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1  | INTRODUC TION

Infectious diseases are a leading threat to both human health and the 
global economy (Johnson et al., 2015). In a database of 335 emerging 
infectious disease (EID) events (defined as those caused by newly 
evolved strains of pathogens such as multi- drug- resistant pathogens 
or pathogens that have recently entered human populations for the 
first time or pathogens which have recently increased in incidence) 
between 1940 and 2004, more than 60% had a zoonotic origin 
(note that zoonotic pathogens were defined as pathogens that origi-
nated in non- human animals) and events increased over time (Jones 
et al., 2008). Ovser time, we have seen the emergence of many 
novel pathogens such as severe acute respiratory syndrome coro-
navirus, H1N1 influenza, Ebola and Nipah virus (Morse et al., 2012; 
Murphy, 1998). Thirty new diseases including Legionnaires disease, 

acquired immune deficiency syndrome, hepatitis C, Nipah virus, 
Helicobacter pylori, severe acute respiratory syndrome, COVID- 19, 
avian influenza, several viral haemorrhagic fevers and bovine spon-
giform encephalopathy/variant Creutzfeldt- Jakob disease have been 
reported in the last 50 years (Robin & Anthony, 2004). It is specu-
lated that new infectious diseases could emerge anywhere across 
the globe at any time (Robin & Anthony, 2004), and the next human 
pandemic might have a zoonotic origin (Lancet, 2012) as evolution 
works on biodiversity to create novel pathogens.

Anthropogenic disturbances may play an important role in disease 
emergence and zoonoses. It has been argued that these disturbances 
primarily result from human incursions into pristine ecosystems and ec-
otones (Jones et al., 2013), and microorganisms often exploit such cir-
cumstances (Robin & Anthony, 2004); however, only limited information 
is available about the processes and actual facts of EIDs and zoonoses 
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from wildlife globally. It is proposed that the interactions among ecolog-
ical, biological and social processes in South East Asia enable microbes 
to exploit new ecological niches, leading to a high risk from emerging 
infectious diseases in this region (Coker et al., 2011). Rapid environment 
change and agricultural intensification have been described to play an 
important role in this phenomenon (Jones et al., 2013). On the contrary, 
it should also be noted that majority of the recurringly transmissible 
zoonotic pathogens (with an existing animal reservoir) come from do-
mestic animals with rare occurrence from wildlife sources— except for 
a few specific diseases in which domiciliated animals such as rodents 
are the main reservoir hosts. Therefore, the demographic change in do-
mestic animals might be an important factor associated with the emer-
gence of zoonosis, and this needs to be investigated. Understanding the 
ecological interactions underlying emerging and zoonotic infectious dis-
eases (Qi et al., 2020; Ward et al., 2020a, 2020b) is important for their 
mitigation and control (Johnson et al., 2015).

Not much is known, and we need to look at all interactions and 
dynamics for EID and zoonosis to develop a more comprehensive 
contextual and specific understanding. Rapid increase in food trade 
and human travel is believed to be some of the main drivers of emer-
gence of pathogens (Kilpatrick & Randolph, 2012). Modelling the 
dynamic factors underlying infectious diseases can assist the devel-
opment of disease prevention and control strategies (Heesterbeek 
et al., 2015). Policymakers will benefit from the generated quantita-
tive evidence for decision- making and public health policy formula-
tion (Heesterbeek et al., 2015).

To date, disease models to understand the factors responsible 
for pathogen diversity are limited. There are no mechanistic analyses 
that capture pathogen (human, zoonotic and emerging) diversity at 
the society– environment interface and their non- linear relationships. 
Predictive modelling using national data to inform country- specific 
control programmes is also lacking. Jones and colleagues (Jones 
et al., 2008), using a global database, analysed 335 EID events reported 
between 1940 and 2004. However, only the ‘emerging infectious dis-
ease events’ data were modelled; the existing non- linear relationships 
(between predictor and response variables) were not accounted for 
and a limited number of socioeconomic and environmental predictor 
variables were used for model building. Following this, the occurrence 
of 147 ‘emerging infectious disease events’ for wildlife zoonoses (or just 
zoonotic origins) was modelled using demographic and environment 
variables (Allen et al., 2017). However, this study also had some disad-
vantages as the ongoing linkage of all the diseases with animals could 
not be established. Biogeographic grouping patterns of 187 human in-
fectious diseases have also been described (Murray et al., 2015).

Building on this previous research focussed on certain events/
diseases, we conducted a novel cross- sectoral assessment rigorously 
investigating the relative contributions of potential geodemographic, 
environmental and social factors on the diversity of human, zoonotic 
and emerging pathogens. Noteworthy among these factors are the 
driving forces fundamental for emergence of infectious diseases 
(Binder et al., 1999; Jones et al., 2008; Morens et al., 2010; Robin 
& Anthony, 2004). A deep understanding of pathogen ecology, as 
well as the complex inherent relationships at the agent– environment 

interface, is essential to inform disease control and mitigation and 
to predict the next pandemic zoonosis. Public health measures are 
important barriers to disease emergence and zoonoses (Lindgren 
et al., 2012; Mitchell, 2000). Therefore, the effects of healthcare 
facilities and expenditure on health, research and development on 
pathogen diversity were also explored.

We would also like to stress and to make the reader aware of the 
various uncertainties and controversies surrounding the ontologies 
used in this and in previous studies conducted on this topic. As per the 
Joint WHO/FAO Expert Committee on Zoonoses, zoonoses are de-
fined as ‘those diseases and infections which are naturally transmitted 
between vertebrate animals and man (WHO/FAO, 1959)’. However, 
even the WHO uses different definitions of the term ‘zoonosis’. For 
example, these are two other— and very different— definitions of zoo-
noses used by WHO: (a) ‘A zoonosis is any disease or infection that 
is naturally transmissible from vertebrate animals to humans’ and 
(b) that ‘A zoonosis is an infectious disease that has jumped from a 
non- human animal to humans’ (https://www.who.int/news- room/
fact- sheet s/detai l/zoonoses). This has created a difference in opinion 
regarding the infectious agents that should be considered as zoonotic 
pathogens. For example, some people believe that species- jumping 
or just zoonotic origin pathogens such as HIV or novel coronavirus 
(https://www.who.int/news- room/fact- sheet s/detai l/zoonoses) clas-
sified as zoonotic by the WHO should be considered non- zoonotic 
pathogens because these pathogens are currently not transmitted be-
tween non- human vertebrates and humans. In the current and other 
studies (Taylor et al., 2001; Woolhouse & Gowtage- Sequeria, 2005), 
the standard definition of the WHO (WHO/FAO, 1959) for infectious 
agent classification was used, whereas Jones et al. (2008) coined a 
different definition to categorize pathogens as zoonotic (i.e., patho-
gens that originated in non- human animals). Therefore, these model-
ling studies should be carefully interpreted and compared cautiously, 
due to differences in the ontologies used for zoonotic or emerging 
pathogens. Note that the results of our study might have been differ-
ent if we had only considered the recurringly transmissible pathogens 
(requiring an animal reservoir for maintenance) between humans and 
non- human vertebrates as zoonotic pathogens.

Lastly, the zoonotic or emerging pathogens in this study were 
classified as described in the methods. The isolation of these organ-
isms from different hosts/countries only describes their zoonotic 
and emerging potential; some of these might not actually be emerg-
ing or zoonotic in these specific countries.

2  | METHODS

2.1 | Microbe– country data set

A species– location interactions data set developed by Wardeh 
et al. (2015) was used to determine viral, bacterial, parasitic and 
fungal microbes isolated from vertebrate hosts in different coun-
tries. The data set used in the analyses contained 13,892 unique 
microbe– country interactions (Appendix S1, p 130– 408). Full details 

https://www.who.int/news-room/fact-sheets/detail/zoonoses
https://www.who.int/news-room/fact-sheets/detail/zoonoses
https://www.who.int/news-room/fact-sheets/detail/zoonoses
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of microbe- country data set development are in the (Appendix S1, 
p 3). Note that there might be reporting bias due to factors such 
as difference in capacities in different countries and research focus 
oriented to prior decisions on risk.

2.2 | Human, zoonotic and emerging agents

Initially, we classified all microbes into human, zoonotic and emerg-
ing agents as reported by Taylor and colleagues (Taylor et al., 2001), 
and Woolhouse and Gowtage- Sequeria (Woolhouse & Gowtage- 
Sequeria, 2005). Zoonotic pathogens were classified as per the World 
Health Organization (WHO/FAO, 1959), as ‘diseases and infections that 
are naturally transmitted between vertebrate animals and humans’.

However, species such as HIV that are no longer transmitted 
between humans and animals were not considered zoonotic (Taylor 
et al., 2001). Emerging pathogens were defined as those ‘that have 
appeared in a human population for the first time or have occurred 
previously but are increasing in incidence or expanding into areas 
where they have not previously been reported, usually over the last 
20 years’ (IOM, 1992). Human agents were defined as previously 
reported infectious human pathogens (Taylor et al., 2001) plus addi-
tional microbes reported to have a human host (Wardeh et al., 2015). 
The data set also included human/emerging/zoonotic agents that 
might not have been presented or reported in human hosts or have 
demonstrated their zoonotic/emerging potential in a given country 
but could infect humans and have been demonstrated to be zoo-
notic/emerging in some other parts of the world. This data set also 
had information about the microbe type (i.e., whether they were vi-
ruses, bacteria, parasites or fungi).

2.3 | Country- specific parameters

We examined published and official data and compiled information 
for 49 country- specific geodemographic, social, trade and environ-
mental factors (Appendix S1, pp 4– 5).

2.4 | Pathogen– country interactions and country- 
specific parameters

The unique pathogen– country interactions data were merged with 
the country- specific variables to construct the analytical data set. 
The final data set had information about country- specific parame-
ters and the numbers of human, emerging, zoonotic and total patho-
gens isolated from different countries (Appendix S1, pp 6– 46).

2.5 | Missing data

Initially, we compiled information for 224 countries for 49 variables, 
but because of a lack of available information the following countries 

were excluded: Anguilla; Antarctica; Aruba; Bonaire, Sint Eustatius 
and Saba; British Virgin Islands; Cayman islands; Cook Islands; 
Curacao; Falkland Islands; Faroe Islands; French Guiana; French 
Polynesia; Greenland; Guadeloupe; Guam; Isle of Man; Macao; 
Martinique; Mayotte; Montserrat; New Caledonia; Niue; Northern 
Mariana Islands; Palestinian territory; Reunion; Saint Helena; Saint 
Martin; Taiwan; Turks and Caicos Islands; US Virgin Islands; United 
States Minor Outlying Islands; Wallis and Futuna; and the Channel 
Islands. The final data set (for the initial modelling) contained infor-
mation for 190 countries (Appendix S1, pp 6– 46).

2.6 | Predictors and outcome

We used the country- specific parameters (Appendix S1, pp 4– 5) as 
key predictors. Three host– pathogen- associated outcomes were 
explored: zoonotic emerging and human pathogen diversity at the 
country level, where the zoonotic/emerging/human pathogen diver-
sity was defined as the total number of different zoonotic/emerg-
ing/human pathogens reported from any given country.

2.7 | Statistical analysis

Descriptive analyses conducted included the creation of histo-
grams and scatter plots of predictors with outcomes. Data were 
tested for the assumptions of linearity and normality. A variable 
was log- transformed if the assumptions of normality were not met 
(Appendix S1, p 47). We also detected non- error, non- representative 
outliers (values >1.5- fold interquartile range) in some predictor vari-
ables in the data (original or log- transformed). These outliers were 
treated using winsorization, and all further analyses were conducted 
both using the original and the winsorized data set.

2.7.1 | Generalized additive model (GAM)

We built three separate models for the response variables of zo-
onotic, emerging and human pathogen diversity using both the origi-
nal and winsorized data. Because of non- linear associations between 
some predictors and the outcomes, we compared additive models 
using non- linear splines with linear models and retained the model in 
which the data were a significantly better fit and had a lower Akaike 
information criterion value.

A correlation matrix was then generated (separately for data 
with outliers and winsorized data) among the predictor variables to 
test for collinearity. Initially, only one predictor was retained for the 
multivariable models from among the predictors having a Pearson 
correlation coefficient >0.90 (Appendix S1, pp 48– 49). From these 
variables, final multivariable models were constructed. We followed 
a forward stepwise approach and retained variables with p < .001, 
followed by retesting of all the variables with p < .25 and all non- 
significant variables. A final multivariable model was also re- tested 
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by individually replacing a non- linear spline variable with a linear 
variable and retaining the model in which the data fitted significantly 
better and had a lower Akaike information criterion value.

Statistical analyses were conducted in the R statistical program 
(R statistical package version 3·4·0, R Development Core Team 
[2015], http://www.r- proje ct.org). We used the parametric function 
‘linear’ and non- parametric function ‘s spline (thin plate regression 
spline fit)’ to fit the predictor variables. The function ‘ti spline’ was 
used to determine significant interactions among the combined 
parametric and non- parametric response variables. The GAM 
model fitting separated the linear trend of predictor variables from 
any other non- parametric association to determine significance of 
smoothing variables with non- linear patterns. The final models were 
examined for concurvity (a non- parametric analogue of multicol-
linearity), and model diagnostics were also examined.

2.8 | Controlling for research effort

To control for research effort, we included gross domestic expendi-
ture on research and development (GERD in 000s US dollars) of 
countries into all the analytic models. All the non- significant vari-
ables were further re- tested in the models.

2.9 | Prediction of the expected response

The GAM models were used to predict the expected response 
variable using all the available data. In brief, we used data from all 
224 countries (for predictions; Appendix S1, pp 50– 71), wherever 
available for all the significant predictors reported in the GAM 
models.

3  | RESULTS

We examined the country data set described above and found a me-
dian of 26 (range 1– 858) microorganisms, 17 (1– 297) human microor-
ganisms, 11 (1– 190) zoonotic pathogens and 11 (range 1– 94) emerging 
human pathogens per country. Descriptive analyses are presented in 
the (Appendix S1, pp 72– 77). After excluding variables with a Pearson 
correlation coefficient >0.90, a total of 28 predictor variables were 
included in multivariable models (Appendix S1, pp 48– 49).

3.1 | Generalized additive modelling

In total, all the predictor variables included in the GAM explained 
74.8%– 87.2% of the deviance in the different models.

3.1.1 | Zoonotic pathogen diversity

The logarithm of land area, human development index, logarithm 
of human population density, logarithm of mean annual tempera-
ture (average), logarithm of exports percentage of gross domestic 
product (GDP) and forest area percentage were associated with 
zoonotic pathogen diversity Table 1, Figure 1). There were signifi-
cant interactions between the human development index and the 
logarithm of mean annual temperature (average), as well as be-
tween the human development index and the logarithm of land 
area (Figure 1).

After controlling for research effort, only the logarithm of land 
area, logarithm of human population density, forest area percentage 
and the research effort (log GERD in US dollars) remained as signifi-
cant predictors (Table 1, Figure 2).

Variable Estimate SE t Value Pr(>|t|)

Model 1 (zoonotic pathogen diversity, uncontrolled research effort)

Parametric coefficients

Intercept 0.80 0.38 2.08 0.04

Log mean annual 
temperature (average)

Variable involved in interaction

Smoothed terms

Other significant terms and interactions are presented in Figure 1.

Model parameters R- square·(adjusted) = .71, Deviance explained = 74.8%, 
Scale estimate = 0.46, n = 152

Model 2 (zoonotic pathogen diversity, controlled research effort)

Parametric coefficients

Intercept 2.74 0.058 46.85 <0.001

Smoothed terms

Significant terms are presented in Figure 2.

Model Parameters R- square adjusted = .76, Deviance explained = 77.3%, 
Scale estimate = 0.38, n = 111

TA B L E  1   Generalized additive models 
of zoonotic pathogen diversity (original 
data, outcome— log number of zoonotic 
pathogens) reported from different 
countries

http://www.r-project.org
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F I G U R E  2   Smoothed curves of the additive effect to the estimated number of zoonotic pathogens (original data– controlled for research 
effort) for the individual environmental and social parameters in the generalized additive model. Shaded areas represent 95% confidence 
intervals. Plots showing the combined effect of the linear and non- parametric contributions are presented. The values in axis legends 
represent estimated degrees of freedom. p- value for all variables <.001
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Additional results, including the analysis of winsorized data, are 
presented in the (Appendix S1, pp 78– 87).

3.1.2 | Emerging pathogen diversity

The GAM showed that emerging pathogen diversity is associated 
with the logarithm of human population density, agriculture land 
percentage, logarithm of land area, human development index value, 
national biodiversity index, longitude and the logarithm of sheep 
population (Table 2, Figure 3).

After controlling for research effort, emerging pathogen diver-
sity was associated with the logarithm of human population density, 
logarithm of land area, human development index value and the loga-
rithm of mean annual temperature average (Table 2, Figure 4). Further, 
significant interaction effects among the human development index 
value and the logarithm of land area, longitude, and the logarithm of 
human population density, human development index value, and the 
logarithm of mean annual temperature average, logarithm of mean 
annual temperature average and death rate per 1,000 people are 

reported (Figure 4). Additional results, including analysis of the win-
sorized data, are presented in the (Appendix S1, pp 88– 106).

3.1.3 | Human pathogen diversity

The GAM showed a linear relationship of human pathogen diver-
sity with the logarithm of human population density and logarithm 
of mean annual temperature average. Human pathogen diversity 
was also associated with the human development index value and 
national rainfall index (Table 3, Figure 5). Further, significant inter-
action effects among the human development index value and the 
logarithm of human population density, the human development 
index value and the logarithm of land area, the human development 
index value and the logarithm of mean annual temperature average, 
national rainfall index, and the logarithm of human population den-
sity, human development index value and national rainfall index are 
reported (Table 3, Figure 5).

After controlling for research effort, the logarithm of mean annual 
temperature average, logarithm of land area and logarithm of human 
population density had a linear association with human pathogen di-
versity (Table 3). The human development index value and the loga-
rithm of health expenditure per cent GDP were also associated with 
human pathogen diversity (Figure 6). In addition, significant interaction 
effects among the human development index value and the logarithm 
of human population density, the human development index value and 
the logarithm of mean annual temperature average, the human devel-
opment index value and the logarithm of land area, national rainfall 
index and logarithm of mean annual temperature average, national 
rainfall index and logarithm of land area, logarithm of GERD in US 
dollars and logarithm of human population density, and logarithm of 
GERD in US dollars and logarithm of land area are presented (Figure 6). 
Additional results, including analysis of the winsorized data, are pre-
sented in the (Appendix S1, pp 107– 121).

3.2 | Prediction of the expected response

The predictive values of the response variable for all the GAM mod-
els are shown in the (Appendix S1, pp 108– 112). A global richness 
map of pathogen diversity in different countries is shown in Figure 7. 
The analysis indicates high pathogen diversity in many countries of 
Latin and North America, Asia, Australia and Europe (Appendix S1, 
pp 122– 126).

4  | DISCUSSION

We conclude that geodemographic, environmental and social factors 
to be significant predictors of zoonotic/emerging/human pathogen 
diversity. We believe that this analysis will help our understanding of 
the diversity of human, zoonotic and emerging pathogens as well as 
the associated global risk factors. The data generated are valuable 

TA B L E  2   Generalized additive models of emerging pathogen 
diversity (outcome— log number of emerging pathogens) reported 
from different countries

Variable Estimate SE t Value Pr(>|t|)

Model 3 (emerging pathogen diversity, uncontrolled research effort)

Parametric coefficients

Intercept – 5.65 0.70 – 8.06 <0.001

Log human 
population density

0.51 0.05 10.50 <0.001

Agri land percentage – 0.005 0.002 – 2.01 0.04

Log land area 0.51 0.04 11.64 <0.001

Smoothed terms

Significant terms and interactions are presented in Figure 3.

Model parameters R- square·(adjusted) = .77, Deviance 
explained = 79.8%, Scale 
estimate = 0.23, n = 141

Model 4 (emerging pathogen diversity, controlled research effort)

Parametric coefficient

Intercept – 4.93 0.89 – 5.54 <0.001

Log human 
population density

Variable involved in interaction

Log land area Variable involved in interaction

Longitude Variable involved in interaction

Longitude: log human 
population density

Interaction effect, see Figure 4.

Smoothed terms

Significant terms and interactions are presented in Figure 4.

Model parameters R- square adjusted = .83, Deviance 
explained = 86.8%, Scale 
estimate = 0.16, n = 104
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F I G U R E  3   Smoothed curves of the additive effect to the estimated number of emerging pathogens (original data– uncontrolled research 
effort) for the individual environmental and social parameters in the generalized additive model. Shaded areas represent 95% confidence 
intervals. Plots showing the combined effect of the linear and non- parametric contributions are presented. p- value for all variables <.001 
except for national biodiversity index (p = .01) and logarithm of sheep population (p = .037)
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Variable Estimate SE t Value Pr(>|t|)

Model 5 (human pathogen diversity, uncontrolled research effort)

Parametric coefficients

Intercept – 8.91 0.63 – 14.12 <0.001

Log human population density Variable involved in interaction

Log mean annual temperature 
average

Variable involved in interaction

Log land area Variable involved in interaction

Smoothed terms

Significant terms and interactions are presented in Figure 5.

Model parameters R- square adjusted = .82, Deviance explained = 85.0%, 
Scale estimate = 0.27, n = 153

Model 6 (human pathogen diversity, controlled research effort)

Parametric coefficients

Intercept – 9.29 1.00 – 9.32 <0.001

Log mean annual temperature 
average

Variable involved in interaction

Log land area Variable involved in interaction

Log human population density Variable involved in interaction

Log GERD in US dollars 0.05 0.03 1.47 0.14

Log health expenditure 0.71 0.22 3.27 0.002

percentage GDP

Smoothed terms

Significant terms and interactions are presented in Figure 6.

Model parameters R- square adjusted = .79, Deviance explained = 82.4%, 
Scale estimate = 0.28, n = 100

Abbreviations: GDP, gross domestic product; GERD, gross domestic expenditure on research and 
development.

TA B L E  3   Generalized additive models 
of human pathogen diversity (outcome— 
log number of human pathogens) reported 
from different countries
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for similar investigations in the future. Overall, we found a large 
range in the number of human, zoonotic and emerging pathogens 
reported from different countries. Lack of uniformity is likely due to 
differences in environmental, social and geographical factors at the 
country level, as well as potential differences in reporting.

We used national level data in this study, so any country could 
use these models after collecting the desired data for their own 
policy development and to inform their control or mitigation ac-
tions. However, these models do not account for subnational vari-
ations; therefore, the results should be carefully interpreted for 
countries that have large subnational differences in geodemogra-
phy, environment and societal characteristics. We also controlled 
for research effort to produce unbiased results; however, a certain 
level of uncertainty should be expected in the methods and out-
comes. We believe gross domestic expenditure on research and 
development (GERD) per country to be a more appropriate proxy 
for controlling for research effort compared to a previously re-
ported study (Jones et al., 2008) that accounted for these biases by 
quantifying reporting effort in an international journal (JID). The 
latter is biased; for example, scientists from non- English speak-
ing countries are likely to have published their research in their 
native language journals. Many countries or institutes might have 
not published their research. GERD is a less biased representation 

of a country's research effort because laboratory support is more 
likely to translate into the number of pathogens reported from that 
country. GAM models indicated higher number of emerging patho-
gens (uncontrolled research effort) for countries in the longitude 
range of −50.0° to 0° and ≥150°. After controlling for research ef-
fort, countries in a longitude range of −100° to −30.0° (North and 
South American countries) and having high human population den-
sity were found to report a higher number of zoonotic pathogens. 
Although only marginally significant, higher number of emerging 
pathogens were noted in the lower latitudes. The potential effect 
of proximity to the equator and hemisphere needs to be further 
investigated.

Certain variations were recorded in the analysis of winsorized 
data. For example, additional significant predictors— such as log 
mean annual temperature average, HDI value and longitude— were 
also associated with zoonotic pathogen diversity (after controlling 
for research effort); and the variable forest area percentage be-
came non- significantly associated with zoonotic pathogen diversity 
(after controlling for research effort). After controlling for research 
effort, the predictors for emerging pathogen diversity (original and 
winsorized data) were similar except that the log health expenditure 
per cent GDP was additionally associated with emerging pathogen 
diversity (winsorized data).

F I G U R E  4   Smoothed curves of the additive effect to the estimated number of emerging pathogens (original data– controlled research 
effort) for the individual environmental and social parameters in the generalized additive model. Shaded areas represent 95% confidence 
intervals. Plots showing the significant interactions among smoothed terms are presented. p- value for all variables <.01 except for 
interaction effects longitude and logarithm of human population density (p = .03). DRPOP, Death rate per 1,000 people; LHPD, Log human 
population density; LLA, Log land area; LMATA, Log mean annual temperature average
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We accounted for non- linear relationships and used 49 socioeco-
nomic and environmental variables during model development. By 
using pathogen biodiversity rather than EID events as our response 
variable, we included unknown or future disease emergence.

We found human population density, land area, mean annual 
temperature (average) and human development index value to be 
associated with the overall diversity of human, emerging and zoo-
notic pathogens, and this association is not limited to EID events as 
reported previously (Jones et al., 2008). The national rainfall index 
was a significant predictor in the models of human and zoonotic 
pathogen diversity, but had no role for emerging pathogen diversity. 
Our analyses indicate that many socioeconomic and environmental 

factors are equally important for zoonotic and human pathogen di-
versity, as reported for disease emergence.

Our analysis shows the national biodiversity index as a signif-
icant predictor in emerging pathogen diversity models, as for EID 
events reported by Jones and colleagues (Jones et al., 2008). We 
also report forest area percentage to be associated with zoonotic 
pathogen diversity. Forests are home to terrestrial animal biodiver-
sity (Brockerhoff et al., 2017), and deforestation and forest incur-
sions have been linked to zoonosis (Wolfe et al., 2005). We found 
that the diversity of emerging human pathogens was additionally 
correlated with longitude and death rate per 1,000 people. This 
needs to be further explored.

F I G U R E  5   Smoothed curves of the additive effect to the estimated number of human pathogens (original data– uncontrolled research 
effort) for the individual environmental and social parameters in the generalized additive model. Shaded areas represent 95% confidence 
intervals. Plots showing the significant interactions among smoothed terms are presented. p- value for all variables <.001 except for 
interaction effect human development index value and national rainfall index (p = .03). LHPD, Log human population density; LLA, Log land 
area; LMATA, Log mean annual temperature average; NRI, National rainfall index
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As far as we are aware, environmental and social factors linked 
to the overall human, and zoonotic pathogen diversity have not been 
explored previously. In addition to human population density, land 
area, mean annual temperature (average) and the human develop-
ment index value, we report many other factors associated with zoo-
notic diversity, including, for example, forest area percentage and 
export percentage of GDP. Similarly, human pathogen diversity was 
associated with log health expenditure percentage GDP and national 
rainfall index.

Rigorous methodology was followed to compile information 
related to the pathogen database. However, the main limitation to 
this study is that the information is still incomplete. Some of the 

reasons included underreporting of a number of previously known 
and novel undiscovered pathogens, particularly in less developed 
countries, and for some of the predictor variables, the latest data 
available had missing values because recent data had not been 
updated. The geographical and environmental variations within a 
country also remain unaccounted for. Influence of different sea-
sons on the pathogen diversity also remains unaccounted for. 
Lack of predictor data also prevented us from predicting patho-
gen diversity for all countries across the globe. Lack of data for 
some countries prevented control for research effort. Further, we 
could not test this data at the subspecies level, so there could be 
drastic variations at this level, particularly for disease emergence. 

F I G U R E  6   Smoothed curves of the additive effect to the estimated number of human pathogens (original data– controlled research 
effort) for the individual environmental and social parameters in the generalized additive model. Shaded areas represent 95% confidence 
intervals. Plots showing the significant interactions among smoothed terms are presented. p- value for all variables <.01 except for the 
interaction effect national rainfall index and logarithm of mean annual temperature average (p = .04). LHPD, Log human population density; 
LLA, Log land area; LMATA, Log mean annual temperature average
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F I G U R E  7   Predicted global richness map of pathogen diversity in different countries— original data (from top to bottom): (a) zoonotic 
pathogen diversity; (b) emerging pathogen diversity; (c) human pathogen diversity
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However, we believe that availability of our data assist the coun-
tries where no predictor/response data are currently available to 
develop so that the desired information is available for analysis 
using our models. This will help overcome the limitations associ-
ated with incomplete data in the future.

Overall, social and environmental factors and geography are 
significantly associated with global pathogen diversity. Finally, our 
analyses demonstrate that weather variables (temperature and rain-
fall) have the potential to influence pathogen diversity. Further re-
search is required to assess the long- term impact of these variables. 
Similarly, the impact of climate change on pathogen diversity is a 
topic that needs to be researched. We believe future models based 
on simultaneous testing of host, agent and environment character-
istics for prediction will shed more light on disease emergence and 
zoonoses.

We conclude that weather variables, as well as forest and bio-
diversity conservation, have the potential to influence human, zoo-
notic and emerging pathogen diversity in the near future.
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