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ABSTRACT
Candida albicans, which can cause superficial and life-threatening systemic infections, is the most 
common opportunistic fungal pathogen in the human microbiome. The two-component system is 
one of the most important C. albicans signal transduction pathways, regulating the response to 
oxidative and osmotic stresses, adhesion, morphogenesis, cell wall synthesis, virulence, drug 
resistance, and the host–pathogen interactions. Notably, some components of this signaling 
pathway have not been found in the human genome, indicating that the two-component system 
of C. albicans can be a potential target for new antifungal agents. Here, we summarize the 
composition, signal transduction, and regulation of the two-component system of C. albicans to 
emphasize its essential roles in the pathogenesis of C. albicans and the new therapeutic target for 
antifungal drugs.
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Introduction

The infection and mortality rate of candidiasis have 
significantly increased in recent years due to tumor 
chemoradiotherapy, the widespread use of antibiotics, 
and the increase in the number of immunocompro-
mised patients, such as those with HIV infection [1,2]. 
Candida albicans is the major pathogenic agent for 
candidiasis and one of the most common conditionally 
pathogenic polymorphic fungi from the human micro-
biome. It colonizes multiple ecological niches, includ-
ing the oral cavity, reproductive mucosa, and the 
respiratory and gastrointestinal tract of healthy indivi-
duals. C. albicans can also cause cutaneous and mucosal 
infections such as thrush, vaginal infections, and life- 
threatening invasive infections [2,3]. Among the 20,788 
isolates of invasive Candida collected from around the 
world for 20 years (1997–2016) in the SENTRY 
Antifungal Surveillance Program, 46.9% were 
C. albicans [4]. The incidence of C. albicans-induced 
candidaemia in China is 40.1% and up to 69.8% in 
Norway [5]. The proportion of C. albicans in ventila-
tor-associated pulmonary candidiasis in ICU patients is 
as high as 46.36% [6]. C. albicans is even one of the 
most common coinfection fungi in COVID-19 
patients [7].

The C. albicans colonization of different host niches 
depends on the capability to sense multiple environ-
mental signals and then regulate its adaptation and 
switch between colonization and pathogenesis. 
C. albicans can transform reversibly between yeast, 
pseudohyphae, and hyphae forms, adapting to the 
stresses at different host niches and infected tissues 
under different conditions, including nutrition, pH 
value, temperature, oxidation, and immune status. 
C. albicans possesses a powerful signal transduction 
network, “the two-component system,” to continuously 
monitor the external environment and regulate its colo-
nization and pathogenesis [8–11]. In the two- 
component system, the signal is introduced by the 
histidine protein kinase, and transferred through 
a series of phosphorylation events, finally phosphory-
lating the response regulator protein. Compared with 
the one-step transduction in the two-component sys-
tem of prokaryotes, eukaryotes have a more complex 
multi-step phosphate transduction system. The two- 
component system in C. albicans regulates morphogen-
esis, responses to oxidative and osmotic stresses, 
quorum sensing, virulence regulation, etc. Here we 
summarize and discuss the structure and function of 
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the two-component system in C. albicans, highlighting 
its role in pathogenesis and as a therapeutic target for 
new antifungal agents.

The structure and signal transduction of the 
two-component system

Both prokaryotes and eukaryotes, including fungi, myx-
omycetes, and plants, contain the two-component sig-
naling system [12–17], which can be divided into one- 
step and multi-step transduction modes. A typical two- 
component signaling system consists of a membrane- 
associated histidine protein kinase (HPK) and 
a response regulatory (RR) protein. The HPK is 
a dimer composed of two subunits, each containing 
an ATP binding domain, a dimerization domain, and 
a kinase domain (phosphorylation site). When the 
input domain of HPK is appropriately stimulated, the 
dimerization domain of one subunit approaches the 
kinase domain of the other subunit to promote phos-
phorylation [18] (Figure 1). The phosphorylation level 

of HPK affects the phosphorylation rate of the RR. 
Multiple HPKs might regulate one RR, or one HPK 
might regulate multiple RRs [19]. RR consists of 
a receiving module and an output domain. The receiv-
ing module regulates the output domain activity 
through the phosphorylation of aspartic acid residues 
(Asp). The output structure might be a transcription 
factor regulating gene expression or a protein activity 
regulator [18]. The two-component system was origin-
ally discovered by Ninfa and Magasanik et al. [20] in 
the nitrogen regulatory protein system of Escherichia 
coli. It is a typical one-step two-component system as 
an HPK is autophosphorylated on a histidine residue, 
and the signal is subsequently transferred to an RR on 
an aspartate residue (Figure 2). This nitrogen regula-
tory protein system of E. coli contains two proteins, 
NtrB (an HPK protein) and NtrC (an RR protein). 
NtrB catalyzes the transfer of a phosphate group to 
the aspartic acid of NtrC under nitrogen limitation 
conditions. The phosphorylated NtrC activates the 
transcription of nitrogen metabolism genes [12]. On 

Figure 2. One-step phosphorylation of His-Asp in prokaryotes. A HPK is autophosphorylated on a histidine residue and the signal is 
subsequently transferred to a RR on an aspartate residue. The phosphorylated RR acts as a transcription factor regulating gene 
expression or a protein activity regulator. The transfer of phosphate acid from HPK to RR takes only one step (His-Asp).

Figure 1. Structure and phosphorylation of HPK. The HPK is a dimer composed of two subunits. Each subunit contains an ATP 
binding domain, a dimerization domain, and a kinase domain (phosphorylation site). When the input domain of HPK is appropriately 
stimulated, the dimerization domain of one subunit will approach to the kinase domain of the other subunit to promote the 
phosphorylation.
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the contrary, when the concentration of amine is too 
high, NtrB is regulated by upstream GlnD and PII 
proteins to promote the dephosphorylation and inacti-
vation of NtrC, turn off the expression of genes encod-
ing nitrogen metabolism-related enzymes, and stop the 
bacteria from absorbing nitrogen from the environ-
ment [21,22]. In the one-step two-component signal 
transduction system, the phosphate group is directly 
transferred from the HPK to the RR (His-Asp) [18].

In most eukaryotes, the two-component system is 
a multi-step phosphate transduction system [23–33] 
(Figure 3), usually consisting of a hybrid HPK, an 
intermediate transfer protein, and an RR. The structure 
and conduction pathway of the two-component system 
are different in various fungi. For example, C. albicans 
contains three HPKs [34], Cryptococcus neoformans has 

seven HPKs [32], and Neurospora crassa expresses ele-
ven HPKs [35]. The transmission mechanism is as 
follows. ATP is used as the donor to phosphorylate 
a conserved His residue called H-box after the HPK 
detects the stimulus signal. Subsequently, the phosphate 
group is transferred to the Asp residue of the same 
HPK receptor domain, followed by being transferred 
to the Asp residue of the RR receptor domain through 
the His residue of intermediate transfer protein. Four 
phosphorylation events occur sequentially, forming the 
four-step phosphate transfer (His-Asp-His-Asp) system 
(Figure 4). The output components and processes of 
eukaryotic systems are more complex and diverse. For 
example, the two-component system and the down-
stream Hog1-MAPK pathway participate in signal 
transduction in C. albicans and other fungi [15,36], 

Figure 3. The two-component systems and the downstream pathways in different fungi. The two-component system in most 
eukaryotes is a multistep phosphate transduction model. The structure and conduction pathway of the two-component system are 
different in various fungi. For example, S. cerevisiae expresses only one HPK, C. albicans contains 3 HPKs, and C. neoformans has 7 
HPKs. The phosphorylation level of HPK affects the phosphorylation rate of RR. Multiple HPKs may regulate one RR, while one HPK 
may also regulate multiple RRs.
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regulating the responses to oxidative and osmotic stres-
ses, adhesion, cell wall synthesis, morphogenesis, and 
virulence [37–48] (Figure 5).

Composition of the two-component system of 
C. albicans

Currently, seven proteins have been identified in the 
two-component system in C. albicans (Table 1), includ-
ing three hybrid HPKs (Sln1p, Nik1p/Cos1p, and 
Chk1p), three RRs (Ssk1p, Skn7p, and Crr1p/Srr1p), 
and one intermediate transfer protein (Ypd1p) 
[49,50]. Ssk1p, Skn7p, and Crr1p/Srr1p are located 
within the cytoplasm, nucleus, and mitochondria, 
respectively [51–53].

HPKs of C. albicans (Sln1p, Nik1p/Cos1p, and 
Chk1p): Sln1p, a homolog of Saccharomyces cerevisiae 
Sln1, was initially identified in C. albicans by Nagahashi 
et al. [43]. Sln1p consists of 1373 amino acids, includ-
ing a histidine kinase domain and a C-terminal recep-
tor domain [54], with two transmembrane helices and 
can rescue the function in S. cerevisiae SLN1 null strain, 
indicating that the function of SLN1 is similar to 
ScSLN1. Nik1p/Cos1p contains 1081 amino acids and 
is an apparent ortholog of group III histidine kinases 
[43,54–57]. The NcNik1/Os1p (N. crassa), BcBos1p 
(Botrytis cinerea), AbNik1p (Alternaria Brassicicola), 
NcNik1p (Parastagonospora nodorum), and ChNik1p 
(Cochliobolus heterostrophus) also belong to this class 
[57–60]. Nik1p has two H-box domains (H1 and H2) 
and is considered a cytoplasmic enzyme as it lacks 
a transmembrane domain [43,61]. The N-terminus of 
Nik1p contains 9 HAMP (histidine kinases, adenylylcy-
clases, methyl accepting chemotaxis proteins and phos-
phatases) domains, where mutations lead to the most 
severe osmosensitivity and dicarboximide resistance 
phenotypes [57,62,63]. Although the structure of 
Nik1p is similar in these different fungi, the roles of 
orthologous proteins are not identical. For example, 

CaNik1p has no apparent effect on osmotolerance but 
is necessary for normal serum-induced hyphal growth 
[44,55]. The absence of Nik1p resulted in a near- 
complete loss of virulence in A. brassicicola [60]. 
P. nodorum NIK1 deletion reduced asexual sporulation 
in vitro [59]. Chk1p is composed of 2471 amino acid 
residues and contains a specific serine/threonine kinase 
and GAF domains (cGMP-phosphodiesterase, adenylyl 
cyclase and a formate hydrogen lyase transcriptional 
activator) [61]. Chk1p might be a soluble protein as it 
has neither any trans-membrane hydrophobic domain 
nor localization signal domain. Currently, the mode of 
its sensory stimulation is unclear [64].

Intermediate transfer protein of C. albicans 
(Ypd1p): Ypd1p serves as an intermediate transfer pro-
tein to transfer phosphate groups from HPK to RR and 
YPD1 can complement the S. cerevisiae YPD1 mutation 
defected functions [65,66]. Ypd1p is localized in both 
the nucleus and cytoplasm [67] and encodes a protein 
of 184 amino acids and may regulate the phosphoryla-
tion of Ssk1p (cytoplasm) and Skn7p (nucleus) RRs 
[45,67–69], but the specific mechanism is not fully 
understood. YPD1 is the central molecule of the two- 
component system, and a decrease in YPD1 activity is 
expected to compromise fungal fitness, virulence, and 
viability [70]. YPD1 inhibition is fatal to S. cerevisiae 
and C. neoformans [49,70–72]. However, C. albicans 
can adapt to the continuous activation of Hog1- 
MAPK triggered by YPD1 deletion, actively reducing 
the level of phosphorylated Hog1 [49], indicating that 
the function of YPD1 seems to be different among 
fungal species.

RRs of C. albicans (Ssk1p, Skn7p, and Crr1p/ 
Srr1p): Ssk1p is a structural homolog of both 
S. cerevisiae Ssk1p and Schizosaccharomyces pombe 
Mcs4p [52]. Ssk1p is located downstream of the Sln1p- 
Ypd1p pathway and plays a vital role in cell wall bio-
synthesis, virulence factor regulation, polymorphonuc-
lear neutrophils (PMNs) immune evasion, osmotic 

Figure 4. Multistep phosphorylation of His-Asp in fungi. After the HPK detects the stimulus signal, ATP is used as the donor to 
phosphorylate a conserved his residue. Subsequently, the phosphate group is transferred to the Asp residue of the same HPK 
receptor domain and then transferred to the Asp residue of the RR receptor domain through the his residue of intermediate transfer 
protein. Four phosphorylation events occur in sequence, forming the four-step phosphate transfer (His-Asp-His-Asp).
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stress response, and antioxidative stresses of C. albicans 
[40–42,73,74]. Skn7p is a heat-shock transcription fac-
tor of fungi, initially found in S. cerevisiae. When cells 
receive thermal or oxidative stimulation, the signal is 
transmitted along Sln1p-Ypd1p, eventually phosphory-
lating Skn7p to regulate gene expression [45,53,68,75– 
77]. In C. albicans, Skn7p plays an essential role in 
oxidative stress and morphogenesis, but it has less 

effect upon the maintenance of the cell wall and the 
osmotic stress response [53,78–80]. CRR1/SRR1 is 
a newly discovered RR in the CUG branch of 
Candida [51,81–83]. Bruce et al. [82] reported that it 
was located in the cytoplasm and nucleus, with little 
virulence effect, while Mavrianos et al. [51] showed that 
Srr1p is located within the mitochondria of C. albicans 
and plays an important role in virulence, 

Figure 5. Two-component system of C. albicans and its downstream pathways. Seven proteins of the two-component system in 
C. albicans are shown, including three hybrid HPKs (Sln1p, Nik1p/Cos1p, Chk1p), three RRs (Ssk1p, Skn7p, Crr1p/Srr1p), and one 
intermediate transfer protein (Ypd1p). The downstream responses of two-component system are complex and diverse, which is 
highly related to morphogenesis, oxidative and osmotic stress, quorum sensing, virulence regulation and so on.
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morphogenesis, apoptosis, osmotic and oxidative stress, 
etc. [51,83], indicating that the localization and func-
tion of Crr1p/Srr1p needs further investigation.

Functions of C. albicans two-component system

Cell wall integrity

The cell wall is the main organelle of fungi, which 
determines its viability, cell shape, and interactions 
with the environment, especially in mediating adhesion 
and host immune response [84,85]. The differences in 
cell wall mannan and mannoprotein compositions 
between yeast and hyphal phases lead to marked differ-
ences in the cytokine profiles exhibited by different 
types of C. albicans cells [86]. The RR (Ssk1p) and 
each type of HPK in the two-component signaling 
system are critical for cell wall assembly in C. albicans 
[10,40,42–44,55,56,64,87–89]. There are numerous 
changes in the cell wall structure of CHK1 mutants, 
including the truncation of mannan oligosaccharide 
and β-1,3-glucan (shortened by about 50%) and β- 
1,6-glucan (increased about four-fold) levels [61,90]. 
Interestingly, these two glucans are also indirectly regu-
lated by the hyphal-specific gene (RIM101) under dif-
ferent pH conditions [8,91,92]. The killing efficiency of 
neutrophils to Candida was lower when cell wall man-
nan was added, suggesting that the changes of glucan 
and mannan in CHK1 mutants might lead to enhanced 
PMN response [93,94]. The adhesion and invasion of 
SSK1 and CHK1 mutants to the reconstituted human 
esophageal tissue (RHE) was lower than that of wild- 
type strains [38,42], which might be attributed to the 
changes in cell wall components of CHK1 mutants and 
the down-regulation of Als1p [95] of SSK1 mutants 
[41,42,96]. Besides, both SLN1 and NIK1 mutants 
altered the transcription levels of some N- and 

O-mannosyltransferases, suggesting their role in cell 
wall assembly and maintenance [61].

Hyphal forms and virulence

Many factors are believed to be related to the virulence 
of C. albicans, including the expression of adhesion 
molecules (adhesins and extracellular enzymes), 
immune escape (cell wall mannoprotein and phagocy-
tosis interference), and the morphological transforma-
tion of yeast to pseudohyphae/hyphae [9,42,89,97,98]. 
A complex transcriptional regulatory network controls 
the morphological transformation of C. albicans [8]. 
Many environmental factors can initiate or inhibit the 
morphogenetic switch, such as pH, temperature, serum, 
presence or lack of specific nutrients, etc [80,89,99– 
101]. Hypha-specific genes (HSGs) have been classified 
into at least three groups, including transcription fac-
tors (CPH1 and EFG1), genes encoding the mitogen- 
activated protein (MAP) kinase signaling pathway 
(MEK1 and CST20), and genes expressed only during 
hyphal growth: hyphal cell wall protein (HWP1) and 
candidalysin (ECE1). A basic correlation has been 
established between hyphal growth defects and viru-
lence [8]. The virulence of C. albicans with SLN1 or 
NIK1 deletion is decreased, while the deletion of CHK1 
resulted in loss of virulence, in line with the hyphal 
defect [44]. The yeast to hyphae transition depends not 
only on induction conditions but also on the physical 
state of the medium (solid or liquid) [40,102–106]. The 
hyphal forms of the NIK1 mutant cultured in 30°C 
liquid media could not be distinguished from that of 
the wild-type strain, while the hypha formation of NIK1 
mutants was defective on a solid agar plate at 37°C 
[44,55,56,87]. CHK1 and SSK1 mutants had a hypha- 
forming defect on medium 199 (pH = 7.5), Spider 
medium, and serum-mediated solid medium. 

Table 1. Components and functions of the two-component system of C. albicans.

Composition Species Position Feature

Function

Cell wall 
biosynthesis Hyphae Virulence

Osmotic 
stress

Oxidative 
stress

HPK Sln1p Cytomembrane Membrane protein Yes Yes Yes Yes No
Nik1p Cytoplasm Two H-box domains Yes Yes Yes No Yes
Chk1p Unknown Soluble protein, quorum 

sensing
Yes Yes Yes No Yes

Intermediate transfer 
protein

Ypd1p Nucleus and 
cytoplasm

Intermediary role Unknown Yes Yes Unknown Yes

RR Ssk1p Cytoplasm Downstream protein of 
Ypd1p

Yes Yes Yes Yes Yes

Skn7p Nucleus Related to HSGs Unknown Yes No No Yes
Crr1p/ 

Srr1p
Cytoplasm and 

nucleus/ 
Mitochondria

CUG branch of Candida, 
apoptosis

Unknown Unknown Unknown Unknown Yes
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However, they developed hyphae and flocculate exten-
sively in liquid media, possibly due to the false expres-
sion of proteins on the cell surface [18,40,44,89,107]. 
CHK1 mutants can also form hyphae similar to the wild 
type strain but down-regulate the expression of viru-
lence factors in liquid media when co-cultured with 
oral epithelial cells, indicating its critical role in oral 
candidiasis [107]. Interestingly, cell aggregation occurs 
not only in liquid media, but also on solid media. The 
CHK1 mutant formed smooth colonies on solid media 
probably because the cells aggregated in the colonies 
and could not grow normally to form the same fuzzy 
colonies as the wild-type strains [89,90].

The SSK1 mutants were defective in hypha develop-
ment on the nitrogen-rich solid media; however, they 
formed many hyphae and invaded the solid agar on 
nitrogen-limited solid media. Therefore, SSK1 might 
not be required to develop hyphae but might play 
a role in hypha regulation [40].The TPK1-encoded 
protein kinase A (PKA) plays a critical role in regulat-
ing morphogenesis of C. albicans [80,108]. The hyphal 
formation defect of TPK1 mutants on solid media was 
similar to that of SKN7 mutants [53,80,108], suggesting 
that SKN7 may be related to TPK1 [80], but further 
evidence is needed to reveal the interaction between 
them. SKN7 was also closely correlated with hyphal- 
specific genes such as CPH1, EED1, EFG1 and UME6 
[80]. Overexpressing SKN7 in wild type strains were 

formed wrinkled colonies and contained filamentous 
cells. However, the overexpression of SKN7 in CPH1, 
EED1 or EFG1 mutants did not appear wrinkled colo-
nies and only yeast cells were found, while overexpres-
sion of SKN7 in UME6 mutants resulted in slightly 
wrinkled colonies with yeast cells and pseudohyphae 
[80]. These results suggest that CPH1, EED1, EFG1 and 
UME6 are essential for SKN7 function in morphogen-
esis regulation. SKN7 was closely correlated with 
hyphal-specific genes such as CPH1, EED1, EFG1, and 
UME6 [80] (Figure 6). The hypha formation is also 
related to the accumulation of reactive oxygen species 
(ROS) [109]. When C. albicans are exposed to hypha- 
inducing solid media, SKN7 is required to limit the 
accumulation of ROS [80]. A limited number of studies 
have evaluated intermediate transfer proteins, but it has 
been reported that the deletion of Ypd1p increased the 
hypha formation and flocculation of C. albicans in 
liquid media [67]. However, it seems that decreased 
virulence was not due to the absence of hyphae 
in vivo [110]. The virulence of NIK1 mutants is signifi-
cantly lower than that of the wild-type strain; however, 
they still form extensive pseudohyphae in tissues [110]. 
Hypha formation of SKN7 mutants is defective, but the 
virulence does not decrease [53,96]. In the downstream 
MAPK pathway of the two-component system, both 
PBS2 and HOG1 mutants attenuated virulence in 
a mouse model of disease [111], indicating that PBS2 

Figure 6. Regulation of C. albicans hyphal development by two-component system. Sln1p, Nik1p and Chk1p transfer the regulation 
signals to RR through Ypd1p. It is still unknown how to distinguish and transmit signals to the downstream RR (Ssk1p and Skn7p). 
The hyphal forms of NIK1 mutant cultured in 30°C liquid media is similar with the wild-type strain, while it was defective on a solid 
agar at 37°C. CHK1 mutants and SSK1 mutants have a hyphal formation defect on solid medium, but they can develop hyphae and 
flocculate extensively in liquid media. The deletion of YPD1 increased the hyphae formation and flocculation in liquid media. 
Overexpressing SKN7 in EED1, EFG1, CPH1 and UME6 mutants did not show the similar wrinkled and contained filamentous cells 
compared to that in wild type strain, suggesting that EED1, CPH1, UME6 and EFG1 are essential for SKN7 function in morphogenesis, 
but the mechanisms are still unknown.

1890 B. LIAO ET AL.



and HOG1 positively regulate the virulence of 
C. albicans. Currently, the regulation of SSK2 on viru-
lence has not been reported.

The virulence and immune system evasion of 
C. albicans seem to be tissue-specific [42,112]. CHK1 
and SSK1 mutants are both nontoxic in the dissemi-
nated murine model of candidiasis; however, CHK1 
mutants are toxic in the rat model of vaginitis 
[40,73,87,113]. This could be associated with the differ-
ence in pH value between the surface of vaginal mucosa 
and blood (acid vs neutral) resulting in differential 
C. albicans gene expression at these two sites. 
Increased production of neutrophil-dependent lactic 
acid induces cell wall remodeling, masking critical 
pathogen-associated molecular patterns (PAMPs), 
such as glucans, blocking immune recognition, and 
allowing C. albicans to colonize and invade the host 
[114]. PMNs are essential for the host’s resistance to 
invasive candidiasis, but they are not observed in cell 
infiltrations of vaginitis in rats [115–117]. Although 
PMNs are recruited in the vagina, they do not impact 
the clearance of C. albicans [112]. Compared with par-
ental strains, SSK1 and CHK1 mutants are more sus-
ceptible to growth inhibition and killing efficacy of 
PMNs [74,116]. The sensitivity of SSK1 mutants to 
human neutrophil defensin-1 (HNP-1) was higher 
than that of wild-type strains [74].

It is noteworthy that inhibiting the expression of 
YPD1 increases C. albicans virulence and its ability to 
kill macrophages, which might be related to the phe-
notype of increased hyphae [49]. The SKN7 mutants 
were significantly less susceptible to the killing by 
PMNs than the SSK1 mutants, and their virulence in 
the disseminated murine candidiasis model was only 
mild or not weakened [53]. By knocking out the HPK 
gene and constructing combinations of single and dou-
ble mutants, the CHK1 and SLN1, and CHK1 and NIK1 
double mutants were survivable, while the SLN1 and 
NIK1 double mutants could not be constructed, indi-
cating that the pairing loss of these kinases was a fatal 
event [44]. Moreover, C. albicans lack of Chk1p was 
nontoxic in the disseminated murine candidiasis 
model; however, if CHK1 mutation was accompanied 
by SLN1 or NIK1 deletion, both hyphal development 
and virulence of the mutant were enhanced [44]. 
Deletion of both SSK1 and HOG1 can negatively reg-
ulate the expression of CHK1 [41,96], suggesting that 
a complex HPK interaction regulates the development 
of hyphae and virulence [18] (Figure 7). In addition, 
the SSK1 mutant also down-regulated the expression of 
the following hypha regulation and virulence factors: 
HYR1, HWP1, ECE1, MIG1, GCN4, RFG1 (ROX1), 
RBF1, RIM101, HAC1, HAP5, TUP1, NRG1, EFG1, 
and CPH1 [73].

Figure 7. Regulation of C. albicans virulence by two-component system. The virulence of C. albicans with SLN1 or NIK1 deletion is 
decreased. CHK1 and SSK1 mutants are both nontoxic in the disseminated murine model of candidiasis, suggesting that HPKs and 
SSK1 positively regulate the virulence of C. albicans. The inhibition of the expression of YPD1 increased the virulence of C. albicans, 
indicating Intermediate transfer protein negatively regulated the virulence. SKN7 had little effects on the virulence of C. albicans, 
while the regulation of SRR1 on virulence is unclear. In the downstream MAPK pathway, both PBS2 and HOG1 mutants attenuated 
virulence in a mouse model, indicating that PBS2 and HOG1 positively regulate the virulence of C. albicans, while the regulation of 
SSK2 on virulence is still unknown.
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Osmotic stress sensitivity

Sln1p serves as an osmotic sensor protein and regulates 
the Hog1-MAPK signal transduction system in 
S. cerevisiae and C. albicans. When the cells are in an 
iso-osmotic or hypo-osmotic environment, Sln1p first 
phosphorylates histidine residues in its kinase region 
and transfers phosphate groups to its aspartic acid 
residues, phosphorylating the downstream proteins 
Ypd1p (His) and Ssk1p (Asp). The phosphorylated 
Ssk1p cannot activate Ssk2p, leading to the shutdown 
of the Hog1-MAPK cascade. Another situation is that 
increased extracellular osmolarity deactivates Sln1p 
without the above-mentioned phosphate transport. 
A non-phosphorylated form of Ssk1p initiates the 
downstream signal system and continuously activates 
Ssk2p/Ssk22p (MAPKKK), Pbs2p (MAPKK), and 
Hog1p (MAPK). Finally, the phosphorylated Hog1p is 
transferred to the nucleus, activating transcription fac-
tors to induce the GPD1 expression, which increases 

the intracellular glycerol content to adapt to hyperos-
motic stress (Figure 8). In SLN1 or YPD1 mutants of 
S. cerevisiae, constitutive activation of the Hog1-MAPK 
pathway results in glycerol overproduction and cell 
death [15,36,69,118–122]. Ssk2p and Ssk22p are redun-
dant proteins in S. cerevisiae, while Ssk2 is required for 
the stress-induced phosphorylation and nuclear accu-
mulation of Hog1 in C. albicans [88,123]. There is 
another SHO1 upstream branch in the Hog1-MAPK 
pathway [124]; however, the SHO1 branch does not 
significantly affect the activation of the Hog1 pathway 
in C. albicans [125,126].

C. albicans can tolerate higher levels of osmotic 
stresses than many other fungi [127]. Although the 
absence of Sln1p makes the strain, slightly to moder-
ately, sensitive to osmotic stresses, this mutation is not 
fatal [18,43]. However, the NIK1 mutant is not sensitive 
to osmotic stresses, and its growth is not significantly 
affected by hypertonic conditions [18,55]. Many phe-
notypes of YPD1 mutants depend on the overactivation 

Figure 8. Regulation of osmotic stress response by two-component system. Sln1p acts as an osmotic sensor protein to regulate the 
Hog1-MAPK signal transduction system in C. albicans. When the cells are in an isoosmotic or hypoosmotic environment, phosphor-
ylation of Ssk1p inhibits activation of the Hog1-MAPK cascade, but in hyperosmotic cells, unphosphorylated Ssk1p activates the 
Ssk2/22 MAPKKK and subsequent phosphorylation of Pbs2p and Hog1p. Finally, the phosphorylated Hog1p is transferred to the 
nucleus, which activates transcription factors to induce the expression of GPD1, increasing the intracellular glycerol content to adapt 
to hyperosmotic stress.

Figure 9. Regulation of oxidative stress response by two-component system. Among the three HPKs Nik1 and Chk1 are required for 
activation of Ypd1 in response to oxidative stress, then the three RRs (Ssk1, Skn7, Crr1) are activated to regulate oxidative stress by 
transmitting oxidative stimulation signals to different downstream proteins.
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of HOG1, including increased virulence, hyphae, floc-
culation development, and reduced antioxidant activity 
[49,67]. It is noteworthy that S. cerevisiae Ypd1p can 
stabilize the Asp phosphorylation of Ssk1p and mediate 
the retrograde transfer of phosphate from Ssk1p to 
Sln1p [18,66,69,128], reducing the constitutive lethal 
activation of the Hog1-MAPK kinase cascade.

Oxidative stress sensitivity

Two-component system proteins play an essential 
role in the oxidative stress response of C. albicans 
(Figure 9). Of the three HPKs, the CHK1 mutant was 
the most sensitive to H2O2, followed by the NIK1 
mutant; the SLN1 mutant was similar to the wild- 
type strain [96]. Three RRs (SSK1, SKN7, and CRR1) 
are necessary for C. albicans to resist oxidative stres-
ses [41,53,80,82]. Cells lacking SSK1 and SKN7 are 
more sensitive to a series of oxidants, including H2O2 

and t-BOOH in vitro [41,53,74,80]. The three RRs 
seem to transmit oxidative stimulation signals to 
different downstream proteins because the phosphor-
ylation of Hog1p under oxidative stress requires 
Ssk1p, which is independent of SKN7 and CRR1 
[41,53,69,80,82]. SKN7 activation by oxidative stres-
ses requires functional mitochondria in S. cerevisiae 
[41]. The YPD1 mutant of C. albicans was highly 
resistance to H2O2 and t-BOOH, but it was very 
sensitive to sodium arsenite [49,67].

Quorum sensing

The relationship between cell density and hypha for-
mation of C. albicans is similar to the quorum sen-
sing system of some bacterial species [129]. Under 
the same conditions, C. albicans exist in the form of 
yeast when the cell density is more than 106 cells/ml, 
while hyphae are formed when the cell density is less 
than 106 cells/ml [130–132]. Farnesol is an important 
quorum-sensing molecule of C. albicans, which might 
inhibit biofilm formation by regulating hyphal mor-
phogenesis [132–136]. Chk1p might be the receptor 
of the farnesol quorum-sensing pathway of 
C. albicans as SLN1, NIK1, and SSK1 mutants 
respond to farnesol similar to the wild-type strains, 
while CHK1 mutants can still form biofilms when 
farnesol is added [130]; however, the specific trans-
mission mechanism is not clear. Farnesol may be 
sensed by proteins upstream of Chk1p and activate 
pathways containing Chk1p [130], as Chk1p is 
a cytoplasmic protein.

Antifungal agents

Currently, classic antifungal drugs mainly include 
echinocandins, polyenes, and azoles [137]. Due to 
the significant similarity between fungi and human 
cells in their genome, cell structure, and signal 
transduction pathways, the side effects and the 
development of drug resistance limit the application 
of antifungal agents [4,138]. The polyene antifungal 
drugs, such as amphotericin B, have serious hepa-
torenal toxicity, and azole drugs inhibit the p450- 
dependent enzymes of mammals, causing common 
adverse drug reactions such as rash, headache, gas-
trointestinal reactions, and hepatic injury [139]. The 
biofilm formed by Candida on the surface of 
mucous membranes, dentures, central venous cathe-
ters and other medical devices can serve as physical 
barriers to drug or molecular penetration, making 
Candida inherently resistant to traditional antifun-
gal drugs and host immune responses [140–142]. 
Therefore, it is imperative to develop new, safe, 
and effective antifungal agents. The two- 
component system is important for the virulence 
and growth of bacteria and fungi, and, importantly, 
this signal system has not been found in the human 
genome sequence. Therefore, the new drug devel-
oped for the two-component system can effectively 
fight against fungi without damaging the host cells, 
making it an ideal antifungal drug target 
[15,69,87,143–146]. Shivarathri et al. [147] reported 
that SSK1 and HOG1 mutations can restore the 
susceptibility of clinical strains of the emerging 
Candida species Candida auris to amphotericin 
B and caspofungin. The SSK1 and CHK1 mutants 
of C. albicans were highly sensitive to fluconazole 
and voriconazole, and the sensitivity of SSK1 
mutants to fluconazole was 30 times higher than 
the CHK1 mutants, while the sensitivity of SLN1 
and SKN7 mutants were slightly higher or equal to 
the wild-type strains [148]. Both rivanol and niclo-
samide inhibited the two-component signal system 
of C. albicans and caused cell wall defects by inhi-
biting the hypha formation and growth. They also 
significantly enhanced antifungal effects when com-
bined with fluconazole [149]. The deletion of all 
HAMP domains of Nik1p expressed in S. cerevisiae 
could activate Hog1p in the absence of external 
stimuli, similar to the effect of bactericide treatment 
[63], suggesting that it might also be a target for 
antifungal drug development. The deletion of YPD1 
is not fatal to C. albicans and even enhances its 
virulence [49]. These findings question the efficacy 
of YPD1 as a broad-spectrum antifungal target.
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Conclusion and prospect

The two-component system plays a vital role in the 
activities and pathogenicity of C. albicans, and signifi-
cant progress has been made in the past two decades; 
however, there are still many aspects to be further 
explored. For example, how are signals distinguished 
and transmitted to the downstream different RRs after 
the intermediate transfer protein received stimulation 
from different HPKs? What other functions of the 
Crr1p/Srr1p have not been identified? If Crr1p/Srr1p 
is present in mitochondria, can the HPK bypass Ypd1 
in the nucleus and cytoplasm and directly transmit the 
signal to the RR? The different regulatory functions of 
the same two-component system under different con-
ditions and the interaction of the system with other 
transcription factors or signaling proteins are also 
needs to be investigated. The components of the signal 
pathway have not been found in the human genome. 
The development of new drugs against the two- 
component system can effectively target fungi without 
damaging the host cells, to greatly reduce the toxic or 
side effects of antifungal drugs. The two-component 
system of C. albicans therefore provides the ideal ther-
apeutic target of for new antifungal drugs against 
C. albicans.
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