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Abstract: The short postharvest life of cassava is mainly due to its rapid postharvest physiological
deterioration (PPD) and cell oxidative damage, however, how to effectively control this remains elusive.
In this study, South China 5 cassava slices were sprayed with water and methyl jasmonate (MeJA)
to study the effects of MeJA on reactive oxygen species, antioxidant enzymes, quality, endogenous
hormone levels, and melatonin biosynthesis genes. We found that exogenous MeJA could delay the
deterioration rate for at least 36 h and alleviate cell oxidative damage through activation of superoxide
dismutase, catalase, and peroxidase. Moreover, MeJA increased the concentrations of melatonin
and gibberellin during PPD, which had a significant effect on regulating PPD. Notably, exogenous
MeJA had a significant effect on maintaining cassava quality, as evidenced by increased ascorbic
acid content and carotenoid content. Taken together, MeJA treatment is an effective and promising
way to maintain a long postharvest life, alleviate cell oxidative damage, and regulate storage quality
in cassava.

Keywords: cassava; methyl jasmonate; postharvest physiological deterioration; cell oxidative damage;
reactive oxygen species

1. Introduction

Cassava (Manihot esculenta) is one of the most important tropical crops [1,2]. Due to the short
postharvest shelf-life of cassava, its potential market benefit to cassava farmers is severely restricted.
Postharvest physiological deterioration (PPD) is harmful during harvesting and safekeeping, and
the burst of reactive oxygen species (ROS) results in serious cell oxidative damage [2–5]. ROS is
regulated by an antioxidant system including enzymatic and non-enzymatic scavenging mechanisms [6].
The enzymatic scavenging mechanism mainly consists of catalase (CAT), superoxide dismutase (SOD),
ascorbate peroxidase (APX), and peroxidase (POD), while the non-enzymatic scavenging mechanism
includes reduced forms of ascorbate, carotenoids, and flavonoids [7].

So far, various treatments have paid more attention to inhibiting cassava PPD. For example, hot
water treatment for 10 min and modified atmosphere packaging have significant effects on delaying
PPD during cassava postharvest storage [8]. In addition, keeping the cassava at 10 ◦C and 80% relative
humidity could also delay PPD for 14 d [9]. Meanwhile, exogenous treatments with some small
molecules, such as melatonin [10–12] and CaCl2 [12], can delay the postharvest shelf-life of cassava root.
Although traditional or genetic breeding methods can inhibit PPD in cassava [13,14], these methods
still have many problems such as long-term breeding, biosafety, and others [1]. Generally, all the above
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methods have both advantages and shortcomings. Therefore, other suitable techniques for delaying or
inhibiting PPD in cassava need to be further investigated.

As an important plant growth regulator, methyl jasmonate (MeJA) has significant effects on
quality [15,16], fruit ripening, senescence, and underlying parameters [17,18]. Previous studies have
demonstrated that MeJA treatment can induce the expression levels of SOD, POD, and CAT [17,18] to
decrease the levels of hydrogen peroxide (H2O2) and superoxide anion (O2

−) [19], thereby improving
stress resistance [17]. MeJA treatment is also conducive to the maintenance of eggplant quality during
storage, inhibiting the weight loss and calyx browning [18]. Postharvest treatment with MeJA maintains
higher concentrations of sugars and organic acids in fresh kiwifruit [20] and mangoes [21]. Moreover,
the application of MeJA to fruits and vegetables can increase the accumulation of flavonoids [22–24] and
quality [25–27]. Additionally, soluble solids can also be significantly induced by MeJA treatment [28].

Although MeJA has significant effects on fruit ripening and storage quality, the direct correlation
between MeJA and PPD in cassava remains unclear. In this study, comparative physiological analysis
was performed to reveal the effect of MeJA in PPD, cell oxidative damage, and cassava quality. Notably,
the relationship between MeJA and melatonin during cassava PPD was also revealed.

2. Materials and Methods

2.1. Plant Materials and Treatments

Manihot esculenta Crantz. cv. Mainland South China 5 (SC5) cassava roots were harvested from
nine-month-old cassava in Baisha County, Hainan Province, China. The cassava roots were washed
with double distilled water, the proximal and distal parts of the cassava roots were eliminated, and the
remaining roots were cut to 5–10 mm thick cassava slices. The cassava slices were randomly divided
into nine treatments and each treatment included 45 cassava slices. Cassava slices were sprayed
with either mock (the control having the same pH as the other treatments), 20 µM MeJA, 0.5 mM
MeJA, 5 mM MeJA, 10 mM MeJA, 20 µM gibberellin (GA), 2.5 mM GA, 5 mM GA, or 10 mM GA as
different treatments, and kept at 25 ◦C with 60%–75% relative humidity. The cassava root slices were
gathered at 0, 12, 24, and 48 h, then frozen in liquid nitrogen and stored at −80 ◦C for subsequent
determination. For the reagents, MeJA (39924-52-2, purity ≥ 95%, Solarbio, Beijing, China) and GA
(77-06-5, purity ≥ 90%, Biotopped, Beijing, China) were used.

2.2. Visual PPD Evaluation

Visual inspection of each slice was conducted at 0, 12, 24, 36, 48 and 72 h. The vascular discoloration
was quantified as determined percentages using ImageJ analysis software (http://rsb.info.nih.gov/ij/).
The percentages of gray values indicate the deterioration rate at each time point by the software.
The gray value at 0 h was set to 1.

2.3. Assays of ROS Accumulation and Antioxidant Enzyme Activities

The endogenous ROS accumulation and antioxidant enzyme activities were determined with
a microplate reader. Briefly, 0.5 g of root slices were taken and mixed with 5 mL with a 50 µM
phosphate buffer (pH 7.8). After centrifuged at 12,000× g for 10 min at 4 ◦C, the supernatant was
collected for determination of H2O2 and O2

− content as well as enzyme activities. The content of
O2
− was determined according to the hydroxylamine reaction method. The content of H2O2 and

activities of CAT, POD, and SOD were detected using the H2O2 Assay Kit (A064, Jiancheng, Nanjing,
China), CAT Assay Kit (A007-1, Jiancheng, Nanjing, China), POD Assay Kit (A084-3, Jiancheng,
Nanjing, China), and SOD Assay Kit (A001-4, Jiancheng, Nanjing, China), respectively, according to
the manufacturer’s guidelines.

http://rsb.info.nih.gov/ij/
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2.4. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR)

Total RNA isolation and qRT-PCR was performed according to the manufacturer’s guidelines as
described by Wei et al. [29]. The protocol of qRT-PCR included 95 ◦C for 10 min, followed by 45 cycles
of 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s. Then the relative transcription levels were evaluated
using the comparative 2−∆∆CT method with MeEF1 as the reference gene. The primers have been
previously described [30].

2.5. Determination of Endogenous Melatonin and GA

The endogenous melatonin and GA were quantified using the Melatonin Enzyme-Linked
Immunosorbent Assay (ELISA) Kit (HLE97243, Haling Biotechnology, Shanghai, China) and GA
ELISA Kit (HLE97151, Haling Biotechnology, Shanghai, China) respectively, according to the
manufacturer’s protocols.

2.6. Quantification of Starch, Soluble Sugar, Ascorbic Acid, and Carotenoid

The level of ascorbic acid was determined using the Ascorbic Acid Assay Kit (A009, Jiancheng,
Nanjing, China). The concentrations of soluble sugar and carotenoid were measured as described by
Gao [31]. Briefly, the homogenate was extracted twice in 5 mL of 80% ethanol at 80 ◦C for 30 min.
After centrifugation at 12,000× g for 10 min at room temperature, the supernatant was collected for
the determination of soluble sugar by an anthrone colorimeter. Carotenoid was extracted from 0.5 g
of cassava root slices using 5 mL of 96% ethanol, and the absorbance was determined at 665, 649,
and 470 nm, using a microplate reader and a 96-well plate. Meanwhile, starch concentration was
determined as described by Cao et al. [32]. For starch determination, the homogenate was extracted
twice in 5 mL of 80% ethanol at 80 ◦C for 30 min, residuals were gelatinized at 100 ◦C for 15 min, then
2 mL of 9.2 mol/L perchloric acid was added for further extraction for 15 min. After being centrifuged
at 12,000× g for 10 min at room temperature, the supernatant was collected for the determination
of starch.

2.7. Statistical Analysis

All experiments were performed with at least three independent biological replicates. All data
were shown as means ± SD, and were analyzed using ANOVA and SAS 9.1.3 statistics software (9.1.3,
SAS Instituteinc, North Carolina, NC, USA) for Duncan’s multiple range test. Asterisk symbols (*)
indicated a significant difference at p < 0.05 at the same time.

3. Results

3.1. The Effect of MeJA Treatment on PPD

As shown in Figure 1A, the effect of MeJA on postharvest physiological deterioration (PPD)
symptoms of cassava storage roots was revealed. In addition, the deterioration rate is shown in
Figure 1B. Obviously, higher concentration of MeJA (5 mM and 10 mM) significantly delayed the
development of PPD and decreased deterioration rate (Figure 1). Thus, 10 mM MeJA was selected for
further study.
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Figure 1. The effects of methyl jasmonate (MeJA) on postharvest physiological deterioration (PPD) in 
cassava storage root slices of South China 5 (SC5) variety. Visual detection (A) and deterioration rate 
(B) of storage root slices during PPD. Deterioration rate was determined by the percentages of gray 
values at different time points. Data are means ± SD calculated from at least three biological replicate 
samples. Asterisk symbols (*) indicate significant differences according to Duncan’s multiple range 
test at p < 0.05 at the same time points. 

After 12 h of water treatment, a brown color symptom was observed in the cassava root slices. 
However, the symptom in question did not manifest until 72 h with 10 mM MeJA treatment (Figure 
1A). On the contrary, the untreated cassava root slices displayed a high deterioration rate (Figure 1B). 
The results obviously showed that the deterioration rate of root slices was gradually increased during 
storage time, and 10 mM MeJA delayed early development of PPD in root slices (Figure 1). These 
results indicated that exogenous application of MeJA could delay the occurrence of PPD in cassava 
root slices. 

3.2. MeJA Alleviates Cell Oxidative Damage through Modulation of ROS and Underlying Antioxidant 
Enzymes 

To explore whether MeJA-induced delay of PPD was related to ROS scavenging in cassava root 
slices during the storage period, the concentrations of H2O2 and O2

.− were determined at different 
time points (Figure 2). Moreover, the concentrations of H2O2 and O2

.− in MeJA-treated cassava were 
significantly lower than that of untreated cassava at 24 h, while there was no significant difference at 
other time points. Antioxidant enzymes play vital roles in scavenging ROS and alleviating oxidative 
damage under stress environment [33,34]. The activities of CAT and SOD in MeJA-treated root slices 
were significantly higher than those in the untreated root slices at 12, 24, and 48 h (Figure 3A,C). 
Although the activity of POD in MeJA-treated cassava root slices was significantly higher than that 
in untreated cassava root slices at 12 h, there were no significant differences at other time points 
(Figure 3B). These results indicated that 10 mM MeJA could alleviate cell oxidative damage through 
activating the activities of antioxidant enzymes, which might contribute to the burst of H2O2 and O2

.− 
during storage time. 

Figure 1. The effects of methyl jasmonate (MeJA) on postharvest physiological deterioration (PPD) in
cassava storage root slices of South China 5 (SC5) variety. Visual detection (A) and deterioration rate
(B) of storage root slices during PPD. Deterioration rate was determined by the percentages of gray
values at different time points. Data are means ± SD calculated from at least three biological replicate
samples. Asterisk symbols (*) indicate significant differences according to Duncan’s multiple range test
at p < 0.05 at the same time points.

After 12 h of water treatment, a brown color symptom was observed in the cassava root slices.
However, the symptom in question did not manifest until 72 h with 10 mM MeJA treatment (Figure 1A).
On the contrary, the untreated cassava root slices displayed a high deterioration rate (Figure 1B).
The results obviously showed that the deterioration rate of root slices was gradually increased during
storage time, and 10 mM MeJA delayed early development of PPD in root slices (Figure 1). These
results indicated that exogenous application of MeJA could delay the occurrence of PPD in cassava
root slices.

3.2. MeJA Alleviates Cell Oxidative Damage through Modulation of ROS and Underlying
Antioxidant Enzymes

To explore whether MeJA-induced delay of PPD was related to ROS scavenging in cassava root
slices during the storage period, the concentrations of H2O2 and O2

− were determined at different
time points (Figure 2). Moreover, the concentrations of H2O2 and O2

− in MeJA-treated cassava were
significantly lower than that of untreated cassava at 24 h, while there was no significant difference at
other time points. Antioxidant enzymes play vital roles in scavenging ROS and alleviating oxidative
damage under stress environment [33,34]. The activities of CAT and SOD in MeJA-treated root slices
were significantly higher than those in the untreated root slices at 12, 24, and 48 h (Figure 3A,C).
Although the activity of POD in MeJA-treated cassava root slices was significantly higher than that
in untreated cassava root slices at 12 h, there were no significant differences at other time points
(Figure 3B). These results indicated that 10 mM MeJA could alleviate cell oxidative damage through
activating the activities of antioxidant enzymes, which might contribute to the burst of H2O2 and O2

−

during storage time.
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Figure 2. MeJA alleviates cell oxidative damage through modulation of reactive oxygen species (ROS) 
in cassava tuberous roots during PPD. The concentrations of H2O2 content (A) and O2− content (B) of 
cassava tuberous roots. Data are means ± SD calculated from three biological replicate samples. 
Asterisk symbols (*) indicate significant differences according to Duncan’s multiple range test at p < 
0.05 at the same time points. 

Figure 2. MeJA alleviates cell oxidative damage through modulation of reactive oxygen species (ROS)
in cassava tuberous roots during PPD. The concentrations of H2O2 content (A) and O2

− content (B)
of cassava tuberous roots. Data are means ± SD calculated from three biological replicate samples.
Asterisk symbols (*) indicate significant differences according to Duncan’s multiple range test at p < 0.05
at the same time points.
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Figure 3. The modulation of MeJA treatment on antioxidant enzyme activities in cassava tuberous 
roots during PPD. Related activities of catalase (CAT) (A), peroxidase (POD) (B), and superoxide 
dismutase (SOD) (C) in cassava tuberous roots. Data are means ± SD calculated from at least four 
biological replicate samples. Asterisk symbols (*) indicate significant differences according to 
Duncan’s multiple range test at p < 0.05 at the same time. 

3.3. MeJA Positively Modulates the Quality of Cassava Root Slices 

During the process of PPD, starch concentration was significantly higher in MeJA-treated 
cassava root slices than that in the control root slices at 12 and 24 h, while at 48 h, a decrease was 
evident after MeJA treatment (Figure 4A). Soluble sugar concentration showed no significant 
difference between MeJA-treated cassava root slices and the control root slices (Figure 4B). 
Furthermore, MeJA treatment significantly increased ascorbic acid levels in comparison to the control 

Figure 3. The modulation of MeJA treatment on antioxidant enzyme activities in cassava tuberous roots
during PPD. Related activities of catalase (CAT) (A), peroxidase (POD) (B), and superoxide dismutase
(SOD) (C) in cassava tuberous roots. Data are means ± SD calculated from at least four biological
replicate samples. Asterisk symbols (*) indicate significant differences according to Duncan’s multiple
range test at p < 0.05 at the same time.

3.3. MeJA Positively Modulates the Quality of Cassava Root Slices

During the process of PPD, starch concentration was significantly higher in MeJA-treated cassava
root slices than that in the control root slices at 12 and 24 h, while at 48 h, a decrease was evident after
MeJA treatment (Figure 4A). Soluble sugar concentration showed no significant difference between
MeJA-treated cassava root slices and the control root slices (Figure 4B). Furthermore, MeJA treatment
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significantly increased ascorbic acid levels in comparison to the control during cassava slice storage
(Figure 4C), and MeJA treatment significantly increased carotenoid concentration compared with the
control, at 12 and 48 h (Figure 4D). These quality-related parameters showed that MeJA could reduce
quality loss in cassava root slices during storage.
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3.4. MeJA Treatment Affects the Endogenous GA Content 
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GA also significantly delayed the development of PPD (Figure 5B). These results demonstrated that 
MeJA-induced GA also had a significant effect on delaying PPD. 

Figure 4. The modulation of MeJA treatment on the quality of cassava tuberous roots during PPD.
The concentrations of starch content (A), soluble sugar content (B), ascorbic acid content (C), and
carotenoid content (D) in cassava tuberous roots during PPD progression. Data are means ± SD
calculated from three biological replicate samples. Asterisk symbols (*) indicate significant differences
according to Duncan’s multiple range test at p < 0.05 at the same time.

3.4. MeJA Treatment Affects the Endogenous GA Content

Interestingly, MeJA treatment increased endogenous GA concentration as compared to the control
at 12 and 48 h during cassava storage (Figure 5A). Simultaneously, a high concentration of GA
also significantly delayed the development of PPD (Figure 5B). These results demonstrated that
MeJA-induced GA also had a significant effect on delaying PPD.
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3.5. The Effect of MeJA on the Expression of Melatonin Biosynthesis Genes and Melatonin Level 

Besides GA, the endogenous melatonin level and the corresponding melatonin biosynthesis 
relative genes were also determined. Notably, all the genes except MeASMT1 were significantly 
upregulated after MeJA treatment in comparison to the control root slices at 12 h (Figure 6). 
Compared with the control samples, all these genes were significantly upregulated at 24 h after MeJA 
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Figure 5. The effects of MeJA on the endogenous gibberellin (GA) levels in stored cassava slices.
(A) The endogenous levels of GA in cassava storage root slices without and with MeJA pre-treatment.
(B) Visual detection of storage root slices affected by GA pre-treatment. Data are means ± SD calculated
from three biological replicate samples. Asterisk symbols (*) indicate significant differences according
to Duncan’s multiple range test at p < 0.05 at the same time.

3.5. The Effect of MeJA on the Expression of Melatonin Biosynthesis Genes and Melatonin Level

Besides GA, the endogenous melatonin level and the corresponding melatonin biosynthesis
relative genes were also determined. Notably, all the genes except MeASMT1 were significantly
upregulated after MeJA treatment in comparison to the control root slices at 12 h (Figure 6). Compared
with the control samples, all these genes were significantly upregulated at 24 h after MeJA treatment
(Figure 6). Meanwhile, the endogenous melatonin level also significantly increased after MeJA
treatment at 24 h (Figure 6H). Therefore, exogenous MeJA might act as a molecular regulator to activate
melatonin biosynthesis, thereby delaying cassava PPD and alleviating cell oxidative damage.
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Figure 6. The effects of the MeJA on the expression levels of cassava melatonin biosynthesis genes and
underlying endogenous melatonin. Expression levels of MeTDC1 (A), MeTDC2 (B), MeT5H (C), MeSNAT
(D), MeASMT1 (E), MeASMT2 (F), and MeASMT3 (G) during PPD progression. The endogenous
melatonin level in cassava storage root slices (H). Data are means ± SD calculated from three biological
replicate samples. Asterisk symbols (*) indicate significant differences according to Duncan’s multiple
range test at p < 0.05 at the same time.

4. Discussion

In this study, the activities of SOD, CAT, and POD in MeJA-treated cassava roots were significantly
higher than those in the control roots (Figure 3). Consistently, the concentrations of O2

− and H2O2
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showed the opposite trend (Figure 2), thereby delaying PPD symptoms and alleviating cell oxidative
damage. Previous studies have shown that the application of MeJA could increase the activities of
SOD [17], POD [17,18], and CAT [17,18] in different fruits and plants, and thereby stress resistance [17].
SOD can eliminate O2

− and transform it into H2O2, which is further reduced to H2O by CAT [35]. CAT,
as a detoxifying system member, protects cells against the ROS accumulated within cells [19]. Overall,
these results indicated that MeJA might delay PPD and decrease cell oxidative damage in cassava root
slices through enhancing antioxidant enzyme activities and decreasing ROS accumulation.

After MeJA pre-treatment, the concentrations of ascorbic acid, carotenoid, and soluble sugar were
increased, while the degradation of starch was reduced (Figure 4). Hu et al. [12] indicated that the
application of CaCl2 could reduce the degradation of ascorbic acid and delay PPD, in accordance
with this study. In addition, Chavez et al. [36] found that there is positive correlation between
endogenous β-carotene level and cassava PPD tolerance, so the modulation of MeJA on carotenoids
may contribute to its effect on cassava PPD. MeJA treatment is conducive to the maintenance of
eggplant fruit quality during storage, through inhibiting the increase of calyx browning [18]. MeJA
treatment can maintain higher concentrations of sugars and organic acids in fresh kiwifruit [20] and
mangoes [21]. The degradation of starch can result in the increase of sugar [37,38]. Soluble sugar is the
basis for the formation of fruit quality. Moreover, ascorbic acid also plays an essential role in plant
antioxidant stress defense and nutrition [39]. Therefore, the effects of exogenous MeJA treatment on
the above parameters might be used for delaying senescence as well as maintaining storage quality.

Plant growth regulators play important roles in many physiological processes and stress responses.
This study showed that the endogenous GA level was higher in MeJA-treated cassava root slices than
that in the control slices (Figure 5A). Furthermore, GA treatment has significant effects on delaying
ripening and postponing senescence [40–42]. Besides GA, exogenous melatonin treatment delayed
postharvest senescence in litchi [43], banana [44], peach [45], and strawberry [46]. In cassava, melatonin
biosynthesis genes are transcriptionally upregulated by melatonin treatment [10], and the application of
CaCl2 can also increase melatonin content through activating the expression of melatonin biosynthesis
genes [12]. Herein, MeJA commonly activated the transcripts of MeTDC1/2, MeT5H, MeSNAT, and
MeASMT1/2/3, so as to trigger endogenous melatonin levels in cassava root slices during cassava
storage. Based on the relationship between plant growth regulators and fruit ripening as well as quality,
we concluded that the modulation of MeJA on ROS might contribute to MeJA-mediated PPD and
cassava quality. Figure 7 shows a possible model describing the potential relationships among MeJA,
melatonin, ROS, GA, quality, and cassava PPD. PPD is connected with a ROS burst and the activation
of underlying antioxidant enzymes. In this study, MeJA could alleviate cell oxidative damage through
modulation of ROS and underlying antioxidant enzymes, and increase the concentration of melatonin
and GA, resulting in a delayed deterioration rate. Therefore, the results indicated that MeJA could
delay the cassava deterioration rate through the modulation of multiple physiological parameters
(Figure 7).
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MeJA delays the deterioration rate and alleviates cell oxidative damage through modulation
of ROS accumulation and the underlying activities of SOD, CAT, and POD. In addition, exogenous
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