) [27] Modified Information Value 
Model (MIV) [28], Index of Entropy (IOE) [29], Logistic Regression (LR) [30,26,31] and Multiple Regression Analysis (MRA) [32,33]. 
The EBF, one of the bivariate approaches, relies on the Dempster-Shafer theory of evidence [34,35], which has been demonstrated to 
be a reliable and efficient method in landslide prediction. EBF’s ability to quantify the belief, disbelief, uncertainty, and plausibility 
values related to the model is its main advantage over other bivariate statistical models [15]. The machine learning approach is a 
nonlinear dynamic method that predicts the geographical distribution of landslides based on previous data. Artificial Neural Network 
(ANN) [36], Boosted Regression Tree (BRT) [10], Support Vector Machines (SVM) [37,38,39], Adaptive Neuro-Fuzzy Inference System 
(ANFIS) [40], Random Forest (RF) [41,42,43], Decision Tree [16], Multilayer Perceptron Neural Network (MLPNN) [36,44] and 
Convolutional Neural Network (CNN) [8,45] are globally used machine learning models that forecast the unknown association be-
tween the events of landslides and the causative factors responsible for such events. Any of the aforementioned methods may be used to 
create landslide prediction models; however, each method has drawbacks that limit its efficiency when employed individually. 
Although these different landslide prediction modelling studies included a variety of methodologies, relatively few studies compared 
the various statistical models they used in their research. Because of this, it is critical to examine multiple statistical methods to 
determine which ones are most appropriate for landslide prediction. 

Several heuristic, probabilistic, and machine learning approaches have been used for landslide susceptibility mapping and analysis 
in the Sikkim Himalayan region in the last decade [11]. prepared a landslide susceptibility map (LSM) utilizing the frequency ratio 
method with ten important determining variables to identify the most dominant factors that cause frequent landslides in the Lachung 
River basin of North Sikkim. Recently [12], used an ensemble method of two statistical models (geographically weighted regression 
and evidential belief function) and one machine learning model (random forest) to investigate landslide prone zones in the Upper 
Rangit basin in West Sikkim district of Sikkim. According to the relative relevance of factor analysis, the landslide’s occurrence was 
mostly influenced by the variables of distance to the river, land-use land-cover (LULC), road density, and drainage density [8]. prepare 
LSM in the Rorachu river basin of Sikkim Himalaya, using deep learning and advance machine learning algorithms. The East Sikkim 
Himalayan region’s LSM was developed by Ref. [46] while taking into account a hybrid ensemble of machine learning techniques. 
According to their analysis rainfall emerges as the most crucial triggering factor for landslide occurrence among the factors used for 
modelling, followed by aspect, elevation, and LULC. 

In the present study, landslide prediction mapping was carried out in the Upper Tista basin of Darjeeling-Sikkim Himalaya through 
field visits and GIS-based data-driven bivariate statistical models because few researchers had modelled their research on a specific 
watersheds or river basins in Sikkim Himalaya. Assigning weights for each input map by comparing an individual conditional factors 
map with a landslide inventory map is the fundamental advantage of bivariate statistical models [27]. In this context, the FR, IOE, SI, 
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MIV, and EBF models were used to determine which locations had a greater possibility for future landslide occurrences, and their 
modelling performances were evaluated using ROC curves. For this purpose, fourteen thematic maps that represented elevation, slope, 
aspect, curvature, roughness, stream power index (SPI), topographical wetness index (TWI), distance to stream (DtS), distance to road 
(DtR), normalized difference vegetation index (NDVI) land-use land-cover (LULC), rainfall, modified fournier index (MFI), and li-
thology were used for landslide prediction mapping of the area facing extreme landslide events in the past. The main novelty is that 
different bivariate statistical approaches have been utilized for the first time to identify which method is best suited for landslide 
prediction in the Sikkim Himalayan region. The reasons for landslides in Sikkim vary depending on location; however, heavy rainfall is 
the most prevalent trigger, resulting in a landslide on Sikkim’s steep slope. As a result, various morphometric and climatic factors have 
received special attention in this work. The Upper Tista River basin is a crucial area in the state of Sikkim due to the fact that the state 
capital is in the centre of the basin, and the majority of Sikkim’s national and state highways converge in this particular region. The 
destruction of homes, roads, and croplands caused by landslides in this region imposes significant stress on the local population. The 
landslides along the National Highway 10 (NH-10) caused great hardship for the people living there and for the state of Sikkim. The 
NH-10 is the primary route that links Sikkim to its neighbouring state of West Bengal, and most vehicles that transport goods to the 
state travel along this route. Hence, the prime objective of this present work is to determine a suitable statistical method to prepare a 
landslide prediction map of the Upper Tista basin. Policymakers and planners must be aware of the geographic distribution of 
landslide-prone regions to use natural resources while preventing landslides. 

Fig. 1. Location map of the study area (a) India, (b) Sikkim, and (c) Upper Tista Basin with landslide training and testing data points.  
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Fig. 2. Field photographs of landslides within the study area: (a), (b), (c), (d), (e), (f), (g) Different landslides occurring places along NH-10 in Upper Tista Basin; (h), (i) Protection against landslide.  
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2. Database and methodology 

2.1. Description of the study area 

The south-eastern part of Sikkim and the northern part of the Indian state of West Bengal make up the study area, which is located 
in the Upper Tista Basin. It is physiographically part of the eastern Himalayan mountainous area. Elevations in the studied area 
generally range from 210 to 5124 m above sea level, with considerable topographic fluctuations. Rivers, gorges, and steep-sided deep 
valleys cut through the region. About 1759 km2 area comprised the study area, and it geographically extended between the extension 
of approximately 27003ʹ to 27◦32ʹ eastern latitudes and 88◦21ʹ to 88◦52ʹ northern longitudes (Fig. 1). The climate of the study area is 
generally humid sub-tropical type, and due to the frequent intense rainfall activities throughout the monsoon season, the region is 
often perpetually saturated. The area is also tectonically active, and earthquakes have occurred with high magnitudes. Heavy rainfall 
associated with landslides in the hilly terrain and flooding in the plains is a frequent phenomenon throughout the Tista Basin [47]. 
Every year during the monsoon, landslide events happen, especially in the upper part of the Tista Basin, and affect the inhabitants’ 
roads, houses, and livelihoods. The field photographs during 2021–2022 manifest the evidence of different types of landslides within 
the studied basin in Fig. 2. 

2.2. Data used for thematic maps preparation 

In the present study, different types of data have been utilized from authenticated sources, and therefore thematic maps are dis-
played by ESRI ArcGIS (version 10.4.1) software. The elevation, aspect, slope, curvature, TWI, SPI, and roughness thematic layers are 
generated using the USGS’s SRTM DEM. From the SRTM DEM, the drainage network has been derived in the ArcGIS platform using 
different tools. On the other hand, NDVI and LULC maps are simultaneously made using Landsat-8 OLI/TIRS, Path/Row: 139/041. 
Each of the satellite images underwent radiometric correction before being used in subsequent calculations. The IMD’s rainfall data 
(1986–2020) were gathered, and the long-term annual rainfall map was developed. The MFI was used to create the rainfall intensity 
map using these rainfall datasets. Using the ‘Proximity’ feature of ‘Analysis Tools’ in ArcGIS, Thiessen polygons were initially used to 
define the influencing region of a rain gauge station. The long-term annual rainfall and MFI were calculated in Microsoft Excel 2019, 
and themed layers were created in ArcGIS based on the provided values. Lithology layers were created using information obtained 
from Bhukosh GSI. Lastly, OpenStreetMap’s dataset was used to construct the spatial layer of distance to road. The data sources of 
fourteen conditioning factors employed in the landslide prediction modelling are described in Table 1. 

2.3. Landslide inventory map (LIM) 

It is believed that using a LIM is necessary to understand the relationship between landslides and the factors that affect them [48,49, 
50,51]. The sites and patterns of historical landslides are shown on the LIM in Fig. 1c. The spatial pattern and frequency of the active 
and historical landslides must be well understood to produce a valid LSZ map that depicts the risk of landslides in a given research area 
[52,53]. LIM is the preliminary stage in LSZ mapping [54]. For the purpose of validating and training LSMs, a precise and compre-
hensive LIM is crucial [55,56,57]. In the present study, more than 500 historical landslide point data have been collected from the 
Geological Survey of India (https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx) and NASA Global Landslide Catalog Point 
(https://gpm.nasa.gov/landslides/index. html). The data was then validated and confirmed using Google Earth and a detailed field 

Table 1 
Source of different applied landslide conditioning factors (LCF) for the landslide prediction modelling.  

Parameters Descriptions Source Resolution/ 
scale 

GIS data 
type 

Elevation, aspect, slope, curvature, 
TWI, SPI, Distance to stream and 
roughness 

Derived from ASTER DEM and prepared the thematic layer 
using ArcGIS 

United States Geological 
Survey (USGS) 
Retrieved from: https:// 
earthexplorer.usgs.gov 

30 m Raster 

LULC and NDVI Using Landsat 8 OLI/TIRS, Path/Row: 139/041, all the 
layers were prepared after mosaicing and atmospheric 
correction of the image 

United States Geological 
Survey (USGS) 
Retrieved from: https:// 
earthexplorer.usgs.gov 

30 m Raster 

Long-term annual rainfall and MFI Gridded rainfall for the period 1986–2020 has been used 
for calculation 

India Meteorological 
Department (IMD) 
Retrieved from: https:// 
www.imdpune.gov.in 

0.25 × 0.25 NetCDF 

Lithology Digital lithological map of the study area has been 
extracted 

Geological Survey of India 
(GSI) 
Retrieved from: https:// 
bhukosh.gsi.gov.in/ 

– Vector 

Distance to road Digital road networks of the study area have been 
extracted 

OpenStreetMap 
Retrieved from: www. 
openstreetmap.org 

– Vector  
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survey conducted in 2021–2022. Finally, 477 landslide locations on the LIM were used to create the models, which was around 70% for 
training purposes of the total landslide data and the remaining 30% for validating purposes [28,58]. The methodological flowchart is 
depicted in Fig. 3. 

2.4. Selection and construction of thematic maps of landslide conditioning factors (LCF) in the GIS environment 

In this study, the LCF has been selected based on previous literature reviews [59,10,60,61] and expert opinion. The selected pa-
rameters are very much relevant to the landslide studies. Here for the construction of thematic maps, ArcGIS software is usually used, 
and 14 thematic layers of LCF have been prepared. A detailed description of the LCF has been given below. 

2.4.1. Elevation 
As a consequence of its gravitational potential force, elevation is crucial in LCF [62,63]. The geomorphic features, type of vege-

tation, and level of degradation are all impacted by elevational variability in any given region (Chen et al., 2017). Landslides are 
frequently influenced by topography indirectly or through other elements like aspect and slope gradient [64,65]. In the present study 
area, an elevation map was produced from the SRTM DEM, which varies from 210 to 5124 m (Fig. 4a), showing the region’s high 
altitudinal variation. 

2.4.2. Slope 
The slope is one of the most significant LCF employed globally by different scholars [9,66,67] for generating the LSMs. It can be 

utilized to determine how steep a terrain feature is, and it directly affects the frequency of landslides (Chen et al., 2019). The slope map 
was generated using the ‘spatial analyst’ tool in ArcGIS. The slope of the study region ranges between 0.06 to 73.57◦, which manifests 
the very high steepness of the region. The slope map is shown in Fig. 4 (b). 

2.4.3. Aspect 
As a topographical key identifier, the aspect has an impact on the landslides [53,68]. It is known as the slope’s orientation and is 

connected to the flow’s azimuth and microclimatic characteristics in every given place [53]. Additionally, it influences the slope’s 
forest cover, humidity levels, and temperature fluctuations [69,67]. For this region, the aspect map was generated through the ‘3D 
analyst’ tool in ArcGIS, and here nine categories of aspect are found, as displayed in Fig. 4 (c). 

Fig. 3. Methodological flowchart of the study.  
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2.4.4. Curvature 
Several studies [70,71,66] assessed curvature as an important factor in LSMs. Concave, flat, and convex are the three elements that 

are represented by curvature. Positive values are related to convexity, whereas negative values are associated with concavity, and zero 
is represented by the flat region [72]. Curvature values that are both positive and negative implications that the terrain is highly 
susceptible to landslides. After a heavy downpour, a concave slope retains the water for a substantial time, causing the soil to get 
saturated and lose some of its mechanical qualities. In contrast, the process that causes landslides on a convex slope is described by 
rocks’ decomposition and disintegration due to repeated expanding and contracting processes [64]. In the study area, using the ‘spatial 
analyst’ tool in ArcGIS curvature map was produced, and it varies from − 15.56 to 12.34 (Fig. 4 d). 

2.4.5. Roughness 
It is another very important LCF used in different studies, viz., [73,74]. Using the “focal statistics” and “raster calculator” features 

on the ArcGIS software, it is determined from the filled SRTM DEM. This study calculated the LCF roughness based on Eq. (1) (Evans, 
1972; [72]. 

Fig. 4a. Landslide conditioning factors: (a) Elevation (El), (b) Slope, (c) Aspect, (d) Curvature (Cu), (e) Roughness (Rn), (f) Stream power index 
(SPI), (g) Topographic wetness index (TWI), (h) Distance to stream (DtS), and (i) Distance to road (DtR). 
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Roughness=
(FSmean − FSmin)

(FSmax − FSmin)
, (1)  

where, FSmean represent focal statistics mean, FSmin represent focal statistics minimum and FSmax represent the focal statistics 
maximum. The value of roughness for the Upper Tista Basin ranges from 0.18 to 0.79 (Fig. 4 e). 

2.4.6. Stream power index (SPI) 
The SPI illustrates the surface water flow’s erosional power, and it is a significant hydraulic factor for modelling LSMs [64,72,75]. 

SPI also describes how susceptible a terrain is to runoff-induced erosion and its indirect impact on slope stability. The SPI for the 
present study was computed by employing Eq. (2) (Moore et al., 1991): 

SPI=A ∗ tan β, (2)  

where, A express the specific area, and tan β defines the gradient. The “Raster Calculator tool of “Spatial Analyst Tools” was used to 
produce the SPI map of the area. The SPI value varies from 0 to 14,776,284 (Fig. 4 f). 

2.4.7. Topographic wetness index (TWI) 
An important hydrological aspect in landslide research is the TWI, which depicts the saturation supply zone resulting from ground 

runoff with the effect of topographic factors [64]. The TWI map was made for the current study to locate possibly moist locations and 
classify those with high sensitivity to landslides because the presence of water leads soil to loosen and structurally degrade [65]. Eq. (3) 
was used to calculate the TWI (Beven and Kirkby, 1979 [72];: 

TWI=Ln
( a

tan B

)
, (3)  

where, a and B express specific catchment areas and slopes, respectively. The a was computed by Eq. (4). 

Fig. 4b. Landslide conditioning factors: (j) Normalized difference vegetation index (NDVI), (k) Land use land cover (LULC), (l) Annual rainfall (Rf), 
(m) Modified fournier index (MFI), and (n) Lithology. 
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a=
A
L
, (4)  

where, A represents the basin area, and L represents the length of the contour [75]. The TWI value ranges from 2.54 to 26.08 in the 
Upper Tista Basin (Fig. 4 g). 

2.4.8. Distance to stream (DtS) 
Throughout drainage lines, there are probable slope instability zones [76,77,78]. One of the important causes of landslides is the 

deterioration of soil’s shear strength due to the high pore pressure in water [79,80,81]. The Upper Tista Basin is covered by an 
intensive drainage network. The DtS map manifests in Fig. 4 (h), where the value ranges from 0 to 3830 m. 

2.4.9. Distance to road (DtR) 
As anthropogenic elements, roads built in hilly terrain have a significant influence on the stabilization of slopes. During their 

development, the road network often sees substantial excavating, vegetation clearance, and the deployment of external pressures [64, 
82]. They significantly influence decreasing the slope’s resistance [65]. The value of DtR map of the Upper Tista Basin varied from 0 to 
12011 m (Fig. 4 i). 

2.4.10. Normalized difference vegetation index (NDVI) 
In order to stabilize slopes, vegetation is crucial because roots help reinforce and consolidate soil layers. The slopes are less resistant 

to landslides the lighter the vegetation. NDVI is typically applied to distinguish between areas covered in vegetation and those that are 
not [72]. Numerous studies [83,84,85] demonstrate the connection between landslide occurrence and NDVI. It has a range of-1 to+1, 
and in the existing research region, it is between − 0.11 and 0.48 (Fig. 4 j), using Eq. (5): 

NDVI=(NIR − RED) / (NIR+RED), (5)  

where, NIR expresses the near-infrared band, and RED expresses the red band. The NDVI was estimated depending on Eq. (5) utilizing 
the “Raster Calculator” function of the “Spatial Analyst Tools” in ArcGIS. 

2.4.11. Land use land cover (LULC) 
Various land uses affect landslides differently, making them an important consideration for determining LSMs in several research 

[86,87]. Since plant roots are thought to protect the soil, landslides are less likely to happen in forested areas. They reduce the quantity 
of water in the soil, and evapotranspiration controls the slope’s wetness. Human-induced changes in land use significantly impact the 
frequency of landslides [64]. The ERDAS imagine has implemented the supervised classification technique to create the LULC map for 
2022 of the Upper Tista Basin with 85% accuracy [88]. Six major land use type is found in the region: water body, vegetation cover, 
agricultural land, bare ground, buildup area, and snow cover (Fig. 4 k). 

2.4.12. Long-term annual rainfall 
One of the main criteria for identifying landslide-prone regions is rainfall [89,90]. Landslides and rainfall are found to be positively 

correlated [91,92]. As a significant landslide conditioning component, an annual rainfall map was constructed. Fig. 4 (l) depicts the 
spatial pattern of the region’s yearly long-term rainfall (1986–2020). Rainfall varies from 425 to 983 mm, and generally, in this region, 
rainfall tendency is high from north to south direction. 

2.4.13. Modified fournier index (MFI) 
The MFI was used to highlight the variability of rainfall intensity of the basin. Greater MFI values are associated with the areas more 

prone to landslides, which was regarded as a crucial landslide conditioning indicator [93,94]. MFI has been calculated based on Eq. (6) 
(Souissi et al., 2020 [72];: 

MFI=
∑12

i=1

P2
i

P
, (6)  

here, Pi represents mean monthly precipitation, and P represents mean annual precipitation. In the Upper Tista Basin MFI value ranges 
from 368.68 to 626.67, and a higher MFI value is observed in the southern, south-western, south-eastern, and eastern portions of the 
basin (Fig. 4 m). 

2.4.14. Lithology 
The lithological characteristics of such a location are relevant to modelling landslide hazards [95,96]. The lithological structures 

affect the permeability and rock hardness of the earth’s surface [53,97]. Since every lithological composition differs from the others in 
terms of its characteristics and organization, every lithology has a varied level of susceptibility to landslides [64]. Different lithological 
formations have been observed in the Upper Tista Basin, as depicted in Fig. 4 (n). The maximum area of the basin is covered with 
quartzite, banded migmatite, chlorite sericite schist, garnet Bt gneiss, calcgranulite and mica schist. 
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2.5. Multicollinearity assessment of the LCF 

Two of the most common indicators used to assess the multicollinearity among the parameters utilized as input in a mathematical 
model are Variance Inflation (VIF) and Tolerance (TL). The VIF and TL are found in various landslide susceptibility studies, viz., [98, 
99,100]. To detect collinearity throughout multiple regression, the VIF and TL constitute two highly connected statistical measures. 
These were dependent on the R-squared score of regressing a single predictor against every other predictor in the study [101]. The VIF 
and TL both are computed (Table 2) based on the following equations (Eq. 7 and 8): 

TL= 1 − R2
i, (7) 

where, R2
i depicts the coefficient of determination of the regression equation. 

VIF= 1/Ti (8)  

2.6. Methods 

2.6.1. FR model 
A popular and reliable statistical technique that is widely employed is frequency ratio [102,103,104]. LSZ map was generated for 

the current investigation employing multi-class spatial data sources using this probabilistic approach. FR is described as the proportion 
of the research area to the area where the landslide happened. In order to describe the relationship or link between historical landslides 
and landslide-triggering variables, the FR framework is used. This characteristic still makes it a popular choice for LSMs investigations 
[28,54,105]. This study separated the influencing variables into subcategories, and the frequency ratios were subsequently calculated 
by counting the number of pixels containing landslides in each component’s subcategory (Table 3). The frequency ratio of the variable 
subcategories was calculated using Eq. (9) shown follows [28]: 

Fr=
Npix

(
Lij

)/
Npix (L)

Npix (Sij)/Npix (Sa)
, (9)  

where, Npix (Lij) denotes the landslide pixel’s number in j th subclass of parameter i, Npix (L) denotes the sum of landslide pixels in the 
study area, Npix (Sij) denotes the pixel’s number in j th subclass of parameter i, and Npix (Sa) denotes the sum of pixels in the study 
area. The FR value > 1 exhibits a substantial connection with landslides, the FR value 1 exhibits average results, and the FR value < 1 
exhibits low connections with landslides. In order to calculate the LSZ, the aggregate of the FR for every subclass was computed, as 
shown in Eq. (10). 

LSI=
∑n

i=1
Fri = Fr1 + Fr2 + … + Frn (10) 

Furthermore, the susceptibility map is constructed by spatially combining these data in GIS. 

2.6.2. IOE model 
The IOE model is focused on the assumption of bivariate evaluation, where the number of landslides inside a specific variable is 

calculated [106,107,108]. This method enables the weights for every input factor to be calculated [109,110,111]. The following 
procedures are employed to determine the weight value for the variable in its entirety or the information coefficient [112]: 

Table 2 
Collinearity statistics of landslide conditioning factors (LCF).  

Sl. No Parameters Collinearity Statistics 

Tolerance Variance Inflation Factor (VIF) 

1 Elevation 0.442 2.265 
2 Slope 0.879 1.138 
3 Aspect 0.754 1.327 
4 Curvature 0.692 1.446 
5 Roughness 0.841 1.189 
6 SPI 0.831 1.203 
7 TWI 0.716 1.396 
8 DtS 0.904 1.106 
9 DtR 0.825 1.211 
10 NDVI 0.729 1.372 
11 LULC 0.807 1.238 
12 Rainfall 0.269 3.715 
13 MFI 0.271 3.689 
14 Lithology 0.835 1.198  
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Table 3 
Spatial association of each conditioning factor and landslide by FR and IOE co-efficient.  

Factors Class Reclass Landslide pixels Class pixels FR Pij FFR Hj Hmax Ij Pj Wj 

Elevation 210–500 5 54,000 62,698 5.577 0.587 9.500 1.735 2.322 0.253 1.900 0.480 
501–1000 4 74,700 302,396 1.600 0.168       
1001–1500 3 79,200 461,747 1.111 0.117       
1501–2000 2 54,900 409,478 0.868 0.091       
2001–5124 1 37,800 710,070 0.345 0.036       

Slope 0.06–5 1 0 17,965 0.000 0.000 2.338 1.218 2.322 0.475 0.468 0.222 
5.01–15 2 2700 164,985 0.106 0.045       
15.01–30 3 162,900 1,004,685 1.050 0.449       
30.01–50 4 135,000 739,577 1.182 0.506       
50.01–73.57 1 0 19,177 0.000 0.000       

Aspect North (0–22.5) 4 13,500 100,567 0.869 0.099 8.751 3.148 3.170 0.007 0.972 0.007 
Northeast (22.5–67.5) 1 22,500 191,004 0.763 0.087       
East (67.5–112.5) 5 33,300 227,176 0.949 0.108       
Southeast (112.5–157.5) 8 52,200 261,030 1.295 0.148       
South (157.5–202.5) 6 45,000 257,421 1.132 0.129       
Southwest (202.5–247.5) 7 44,100 246,452 1.159 0.132       
West (247.5–292.5) 3 33,300 253,419 0.851 0.097       
Northwest (292.5–337.5) 5 41,400 283,657 0.945 0.108       
North (337.5–360) 2 15,300 125,664 0.788 0.090       

Curvature − 15.56–− 2 4 1800 11,595 1.005 0.184 5.471 2.523 2.585 0.024 0.912 0.022 
− 1.99–− 1 6 18,900 94,556 1.294 0.237       
− 0.99 - 0 5 147,600 873,481 1.094 0.200       
0.01–1 3 122,400 856,595 0.925 0.169       
1.01–2 2 9000 99,911 0.583 0.107       
2.01–12.34 1 900 10,250 0.569 0.104       

Roughness 0.18–0.40 3 6300 59,502 0.682 0.201 3.390 1.963 2.322 0.155 0.678 0.105 
0.41–0.50 5 164,700 919,742 1.154 0.340       
0.51–0.60 4 125,100 913,355 0.883 0.260       
0.61–0.70 2 4500 43,265 0.670 0.198       
0.71–0.79 1 0 1655 0.000 0.000       

SPI 0–200 1 40,500 290,614 0.902 0.101 8.941 2.155 2.322 0.072 1.788 0.129 
201–400 5 14,400 29,938 3.114 0.348       
401–600 3 11,700 46,870 1.616 0.181       
601–800 4 18,900 51,064 2.397 0.268       
>800 2 215,100 1,527,904 0.912 0.102       

TWI 2.54–8.17 4 36,900 282,217 0.847 0.193 4.389 2.179 2.322 0.061 0.878 0.054 
8.18–12.69 5 128,700 519,197 1.605 0.366       
12.7–14.36 3 90,000 693,792 0.840 0.191       
14.37–16.35 2 39,600 360,711 0.711 0.162       
16.86–26.08 1 5400 90,472 0.386 0.088       

DtS 0–300 5 97,200 374,555 1.682 0.389 4.328 1.917 2.322 0.175 0.866 0.151 
301–600 4 57,600 332,168 1.124 0.260       
601–1600 3 108,000 880,634 0.795 0.184       
1601–2600 2 37,800 336,335 0.728 0.168       
2601–3830 1 0 24,079 0.000 0.000       

DtR 0–500 5 140,400 275,489 3.302 0.558 5.923 1.832 2.322 0.211 1.185 0.250 
501–1000 4 27,900 206,396 0.876 0.148       
1001–2000 3 43,200 351,246 0.797 0.135       
2001–5000 2 70,200 690,694 0.659 0.111       

(continued on next page) 
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Table 3 (continued ) 

Factors Class Reclass Landslide pixels Class pixels FR Pij FFR Hj Hmax Ij Pj Wj 

>5000 1 18,900 423,946 0.289 0.049       
NDVI − 0.11 - 0 1 0 3920 0.000 0.000 2.034 1.000 2.000 0.500 0.508 0.254 

0.01–0.10 2 50,400 321,567 1.016 0.499       
0.11–0.40 3 250,200 1,591,933 1.018 0.501       
0.41–0.77 1 0 30,348 0.000 0.000       

LULC Water body 6 2700 11,023 1.587 0.331 4.796 2.143 3.000 0.286 0.599 0.171  
Vegetation cover 4 227,700 1,571,000 0.939 0.196       
Agricultural land 1 0 2050 0.000 0.000       
Bare ground 2 900 18,955 0.308 0.064       
Buildup area 5 68,400 335,390 1.321 0.276       
Snow cover 3 900 9098 0.641 0.134       

Rainfall 425–536 1 64,800 791,940 0.530 0.070 7.544 2.107 2.322 0.093 1.509 0.140 
537–648 2 81,000 655,233 0.801 0.106       
649–760 3 56,700 259,325 1.417 0.188       
761–871 5 85,500 201,337 2.752 0.365       
872–983 4 12,600 39,935 2.044 0.271       

MFI 368.68–418.25 1 11,700 174,688 0.434 0.096 4.516 2.170 2.322 0.065 0.903 0.059 
418.26–469.85 2 24,300 331,036 0.476 0.105       
469.86–514.37 3 90,000 599,968 0.972 0.215       
514.38–553.83 4 63,000 366,967 1.112 0.246       
553.84–626.67 5 111,600 475,090 1.522 0.337       

Lithology Amphibolite 1 0 23 0.000 0.000 7.362 2.340 4.087 0.428 0.433 0.185 
Banded Migmatite, Garnet Bt Gneiss, Mica Schist 2 72,000 622,835 0.749 0.102       
Basic Intrusives 1 0 603 0.000 0.000       
Biotite Quartzite 6 900 2432 2.398 0.326       
Boulder Slate, Conglomerate,Phyllite 1 0 665 0.000 0.000       
Calc Granulite With/Without Quartzite 1 0 20,703 0.000 0.000       
Calc Silicate Rock 1 0 5101 0.000 0.000       
Chlorite Sericite Schist And Quartzite 4 207,000 1,049,576 1.278 0.174       
Dolimitic Quartzite, Chert, Phyllite, Slate 1 0 868 0.000 0.000       
Garnet, Kyanite, Sillimanite, Biotite Schist 1 0 494 0.000 0.000       
Meta Greywacke 1 0 1717 0.000 0.000       
Mylonitic Granite Gneiss 3 13,500 106,187 0.824 0.112       
Quartz Arenite 1 0 255 0.000 0.000       
Quartz Arenite, Black Slate, Cherty Phyllite 5 3600 12,850 1.815 0.247       
Quartzite 2 3600 78,222 0.298 0.041       
Quartzite, Mica Schist, Gneiss, Calcgranulite 1 0 243 0.000 0.000       
Tourmaline Granite 1 0 44,997 0.000 0.000        
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Pij =
Asd

At
(11)  

(
Pij
)
=

Pij

∑Sj

j=1
Pij

(12) 

The entropy values (Hj and Hjmax) are expressed as follows (Eqs. (13) and (14)): 

Hj =
∑Sj

i=1

(
Pij
)
log2

(
Pij
)
, j= 1,…n (13)  

Hjmax = log2Sj (14)  

where, Sj represents the number of classes. 

Ij =
Hjmax − Hj

Hjmax
(15)  

Wj = Ij × Pj (16)  

In the IOE approach, Ij represent the information coefficient, Wj is the weight value for the variable in its entirety and Pj represent the 
probability of slope failure, as described in Eqs. (15) and (16). The total of all parameter classes is utilized to generate the ultimate 
susceptibility value based on the estimated landslide density for each parameter class. The following equation (Eq. 17) was utilized to 
create the final LSZ applying the IOE model: 

Y=
∑n

i=1

z
mi

× C × Wj, (17)  

where, Y express the summation of all classes, i express the number of particular parametric map, z express the no. of classes inside the 
parametric map with the highest number of classes, mi express the number of classes inside the particular parametric map, C express 
the value of the class after secondary classification, and Wj express the weight of a factor. 

2.6.3. SI model 
The SI approach, put forth by Ref. [113]; is acknowledged as a bivariate statistical investigation. Bivariate statistical techniques are 

frequently employed to create correlations between landslide-controlling variables and the occurrence of landslides [114,115]. This 
method’s quick and manageable process considers it appropriate for natural hazard prediction [116,117]. This framework specifies the 
weighting value for every category of conditioning parameter as the natural logarithm of the class’s average landslide density divided 
by the average landslide density throughout the whole research area. This approach is centered on how often landslides occur for every 
variable class. The SI weights for every parameter are determined using the below method: 

SI= ln
(

Densclass
Densmap

)

= ln

⎡

⎢
⎢
⎣

(
N(Li)

Ai

)

(∑
N(Li)∑

Ai

)

⎤

⎥
⎥
⎦, (18)  

where, SI represents the weight of i-th class, Densclass represents landslide density inside the factor class, Densmap represents landslide 
density inside the overall map, N(Li) represents landslide’s number of the i-th factor class, Ai represents the i-th factor class area, 

∑

N(Li) represents pixels number of landslides of the research region, and 
∑

Ai represents the area of the research region. Every LCF’s SI 
weights were computed, and then, using the ‘spatial analyst tool’ in ArcGIS, each variable was classed using the derived SI values. Then 
‘raster calculator’ was used to combine the reclassified variables to get the landslide probability index. 

2.6.4. MIV model 
A statistical modelling approach based on the principles of the information theory is the Information Value Model (IVM) [28,118]. 

According to Ref. [119]; there are certain issues with the IVM [119]. developed the modified information value model (MIV). Pres-
ently, the MIV is globally relevant in the LSM mapping [28,120,121]. With the following equation (Eq. 19) [119], described the MIV in 
order to prevent the issues of the IVM method and quantitatively represent the results: 

I(H, xi)= log2

(
Npix (Si)/Npix (Ni)

∑
Npix (Si)/

∑
Npix (Ni)

+ 1
)

, (19)  

where, I(H, xi) indicates the information value of subcategory i of each parameter, Npix (Si) represents the landslide pixel’s number in 
subcategory i, Npix (Ni) represents the total pixels of subcategory I, 

∑
Npix (Si) represents the landslide pixel’s number in the study 
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Table 4 
Spatial relationship between each conditioning factor and landslide by SI, MIV and EBF models.  

Factor Class Landslide pixels Class pixels SI MIV Bel Dis Unc Pls 

Elevation 210–500 54,000 62,698 1.719 2.717 0.893 0.161 0.252 0.839 
501–1000 74,700 302,396 0.470 1.378 0.047 0.167 0.664 0.833 
1001–1500 79,200 461,747 0.105 1.078 0.030 0.182 0.701 0.818 
1501–2000 54,900 409,478 − 0.141 0.902 0.022 0.202 0.707 0.798 
2001–5124 37,800 710,070 − 1.065 0.427 0.008 0.287 0.676 0.713 

Slope 0.06–5.0 0 17,965 0.000 0.000 0.000 0.216 0.784 0.784 
5.01–15 2700 164,985 − 2.245 0.145 0.038 0.235 0.720 0.765 
15.01–30 162,900 1,004,685 0.049 1.036 0.446 0.167 0.384 0.833 
30.01–50 135,000 739,577 0.167 1.126 0.515 0.165 0.329 0.835 
50.01–73.57 0 19,177 0.000 0.000 0.000 0.217 0.783 0.783 

Aspect North (0–22.5) 13,500 100,567 − 0.140 0.902 0.097 0.114 0.787 0.886 
Northeast (22.5–67.5) 22,500 191,004 − 0.271 0.818 0.083 0.115 0.797 0.885 
East (67.5–112.5) 33,300 227,176 − 0.052 0.963 0.107 0.112 0.780 0.888 
Southeast (112.5–157.5) 52,200 261,030 0.258 1.198 0.156 0.104 0.748 0.896 
South (157.5–202.5) 45,000 257,421 0.124 1.092 0.132 0.108 0.763 0.892 
Southwest (202.5–247.5) 44,100 246,452 0.147 1.110 0.136 0.107 0.760 0.893 
West (247.5–292.5) 33,300 253,419 − 0.162 0.888 0.094 0.114 0.789 0.886 
Northwest (292.5–337.5) 41,400 283,657 − 0.057 0.960 0.107 0.112 0.780 0.888 
North (337.5–360) 15,300 125,664 − 0.238 0.839 0.087 0.115 0.795 0.885 

Curvature − 15.56–− 2 1800 11,595 0.005 1.004 0.184 0.175 0.642 0.825 
− 1.99–− 1 18,900 94,556 0.258 1.198 0.250 0.170 0.594 0.830 
− 0.99 - 0 147,600 873,481 0.090 1.066 0.204 0.137 0.663 0.863 
0.01–1 122,400 856,595 − 0.078 0.945 0.167 0.165 0.666 0.835 
1.01–2 9000 99,911 − 0.539 0.663 0.099 0.178 0.715 0.822 
2.01–12.34 900 10,250 − 0.565 0.649 0.096 0.175 0.721 0.825 

Roughness 0.18–0.40 6300 59,502 − 0.382 0.751 0.194 0.214 0.584 0.786 
0.41–0.50 164,700 919,742 0.143 1.107 0.357 0.150 0.509 0.850 
0.51–0.60 125,100 913,355 − 0.125 0.913 0.260 0.209 0.531 0.791 
0.61–0.70 4500 43,265 − 0.400 0.740 0.190 0.214 0.588 0.786 
0.71–0.79 0 1655 0.000 0.000 0.000 0.213 0.787 0.787 

SPI 0–200 40,500 290,614 − 0.103 0.928 0.075 0.210 0.689 0.790 
201–400 14,400 29,938 1.136 2.041 0.427 0.202 0.450 0.798 
401–600 11,700 46,870 0.480 1.388 0.153 0.207 0.613 0.793 
601–800 18,900 51,064 0.874 1.764 0.270 0.200 0.532 0.800 
>800 215,100 1,527,904 − 0.093 0.935 0.075 0.181 0.717 0.819 

TWI 2.54–8.17 36,900 282,217 − 0.167 0.885 0.184 0.210 0.597 0.790 
8.18–12.69 128,700 519,197 0.473 1.381 0.404 0.142 0.492 0.858 
12.7–14.36 90,000 693,792 − 0.174 0.880 0.183 0.213 0.596 0.787 
14.37–16.35 39,600 360,711 − 0.341 0.775 0.151 0.219 0.619 0.781 
16.86–26.08 5400 90,472 − 0.951 0.471 0.078 0.216 0.696 0.784 

DtS 0–300 97,200 374,555 0.520 1.423 0.424 0.158 0.454 0.842 
301–600 57,600 332,168 0.117 1.087 0.254 0.193 0.547 0.807 
601–1600 108,000 880,634 − 0.230 0.844 0.169 0.223 0.593 0.777 
1601–2600 37,800 336,335 − 0.317 0.789 0.153 0.216 0.616 0.784 
2601–3830 0 24,079 0.000 0.000 0.000 0.211 0.789 0.789 

DtR 0–500 140,400 275,489 1.195 2.105 0.695 0.108 0.335 0.892 
501–1000 27,900 206,396 − 0.133 0.908 0.105 0.203 0.649 0.797 
1001–2000 43,200 351,246 − 0.227 0.846 0.094 0.207 0.658 0.793 
2001–5000 70,200 690,694 − 0.418 0.730 0.076 0.234 0.655 0.766 
>5000 18,900 423,946 − 1.242 0.366 0.031 0.249 0.703 0.751 

NDVI − 0.11 - 0 0 3920 0.000 0.000 0.000 0.288 0.712 0.712 
0.01–0.10 50,400 321,567 0.015 1.011 0.499 0.276 0.224 0.724 
0.11–0.40 250,200 1,591,933 0.018 1.013 0.501 0.143 0.356 0.857 
0.41–0.77 0 30,348 0.000 0.000 0.000 0.293 0.707 0.707 

LULC Water body 2700 11,023 0.462 1.371 0.357 0.130 0.708 0.870 
Vegetation cover 227,700 1,571,000 − 0.063 0.955 0.186 0.098 0.806 0.902 
Agricultural land 0 2050 0.000 0.000 0.000 0.131 0.869 0.869 
Bare ground 900 18,955 − 1.179 0.387 0.055 0.132 0.837 0.868 
Built up area 68,400 335,390 0.300 1.215 0.282 0.126 0.736 0.874 
Snow cover 900 9098 1.467 0.714 0.121 0.130 0.428 0.870 

Rainfall 425–536 64,800 791,940 − 0.635 0.614 0.052 0.266 0.664 0.734 
537–648 81,000 655,233 − 0.222 0.849 0.083 0.211 0.683 0.789 
649–760 56,700 259,325 0.348 1.273 0.164 0.180 0.632 0.820 
761–871 85,500 201,337 1.012 1.908 0.432 0.148 0.488 0.852 
872–983 12,600 39,935 0.715 1.606 0.270 0.196 0.533 0.804 

MFI 368.68–418.25 11,700 174,688 − 0.835 0.520 0.085 0.222 0.682 0.778 
418.26–469.85 24,300 331,036 − 0.743 0.561 0.094 0.232 0.662 0.768 
469.86–514.37 90,000 599,968 − 0.028 0.980 0.210 0.197 0.588 0.803 

(continued on next page) 
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area, and 
∑

Npix (Ni) represents the total pixels in the study area. With the help of the training landslide data, the MIV of each 
subcategory of 14 parameters was calculated (Table 4). The LSZ for each pixel is calculated from each conditioning parameter using Eq. 
(20). 

Itotal =LSI=
∑n

i=1
I(H, xi) (20)  

2.6.5. EBF model 
The bivariate and mathematical Dempster-Shafer approach is famous as the theory of EBF [58]. It is a common method widely 

utilized to predict the LSM in the studies of [122,123,124,125]. Generally, four fundamental evidential belief functions are employed. 
They are: Bel (degree of belief) and Pls (degree of plausibility), which specify the probability’s bottom and top boundaries, Dis (degree 
of disbelief), which express that a claim is false despite evidence to the contrary; and Unc (degree of uncertainty), which stands for the 
distinction between belief and plausibility [58]. The following steps have been used in the current study for the EBF model: 

BelCij =
WCij (landslide)

∑n

j=1
WCij (landslide)

(21)  

WCij (landslide) =
N
(
L ∩ Cij

)/
N(L)

[
N
(
Cij

)
− N

(
L ∩ Cij

)]/
[N (C) − N(L)]

, (22)  

where, the denominator represents the proportion of factor class (Cij) pixels that are not from landslides, and the numerator represents 
the proportion of pixels that experience landslides in factor class (Cij). 

DisCij =
WCij (non− landslide)

∑n

j=1
WCij (non− landslide)

(23)  

WCij (non− landslide) =

[
N
(
Cij

)
− N

(
L ∩ Cij

)]/
N(L)

[
N (C) − N (L) − N

(
Cij

)
+ N

(
L ∩ Cij

)]/
[N (C) − N(L)]

, (24)  

where, the denominator represents the proportion of pixels in other attributes outside of the factor class (Cij) that are not from 
landslides, and the numerator represents the proportion of pixels from landslides that don’t occur in a factor class (Cij). 

UncCij = 1 − BelCij − DisCij (25)  

PlsCij =BelCij + UncCij (26)  

2.7. Validation of the models 

After creating a landslide prediction map using several models, one of the essential steps is verifying the results’ accuracy [126,127, 
128]. LSMs generated by five algorithms (IOE, SI, MIV, FR, and EBF) in the present investigation were validated by comparing the 

Table 4 (continued ) 

Factor Class Landslide pixels Class pixels SI MIV Bel Dis Unc Pls 

514.38–553.83 63,000 366,967 0.107 1.079 0.246 0.194 0.560 0.806 
553.84–626.67 111,600 475,090 0.420 1.335 0.365 0.155 0.508 0.845 

Lithology Amphibolite 0 23 0.000 0.000 0.000 0.057 0.943 0.943 
Banded Migmatite, Garnet Bt Gneiss, Mica Schist 72,000 622,835 − 0.289 0.807 0.084 0.061 0.888 0.939 
Basic Intrusives 0 603 0.000 0.000 0.000 0.057 0.943 0.943 
Biotite Quartzite 900 2432 0.875 1.765 0.380 0.057 0.780 0.943 
Boulder Slate, Conglomerate, Phyllite 0 665 0.000 0.000 0.000 0.057 0.943 0.943 
Calc Granulite With/Without Quartzite 0 20,703 0.000 0.000 0.000 0.057 0.943 0.943 
Calc Silicate Rock 0 5101 0.000 0.000 0.000 0.057 0.943 0.943 
Chlorite Sericite Schist And Quartzite 207,000 1,049,576 0.245 1.188 0.159 0.029 0.884 0.971 
Dolimitic Quartzite, Chert, Phyllite, Slate 0 868 0.000 0.000 0.000 0.057 0.943 0.943 
Garnet, Kyanite, Sillimanite, Biotite Schist 0 494 0.000 0.000 0.000 0.057 0.943 0.943 
Meta Greywacke 0 1717 0.000 0.000 0.000 0.057 0.943 0.943 
Mylonitic Granite Gneiss 13,500 106,187 − 0.194 0.867 0.094 0.057 0.887 0.943 
Quartz Arenite 0 255 0.000 0.000 0.000 0.057 0.943 0.943 
Quartz Arenite, Black Slate, Cherty Phyllite 3600 12,850 0.370 1.493 0.252 0.056 0.845 0.944 
Quartzite 3600 78,222 2.036 0.377 0.031 0.056 0.421 0.944 
Quartzite, Mica Schist, Gneiss, Calcgranulite 0 243 − 1.210 0.000 0.000 0.058 0.921 0.942 
Tourmaline Granite 0 44,997 0.000 0.000 0.000 0.057 0.943 0.943  
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susceptibility map with both the training and validating datasets [58,129]. To accomplish this, 477 landslide points were randomly 
divided into two categories, viz., 143 (30%) landslide points were used as validating data, while 334 (70%) landslide points were 
chosen as the training data. The accuracy of predicting LSMs created by the IOE, SI, MIV, FR, and EBF methods was validated using the 
receiver operating characteristic-area under curve (ROC-AUC) approach. ROC is a graph (two-dimensional) that represents 1-speci-
ficity (false positive rate) in the x-axis and sensitivity (true positive rate) in the y-axis as described below [72,130,75,53]: 

x axis= 1 − specificity= 1 −

[
TN

(TN + FP)

]

(27)  

y axis= sensitivity=
[

TN
(TP + FN)

]

, (28)  

where TN, FP, TP, and FN express true negative, false positive, true positive, and false negative, respectively (Swets, 1988). AUC was 
used to quantitatively assess the proposed maps’ effectiveness based on five approaches in the study. 

Fig. 5. Landslide Susceptibility maps using (a) FR model; (b) IOE model; (c) SI model; and (d) MIV model.  
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3. Results 

3.1. Multicollinearity analysis 

The findings of the multicollinearity test are shown in Table 2. The result showed no collinearity problem among the fourteen 
causative factors used in this study, as indicated by a tolerance value above 0.1 and a VIF value below 10 for each parameter at p <
0.05. As a result, all factors were chosen for the final modelling. It also verifies that no multicollinearity-related uncertainty penetrated 
the model output. 

3.2. Application of FR model for LSZ mapping 

The FR model is a straightforward probability model that may easily be implemented and can be used to generate accurate 
landslide prediction maps. The estimated value of FR indicates how closely landslides and the relevant class of causative factors are 
related. A number greater than 1 indicates a positive and strong association with higher chances of landslide phenomena, whereas less 
than 1 shows a negative link and a lower probability of landslides. The association between subclasses of causative parameters and 
landslides is shown by the FR values presented in Table 3. Elevation classes 210–500 m, 501–1000 m, and 1001–1500 m had higher FR 
values of 5.577, 1.600, and 1.111, respectively. Slope classes of 30.01–50 and 15.01–30 have higher FR values (1.182 and 1.050). Most 
landslides occur in Southeast, Southwest, and South facing directions regarding slope aspects. The FR values for these classes are 1.295, 
1.159, and 1.132, respectively. FR values (1.294) for concave areas (− 1.99 to − 1) are higher than those for convex areas. According to 
the relationship among roughness and the likelihood of a landslide, class 0.41 to 0.50 seems to have the greatest value of FR (1.154). In 
the case of SPI, the FR value is higher (3.114, 2.397, and 1.616) in 201–400, 601–800, and 401–600 classes, respectively. The class 
between 8.18 and 12.69 has the greatest FR value in accordance with the relationship involving TWI and landslide probability (1.605). 
In the case of DtS, higher FR values 1.682 and 1.124 were found for distances between 0-300 m and 301–600 m. Evaluation of DtR 
revealed a strong association between the occurrence of landslides and a distance of 0–500 m. NDVI classes of 0.01–0.10 and 0.11–0.40 
have higher FR values of 1.016 and 1.018, respectively. In the case of LULC, higher FR values were seen for water bodies (1.587) and 
built up (1.321) areas. For rainfall, the FR values manifest increasing rainfall has a significant trend in increasing landslides. The 
rainfall classes of 761–871 mm and 872–983 mm have higher FR values (2.752 and 2.044). The relationship connecting MFI and 
landslides demonstrated that when the MFI value rises, the likelihood of landslides happening likewise rises. In lithology, higher FR 
values have been noticed in Biotite Quartzite (2.398); Quartz Arenite, Black Slate, Cherty Phyllite (1.815); and Chlorite Sericite Schist 
and Quartzite (1.278) classes. This work accomplished the LSZ mapping in a GIS environment utilizing the FR model. Using the natural 
break method, the resulting LSZ map was divided into five categories: very high, high, medium, low, and very low. The study area is 
discovered to have maximum and lowest percentages of 33.95% and 3.05% for areas with low and very high landslide susceptibility, 
respectively (Fig. 5 a and Table 5). Regions with very low landslide susceptibility account for 30.96% of the total area, whereas areas 
with medium and high susceptibility account for 23.09% and 8.95%, respectively. 

3.3. Application of IOE model for LSZ mapping 

Entropy quantifies the degree of disorder, uncertainty, and instability in a given system. By using this model, it can be inferred that 
the entropy of a landslide event indicates the extent to which different conditioning factors impact the chances of landslide phe-
nomena. The weight of several landslide conditioning factors for making predictions was determined using the IOE model. The specific 
class of each conditioning factor demonstrated a different likelihood, which was assessed using the Pij value of the IOE model (Table 3). 
Since the FR value is taken into account by the probability density (Pij) formula, it is predicted that there would be a correlation 
between the two categories of coefficients. However, the r-value of 0.79 (Fig. 6) shows a high correlation between FR and Pij, and no 
superfluous data was used in the hybrid model training procedure. Table 3 displays the outcomes of the IOE model for the LSZ. The 
elevation, NDVI, and DtR landslide conditioning factors with weights of 0.480, 0.254, and 0.250, respectively, have reportedly had the 
most effects on the occurrence of landslides. Aspect, curvature, and TWI, with corresponding weights of 0.007, 0.022, and 0.054, had 
the least influence on landslide susceptibility. The following ranks are occupied by roughness, SPI, rainfall, DtS, LULC, and lithology. 
Eq. (17) were used to generate the final LSZ map using the IOE model. The natural break approach was used to divide the resulting LSZ 
map into five classes, spanning from very high to very low. The highest and lowest percentages for places with low and very high 
landslide susceptibility in the study area are found to be 25.60% and 9.03%, respectively (Fig. 5 b and Table 5). In the basin, 21.68% is 
located in regions with a very low landslide susceptibility, followed by 24.19% of land in medium susceptibility, and 19.49% in high 

Table 5 
The percentage of landslide susceptibility zones for FR, IOE, SI, MIV and EBF models.  

Landslide Susceptibility Classes FR IOE SI MIV EBF 

Very low 30.96 21.68 16.19 17.24 17.33 
Low 33.95 25.60 26.26 30.97 40.18 
Medium 23.09 24.19 26.14 30.33 27.72 
High 8.95 19.49 22.43 17.03 12.18 
Very high 3.05 9.03 8.99 4.42 2.59  
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susceptibility. 

3.4. Application of SI model for LSZ mapping 

The weights for each conditioning parameter in the SI model are obtained by dividing the natural logarithm of the landslide density 
class by the sum of the landslide densities across the entire map. When the number of landslides is higher than average, the weights of 
the values in natural algorithms will be positive, and when it is lower than average, they will be negative. Table 4 displays the as-
sociation between each causative factor and landslide as determined by the SI model. The class with the highest positive SI value for 
elevation is 210–500 m, which is 1.719, followed by 501–1000 m (0.470), 1001–1500 m (0.105), 1501–2000 m (− 0.141) and 
2001–5124 m (− 1.065). The slope angle 30.01–50 class has the highest SI value of 0.167, representing a higher potential for a 
landslide, while the highest SI value for the Southeast facing slope aspect is observed for the Southeast facing slope (0.258). The SI 
values of the other slope and aspect sub-classes are lower. The curvature − 1.99 to − 1 class has the greatest chance of landslide with the 
highest SI value of 0.258, and for the roughness, 0.41–0.50 class represents the maximum positive value (0.143), suggesting frequent 
chances of landslide. The SPI value between 201 and 400 has the maximum landslide probability with a positive SI value of 1.136, 
followed by 601–800 (0.874) and 401–600 (0.480). In the case of the TWI class of 8.18–12.69, the maximum SI value with a positive 
value (0.473) suggests a greater likelihood of landslide occurrence. The Dts 0–300 m class demonstrates the maximum positive value 
(0.520), followed by 301–600 m (0.117) and 601–1600 m (− 0.230). The risk of a landslide generally increases with decreasing 
distance from a stream. If we compare DtR’s findings to those of DtS, they are almost identical. The DtR 0–500 m class represents the 
maximum SI value (1.195), representing a higher potential for a landslide. In the case of NDVI, the 0.11–0.40 class has the highest SI 
value of 0.018, followed by 0.01–0.10 (0.015). The SI values of the other NDVI classes are lower. For LULC, the snow cover area has the 
maximum probability of landslide with an SI value of 1.467, followed by water body (0.462) and built-up area (0.300). According to 
the findings, landslides are more likely to occur in built-up regions and water bodies, whereas they are less likely to occur within 
vegetation cover. Regarding the rainfall parameter, the 761–871 mm class gets the maximum SI value of 1.012, followed by 872–983 
mm (0.715) and 649–760 mm (0.348). In the case of MFI, the 553.84–626.67 class manifests the maximum SI value of 0.420. Biotite 
Quartzite lithological formation class has the maximum chances of landslide hazard with an SI value of 0.875. The LSZ mapping for this 
study was accomplished by utilizing the SI model using Eq. (18) within a GIS environment. Using the natural break approach, the 
studied basin was divided into five susceptibility zones: very high, high, medium, low, and very low. The maximum and minimum 
percentages for places with low and very high landslide susceptibility in the study area are found to be 26.26% and 8.99%, respectively 
(Fig. 5 c and Table 5). A quarter of the study area (26.14%) is situated in areas of medium landslide susceptibility, followed by 16.19% 
of land in very low susceptibility, and 22.43% in high susceptibility. 

3.5. Application of MIV model for LSZ mapping 

The Information value model represents an approach to statistical analysis that stems from information theory. As part of the 
model, landslide occurrence is defined by the information values of the various triggering parameters. The MIV weight values pre-
sented in Table 4 illustrate the relationship among subclasses of each triggering factor and the occurrences of landslides. The areas with 
the highest MIV values were found to be with an elevation of 210–500 m (2.717), a slope of 30.01–50 (1.126), Southeast facing slope 
aspect (1.198), a curvature of − 1.99 to − 1 class (1.198), roughness class between 0.41 and 0.50 (1.107), SPI value ranging from 201 to 
400 (2.041), TWI of 8.18–12.69 (1.381), indicating the likelihood of landslide occurrence. The locations situated 0–300 m from 
drainage networks and 0–500 m from roads had the maximum MIV values of 1.423 and 2.105, respectively. The landslide inventory 
data supported this finding. Landslide risks are highest in the 0.11–0.40 NDVI class, where the MIV value is 1.013, and in the case of 
LULC maximum value is observed in water body areas, where it is 1.371. The class with the highest MIV value under rainfall is 
761–871 mm, with a value of 1.908, and for MFI 553.84–626.67 class has the highest MIV value of 1.335. In Biotite Quartzite lith-
ological formation class, the chances of landslide occurrence are maximum as it has the highest MIV value (1.765). To conduct the LSZ 

Fig. 6. Correlation between probability (Pij) density and frequency ratio (FR).  
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mapping in the present study, the MIV method was used using Eq. (20). The produced LSZ map was categorized into five sub-classes 
using the natural break method: very high, high, medium, low, and very low. Areas with low and very high landslide susceptibility are 
observed to have the highest and lowest percentages of 30.97% and 4.42% of the study area, respectively (Fig. 5 d and Table 5). Areas 
with medium landslide susceptibility cover 30.33%, and areas with very low and high landslide susceptibility were distributed as 
17.24% and 17.03%, respectively. 

3.6. Application of EBF model for LSZ mapping 

The bivariate EBF approach was utilized to assess geographical relationship between the subclasses of triggering parameters and 
the incidence of landslides. The estimated EBFs results for the four mass functions of Belief, Disbelief, Uncertainty, and Plausibility are 
shown in Table 4. A crucial restriction of EBF is that if Belief in a given class has no value, it means that there has never been a landslide 
in that class. Plausibility and Belief have values between 0 and 1 (Fig. 7). A relatively high value of Belief denotes a high probability of a 
landslide, whereas a low value of Belief denotes a low probability of a landslide. Based on the value of Belief, the classes with the 
greatest chance of landslide events were the same as those described for IOE, namely elevation (210–500 m), DtR (0–500 m), slope 
(30.01–50), NDVI (0.11–0.40), DtS (0–300 m), and rainfall (761–871 mm). The Belief map (Fig. 8a) and the Disbelief map (Fig. 8b) 
were compared, and the results indicated that Disbelief values were higher in places where belief values were low and vice versa. This 
was supported by Refs. [12,124]; who demonstrated that locations with high levels of Belief and low levels of disbelief for the 
occurrence were more likely to be affected by landslides. In regions with low Belief values, the degree of uncertainty associated with 
each factor type was high. The LSZ map by EBF has been developed by Eqs. (21)–(24) within a GIS environment and shown in Fig. 8. 
Using the natural break method, the resulting LSZ map was grouped into five categories: very high to very low. By integrating the four 
fundamental evidential belief functions (Bel, Dis, Unc and Pls) with GIS software maps were produced as illustrated in Fig. 8. The 
maximum and minimum percentages for places with low and very high landslide susceptibility in the studied river basin are found to 
be 40.18% and 2.59%, respectively (Fig. 9 and Table 5). Regions with medium landslide susceptibility account for 27.72% of the total 
area, whereas areas with very low and high susceptibility account for 17.33% and 12.18%, respectively. 

3.7. Validation of LSZ maps 

In the present work, landslide prediction maps generated by five models (FR, IOE, SI, MIV, EBF) were verified by comparing the 
prediction map to the training and validating data. About 70% of all landslide data was utilized for training the model, and 30% was 
used to validate it after training. The AUC values of each of the five models shown in Fig. 10 were used to determine the success and 
prediction rates. 

AUC values less than 0.5 suggest that the model’s performance has no discriminating capacity. Whereas values between 0.5 and 0.7 
demonstrate substantial discrimination ability. In contrast, values between 0.7 and 0.8 show acceptable discrimination capacity, and 
AUC values above 0.9 represent an excellent discrimination ability [131]. The findings showed that the IOE model has the highest AUC 
value of 0.958 for the success-rate curve, followed by SI (0.926), MIV (0.922), FR (0.915), and EBF (0.899) models (Fig. 10 a). The 
results indicated that the IOE model has the highest training accuracy of 95.80%, followed by SI (92.60%), MIV (92.20%), FR 
(91.50%), and EBF (89.90%) models. In the same way, the results of the prediction-rate curve showed that the IOE model has the 
highest AUC value of 0.964, followed by the SI (0.928), MIV (0.926), FR (0.917), and EBF (0.893) models (Fig. 10 b). This means that 
the IOE model has the highest prediction accuracy of 96.40%, followed by the SI (92.80%), MIV (92.60%), FR (91.70%), and EBF 
(89.30%) models. The AUC assessment indicated that all models had excellent accuracy in landslide prediction mapping for the present 

Fig. 7. Schematic relationships of evidential belief functions [124].  
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study, supporting the findings of the scientific analysis that the success rate and prediction rate curves are almost equal. As a result, any 
of the models may be used to analyse potential future landslide occurrences and a risk assessment in the study area. For the current 
study, the landslide-susceptible map created by the IOE model performed the best in terms of landside prediction mapping. 

3.8. Discussion 

Landslide prediction is becoming a critical worldwide issue for sustainable development in mountainous locations. In earlier 
studies, various methods that provide compelling findings have been used to predict or map the susceptibility of landslides [28,12,132, 
131,19,133,6,46]. However, the prediction capability of landslide susceptibility is constrained by a single model. Sustainable 
development relies heavily on proper planning and efficient management, which have become more important as people understand 
landslide susceptibility zones better. Despite this, extensive studies are still required to fully comprehend the interrelationship between 
the conditioning factors and landslide distribution. 

In the present study, landslide prediction mapping was carried out using data-driven bivariate statistical models (FR, IOE, SI, MIV, 
and EBF) to determine the most appropriate landslide prediction. Landslide susceptibility maps were generated utilizing the FR value, 
Pij value, SI value, MIV value, and Bel value from the five bivariate statistical models. Five different susceptibility maps were created 

Fig. 8. Integrated results of Evidence belief function (a) Belief; (b) Disbelief; (c) Uncertainity; and (d) Plausibility.  

J. Das et al.                                                                                                                                                                                                             



Heliyon 9 (2023) e16186

21

using the same fourteen causative factors and compared and assessed. All five models provide comparable results when calculating the 
weight for each subclass of fourteen conditioning factors. The findings indicated that landslide risk dropped as the elevation rose. The 
thin layer of colluvial deposit covering the 210–500 m elevation class makes this zone prone to landslides. On the other hand, 
landslides are less common at higher altitudes due to the smaller areal extent of land [12]. found that locations at 519–1508 m 
elevation had the greatest landslide occurrence likelihood in their study of landslide susceptibility in the Sikkim Himalayan region. It is 
clear that landslides occur less often on gentle slopes owing to lower shear stress at slope angles, but they occur more frequently on 
steep slopes due to increased shear stress. According to a research conducted by Ref. [11] to analyse the landslide susceptibility in the 
Lachung River basin, North Sikkim, locations with a slope angle of 35.488⁰-43.580⁰ had the greatest landslide occurrence probability. 
In the study area, most landslides happen on southeast-facing slopes. It is hypothesized that the slope aspect influences the soil strength 
because it affects the regional vegetation types. The curvature value significantly impacts the terrain’s morphology, substantially 
affecting debris flow’s acceleration, deceleration, convergence, and divergence. Positive curvature values signify convex upwards 
shape, whereas negative curvature values signify concave shape. The density of landslides is higher mostly in concave-curvature form 
because it enhances the soil moisture content and causes slope failure. In comparison to low convex slope, profle curvature classes with 
high concave slope had the greatest risk of landslip occurring, according to Ref. [11] findings. Another aspect influencing slope 
stability is the distance to the stream. It alters the hydrologic function of the slope and may impair its strength by weakening or wetting 
the slope’s material. The risk of landslides is greatest in the area nearest to the river. The results of a research on landslide susceptibility 
in the Artvin (Turkey) conducted by Akinci and Ozalp in 2021 showed that regions within 100 m of rivers were very susceptible to the 
appearance of landslides, but the susceptibility of landslides reduced as distance rose. The topography will inevitably change when 
highways are built across hilly areas. Consequently, the pressure on the rear of the slope rises, and tension fractures may form. The area 
closest to the roadways has the highest risk of landslides. The majority of landslides, according to Ref. [28]; occur near roads due to 
changes in slope stability, and they noted that the subclass within 200 m of roadways in the studied regions had the maximum values 
through all models used in the study. In regions with moderate NDVI values, shrubs and grassland are common, and shallow plant roots 
significantly impact severe landslides. According to Ref. [12]; locations with NDVI values ranging from 0.297 to 0.477 have the 
greatest risk of landslides. The prevalence of landslides in the study area has been linked to unsustainable development practices, 
particularly the construction of haphazardly built settlements and roads. According to Ref. [6] in addition to natural causes, human 
activities including excavation, deforestation, changes in land use, and slope profile can cause landslides to occur. In the case of 
rainfall, the result showed that increasing rainfall has a significant trend in increasing landslides. The relation between MFI and 
landslide showed that as the MFI value increases, the probability of landslide occurrences also increases. In lithology, the Biotite 
Quartzite class has the highest probability of landslide occurrences. This is because rainwater infiltrates through porous lithological 
structures and often triggers shallow landslides. 

Elevation, DtR, Slope, NDVI, DtS, and Rainfall were discovered to be the most influential indicators for LSZ mapping in the study 
area. The final LSZ maps showed that the most landslide-prone areas were concentrated in the southwest and southeast part of the 
study area. The LSZ maps clearly show that roadside landslides are very susceptible to frequent occurrences. In most instances, barrier 
walls prevent the movement of the landslide, but in the unprotected region, debris, sometimes combined with huge boulders, slips onto 
the road and obstructs accessibility. The validation of the result through the ROC curve indicated the effectiveness of the five bivariate 
statistical models in meeting the study’s objectives. The IOE model has the highest AUC value for the success and prediction rate curves 
in the validation phase. In comparison to earlier studies carried out by various researchers in the Darjeeling-Sikkim Himalaya region 
[12,134,13,19,11,135], the LSZ maps created by the FR, IOE, SI, MIV, and EBF models have been delivering superior results. These 
statistical models may be enhanced further by ensemble them using machine learning algorithms. This sort of ensemble approach has 
been used in recent years by several researchers [12,42,44,43,7,10,46] to address a variety of real-world classification issues as well as 
to improve the accuracy of the LSZ maps. 

Fig. 9. Landslide susceptibility distribution within the five susceptibility levels.  
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Fig. 10. Receiver operating characteristics ROC curve (a) Success rate; and (b) Prediction rate.  
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4. Conclusions 

Landslide is one of the frequent calamities in the Darjeeling-Sikkim Himalayan region, which wreaks financial havoc, claiming 
human lives, causing ecological damages, and affecting the socio-economic life of this region. Evaluating landslide prediction has 
gained the attention of many researchers and policymakers worldwide. Risk reduction is necessary for landslide hazard evaluation and 
mitigation to encourage sustainable economic growth. Five GIS-based statistical landslide predicting models have been utilized in this 
research for the tectonically active Upper Tista Basin of the Darjeeling-Sikkim Himalayan region of India. All the models are widely 
used in contemporary periods due to their high performance, effective functions, and excellent reliability. 

The current investigation divided the study area into five landslide susceptibility classes, varying from very high to very low, 
predicated based on the susceptibility indexed values of the respective models, i.e., FR, IOE, SI, MIV, and EBF. The FR statistical model 
demonstrates the most impacting LCF are elevation, SPI, aspect, MFI, and lithology; whereas in the IOE model, elevation, slope, DtR, 
NDVI, and lithology are most effective; in the MIV model, elevation, aspect, SPI, rainfall, and lithology are most effective; and in EBF 
model, elevation, slope, DtR, NDVI, and LULC are the significantly impacting factors. Parallelly, the SI model shows seven factors are 
depicted with positive values, which are the most influencing factors (i.e., elevation, SPI, DtS, NDVI, LULC, rainfall, and lithology), and 
the rest of the seven factors show negative values, i.e., they are the less impacting factors in predicting the landslide. This study also 
portrayed anthropogenic interventions in the mountainous Upper Tista Basin that had a significant impact on slope instability based on 
selected LCF (LULC and DtR) and field survey. The comparative assessment of the five models reflects that the basin is situated in a 
high-risk-prone region. According to the FR, MIV, IOE, SI, and EBF models, the proportions of high and very high landslide-prone areas 
are 12.00%, 21.46%, 28.53%, 31.42%, and 14.17%, respectively. The positive aspect of this research manifests that the success rate 
and prediction rate curves are almost equivalent and were supported by the AUC assessment, which showed that all algorithms had 
high accuracy in predicting landslide zones for the current research. 

This kind of statistical model-based study demonstrated the spatial distribution of landslide-prone areas and identified the factors 
that have the greatest impact on the occurrence of such vulnerability. But, proper and scientific field-based research is needed to better 
understand the vast impacts of such calamities. Database paucity is one of the largest issues in developing nations like India; conse-
quently, landslide prediction studies will be greatly advanced by improving the intake layers. Future research should focus on in-depth 
field-based investigations to detect the other driving factors of slope instability. The integration of machine learning approaches with 
GIS should be employed for better improvement in this field. This research indicates the employed models are appropriate and 
acceptable for the study area, and these data-driven bivariate statistical models can also be utilized in other frequently landslide- 
susceptible areas of the world. 
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