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Abstract Studies about the genetic basis for disease are routinely conducted through
family studies under response-dependent sampling in which affected individuals called
probands are sampled from a disease registry, and their respective family members
(non-probands) are recruited for study. The extent to which the dependence in some
feature of the disease process (e.g., presence, age of onset, severity) varies according to
the kinship of individuals reflects the evidence of a genetic cause for disease. When the
probands are selected from a disease registry, it is common for them to provide quite
detailed information regarding their disease history, but non-probands often simply
provide their disease status at the time of contact. We develop conditional second-order
estimating equations for studying the nature and extent of within-family dependence
which recognizes the biased sampling scheme employed in family studies and the
current status data provided by the non-probands. Simulation studies are carried out
to evaluate the finite sample performance of different estimating functions and to
quantify the empirical relative efficiency of the various methods. Sensitivity to model
misspecification is also explored. An application to a motivating psoriatic arthritis
family study is given for illustration.
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1 Introduction
1.1 Introduction

The heritable nature of disease can be inferred from the structure of the within-family
dependence in disease manifestation [19]. For rare diseases, population-based cohort
studies are inefficient and impractical, so response-dependent biased family designs are
routinely employed to obtain enriched samples with higher representation of diseased
individuals and more variation in genetic markers than would be seen in the unselected
population. Much work has been carried out for the analysis of such data when the
disease status is modeled as a binary trait. Conditional likelihood based on generalized
linear mixed models can be used for dealing with the dependence of binary phenotypes
within families [3,4], or estimating equations can be formed by specifying marginal
mean and dependence structures for the analysis of binary phenotypes from case—
control family studies [32].

The age of onset for many chronic diseases is highly variable, however, and simply
using the binary trait of the disease status does not account for the variable times
individuals have been at risk for disease in family studies. MacLean et al. [21] and
Shih and Chatterjee [27] pointed out that, if information on the age of onset and
the effect of censoring are not addressed, the estimators of the covariate effects on
the disease process may be less efficient and the degree of familial aggregation may
be underestimated. Models which consider the disease onset time distribution and
measure dependence in terms of these times offer a preferable framework for analysis.

When interest lies in examining genetic association or gene-environment interac-
tion, case—control or case-only family study are commonly used. Li et al. [20], Hsu et
al. [15], and Shih and Chatterjee [27] proposed likelihood methods based on disease
onset time for case—control family study and Chatterjee et al. [6] proposed methods to
estimate the relative risk, cumulative risk, and residual familial aggregation for case—
control family data and modified method for case-only family data. In their methods,
modeling and estimation of the residual familial aggregation is key to adjustment for
ascertainment bias, but this is done using an exchangeable dependence structure in
which the association is the same for different pairs of relatives. Gorfine et al. [14]
use the frailty models to account for heterogeneity in familial risk, but pointed out
that frailty-based methods may be affected by the uncertainty on the frailty parameter
estimate.

In this article, we consider a simple family study, where an affected individual called
a proband is selected from a registry of patients. Consenting family members (non-
probands) of each proband are then recruited and examined to collect information on
their disease status [S]. Probands are given a special designation because their disease
status led to the selection of their family. Under such sampling scheme, one obtains a
right-truncated onset time for the proband and current status (type I interval-censored)
data for non-probands [28]. While work has been done on the analysis of multivariate
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current status data [8,16], little has been done to our knowledge in the context of
biased sampling schemes.

Insights into the genetic basis of the disease can be gained by comparing the strength
of the association in disease status between pairs of family members with different
kinships [7,18]. More elaborate dependence modeling also plays a central role when
studying the “parent-of-descent” hypothesis, where the primary goal is to estimate
and compare the strength of father—child and mother—child associations in phenotype
to elucidate the role of the sex chromosomes in disease transmission [30]. With this
in mind, we consider copula models [22] as a basis for modeling the joint risk of
disease among family members. The dependence parameters can be interpreted as
reflecting “residual familial aggregation” that is not explained by covariates in the
marginal models. Copula models have several advantages over frailty models. First,
the marginal models still retain simple interpretation when using copula models, which
is not the case under the frailty model. Second, copula models yield dependence
measures which are functionally independent of the parameters in the marginal onset
time distribution, so the marginal distribution can be specified in any desirable way.
Third, the dependence measure is directly specified under the copula model which has
clear meaning and it also provides a natural basis for regression of genetic effects, but
the frailty models do not provide simple measures of within-family dependence and
it is difficult to interpret the meaning of the dependence.

Analyses must address the biased sampling scheme employed in these studies.
Likelihood contributions from each family which are proportional to joint probability
functions for the phenotypes of non-probands conditional on the disease status of
the proband will admit valid inference [29] under correct model specification, but
enumeration of all possible sample outcomes can be computationally demanding with
large families. We develop a class of conditional second-order estimating equations in
the spirit of Prentice [25]. We use the term conditional to reflect the fact that moments
in the second-order estimating equation are all conditional on the disease onset time of
the proband. A supplementary estimating equation is incorporated to extract limited
information about the marginal onset time distribution from the proband.

1.2 The University of Toronto Psoriatic Arthritis Family Study

The incidence of psoriatic arthritis (PsA) is reported to be between 0.3 and 1.0% [9]
and hereditary factors are thought to be important, as some studies have suggested
that close blood relatives of individuals affected by psoriatic arthritis are at higher
risk of developing the disease compared to the general population. Characterizing
the within-family association nature and identifying important genetic risk factors
are important to understand the disease etiology. Particular interest lies in assessing
whether there is a higher rate of paternal, rather than maternal, transmission of the
disease, which is also called “parent- of-origin” effect [2]. A family study of psoriatic
arthritis is conducted in the Centre for Prognosis Studies in the Rheumatic Disease at
the University of Toronto. Probands were selected from the members of the University
of Toronto Psoriatic Arthritis Registry, and their family members were recruited into
the family study with their consent. A total of 169 two-generation families ranging

@ Springer



Stat Biosci (2018) 10:160-183 163

in size from 2 to 7 individuals were recruited; 54 families were comprised of only
one non-proband and 115 have more than one non-proband. The disease onset times
were only available for probands, but for other family members only the disease
status is available when they are examined, yielding current status data. In total 538
individuals are in the family study and only 194 (169 probands and 25 non-probands)
were diagnosed with PsA. Except for the demographic data, information of some
HLA markers is also available for individuals in the PsA family study. We focus on
identifying the significant HLA markers for the psoriatic arthritis and characterizing
the within-family association structure, also testing whether there is “parent-of-origin”
effect for the psoriatic arthritis.

The remainder of this paper is organized as follows. In Sect. 2 we define notation
and formulate the conditional second-order estimating equation for family data under
response-dependent sampling, which are a combination of right-truncated onset time
from probands and current status data from non-probands. We consider an illustrative
example in which the dependence structure is governed by a Gaussian copula and
work with this model in subsequent calculations and simulations where we examine
specific estimating equations involving different derivative matrices and working inde-
pendence assumptions. In Sect. 3, we explore the asymptotic relative efficiencies and
finite sample properties of estimators from several variants of the estimating equations
introduced in Sect. 2; these results also permit sample size calculations for planning
studies aiming to detect effects of genetic markers. The impact of misspecification
of the dependence structure on properties of estimators and power of genetic tests
is investigated in Sect. 4. An application to the motivating psoriatic arthritis family
study is given in Sect. 5 in which we assess the genetic basis of the disease. Concluding
remarks are given in Sect. 6.

2 Conditional Estimating Equations Under Biased Sampling

2.1 Notation, Sampling, and Observation Scheme for Family Studies

We consider the setting in which a registry of M individuals is created by selecting a
random sample from a population, screening each individual for disease, and recruiting
those found to have the condition of interest [10]. If C;o denotes the age of individual
0in family 7 at the time of sampling and screening, and T;o denotes their age of disease
onset, then this individual is recruited to the registry if Yo = I(Tjo < Cjp) = 1; we
assume that T;q is verifiable by a review of medical records for individuals recruited to
the registry. When a family study is carried out, we assume that probands are selected
from the disease registry by simple random sampling and without loss of generality
we label the families of selected probandsi =1, ..., m.

We let 7;; and X;; denote, respectively, the event time and a p x 1 covariate vector of
individual j in family i, where j = 1, ..., n; are the labels for the non-probands. Then
if ; = (Tio, Ti1, ..., Tiny) and X; = (X, ..., X;ni)’, we write the joint cumulative
distribution function (j.c.d.f) for family i as F;(t) = P(Tjo < to, ..., Tin; < ty;1Xi).
We assume T;; L Xl.(_J)|Xij, where Xi(_” ={X;j; j' # j,0 < j’ < n;}, and write
Fij(t;0) = P(T;; < t|X;j;0). The marginal hazard function for the disease onset
time of individual j, j =0, 1, ..., n;, in family i is
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Pt <Tij<t+ Atlt <T;;, Xij; 0
Aij(t|X;j;0) = lim = Tij < t+ Al = Tij, Xij ),

At]0 At
where we write A;;(t|X;;;60) = ko(t;a)exp(X;/,B) under a proportional haz-
ards formulation. This gives Fj;(t;jj; 0) = 1 — exp(—Ao(tij; o) exp(ijﬂ)), where

1l
Ao(tij; ) = f()ti'/ Ao(s; a)ds, e isa g x 1 vector, B is a p x 1 vector of regression
coefficients, and 0 = (o, B’)’. We let y parameterize the within-family dependence
and ¥ = 0/, y').

Classification of non-probands with respect to their disease status is made at the time
of recruitment and clinical examination, yielding current status data. Let C;; denote the
age of non-proband j in family 7 at the time of assessment and let Y;; = I(T;; < C;j);
welet C; = (Cit, ..., Cin)s Yi = (Yir, ..., Yin)) and X; = (X,..., X[, ). If
Y; = (Yo, Yi’)/, C; = (Cp, C_'lf)/, and X; = (X}, )_(lf)/, the family data therefore
consist of {T;o, Yi, Ci, X;} subject to Y;o = 1.

2.2 Second-Order Estimating Functions

The association parameter y is of central importance here so we next formulate con-
ditional second-order generalized estimating equations in the spirit of Prentice [25]
and Zhao and Prentice [33].

Let Zl' = (YiYi2, YinYis, ..., YirYin,, YioYi3, ..., Yi,n,-lein,')/ be an r; x 1 vector
of pairwise products of the elements in Y;, where r; = ni(n; — 1) /2; we let Z;jy
denote the element of Z; corresponding to the pair (j, k) in family i. To account for
response-biased sampling, we define conditional moments and let u; = E [Y; [ Ti0; V]
and n; = E [Z; |T;0; ¥] be the contributions from the non-probands and let ;o =
E[T;0lYio = 1; 0] for the proband where we suppress the dependence on X; and
C;. The conditional second-order estimating equations (CGEE2) denoted by U (/) =
Y Ui(y) = 0 have the form:

Ui(y) = G: W, 'Ri + D[ V. (Tio — o) (1)

with

Gin Ginz Wit Wiz Yi — i

Gi = (Gi21 Gi22>’ Wi= (Wi/12 Wi22>’ aud Ry = <Zi —m)’
where Gi11 = 9 /30', Giro = du;i/dy’, Gio1 = 9n;/30’, and Gizo = 9n; /3y,
Win = Cov(Y;, Y{|Tio), Wina = Cov(Z;, Z{|Tio), and W12 = Cov(Y;, Z{|Tio) ;
note that unlike standard GEE2, G;1, # 0 since u; = E [Yi|Ti0; Y] is functionally
dependent on y. The covariance matrices can be parameterized by the marginal and
association parameters where the latter may be specified in terms of Kendall’s 7; an
example is given in Sect. 2.3. Consistent estimation of ¥ is possible based on the
first term in (1), but the second term D; Vfl (T;0 — 1io), where D; = du;0/0%" and
Vi = Var(T;o|Y;o = 1), improves efficiency by exploiting the data on the onset time
from the proband.
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Subject to correct specification of the conditional moments, (1) is an unbiased
estimating function, so the estimator v solving U(y) = 0 is consistent with an
asymptotic normal distribution

V@ =) S N (0, AT @B [A—l(w)]/) : @

where
A@W) = E[-3U;(¥)/3y '] and B(W) = E[U; (¥)U;(¥)].
Natural empirical estimates of these matrices are

-~

PO P i~
AW = > |G WG, + D}V, ' D 3)
i=1
and

1

~ 1 P  oa g~
B() = ZZ{G’- W, 'R RW;'G; + D} V. (T;0 — 1i0)*V, 1Di},

which yield asvar(v/m( — ¥)) = A~ () BAHIA' @)

Simplified forms of G; can be obtained by setting G;»; = dn;/30’ = 0 (denoted
by G) or by letting both G;12 = du; /3y’ = 0 and G;2; = dn; /90’ = 0 (denoted by
G™M). It is also common to simplify W; and adopt a form in which W;1» = W/,; = 0
and Wj2, = diag{n; (1 — n;)} while retaining the full structure of W;;1; we refer to this
as a working partial independence (WPI) matrix. Combining these simplifications,

we consider four different estimating functions based on (1)

A. Full G; and Full covariance matrix W; denoted G-W,
B. Full G; and WPI W; denoted G-WPI,

C. G' and WPI W; denoted G'-WPI, and

D. G and WPI W; denoted G'"-WPI.

2.3 An Illustrative Dependence Structure Based on a Gaussian Copula

The specific form of the moments for 7;|T;o, X; can be motivated by a copula model.
Consider an (n; 4 1) x 1 vector of uniform [0, 1] variables K; = (K;o, Ki1, . ... Kin;)',
in which K;; = F;;j(4;;0), j = 0,...,n;. The jc.d.f. for K;, denoted by
Hy11(k;y) = P(Kio < kio, Kit < ki1, ..., Kin; < kin;;¥), is a copula func-
tion in n; 4+ 1 dimensions indexed by an r x 1 parameter y which characterizes the
dependence [17,22]. The Gaussian copula is a member of elliptical family of the form:

Hyp 1 (ki -+ kins v) = @1 (@7 ki), o, @7 kiny)s v),

where ®~1(-) is the inverse cumulative distribution function of a standard normal
random variable (r.v.) and @, 41(-; y) is the j.c.d.f. of an (n; + 1) x 1 multivariate
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normal r.v. with mean zero and (n; + 1) x (n; + 1) correlation matrix %;; X; is indexed
by y and we denote the off-diagonal entries by o;jx, j # k =0, ..., n;. Specification
of the Gaussian copula for K; induces a joint distribution for 7;|X; given by

Gin; exp(—s[Zflsi/Z)

qi0
P(TiOSIiOvu-vTini Stin,‘|xi;1/f)=/ SiO"'dsini’
—00 —00 Q| %]
“)
where §; ~ MVN,,11(0, X;), s; is a realization, and ¢;; = o1 (Fij(tij: 0)),
j =0,...,n;. Copula functions such as this are attractive for dependence modeling

since pairwise associations are parameterized to be functionally independent of the
marginal parameters and different pairwise associations are permitted. The Kendall’s
7 characterizing the association between T;; and Tj; given X;, for example, is given
by 7ijx = 2 * arcsin(ojji)/m, 0 < j < k < n;. Regression modeling of the within-
family dependence can be achieved by specifying a second-order model of the form
g(Tijr) = v K where g(-) is a 1-1 differentiable link function mapping Kendall’s
7 onto the real line, v;j is an r x 1 covariate vector characterizing individuals j and
k in family i and their relationship, and y is the corresponding r x 1 vector of coef-
ficients. This second-order regression model can be helpful when investigating the
effect of risk factors on the pairwise association as v;jx could represent family-level
or individual-level features, or information on the kinship of individuals j and k in
family i; inference on their effects can be easily carried out based on y. For example,
in the PsA family study with two generations, when the “parent-of-origin” hypothesis
is of interest, we can formulate the second-order model as

g(tijx) = yo + y1 1((j, k) pair are siblings) + y2 I((j, k) pair is father—child)
+ y3 I((J, k) pair is mother—child),

then comparing y» and y3 (or testing Hy : y» = y3) can inform us whether there
is “parent-of-origin” effect in the onset time of PsA. More elaborate models which
incorporate genetic covariates into the dependence model can also be specified.

Returning to the estimating function in (1), based on the Gaussian copula we have
uij = ElYijlTol = P(Tyj < CijITo) = ®((qij — 0i0;gio)/(1 — 0j5)"/?) and
nijk = ELYijYilTiol = ®2((qij — 0i0;qi0). (gik — Giokgio); Ejkj0), Where g;; =
O~ (F;;(Cij)),j=1,...,n;,and gijo = ' (Fio(ti0)). The function ®2(-, -5  jx0)
is the j.c.d.f of a bivariate normal r.v. with mean zero and covariance matrix X jx|o,
where

2

k0 = ( 1 -0,  oijk— Gi()zjaiOk)

ko = )
Oijk — 0i0joiok 1 — 0/

The entries of W; can also be derived based on the Gaussian copula where, for example,
cov(Yir, Zijk|Tio) = E[YiyYijYik| Tio]l — pimiji for k # 1 # j with

qil (4ij [k
E[YyY;;Yik|Tiol = ¢~ (gi0) / [ / b4 (gio, sit. sij, siks Zi(0,1, j, k)
—00 J—00 J—00

dsikdsijdsil.
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Note that this is a j.c.d.f for a multivariate normal r.v. with mean " and covariance
matrix I'" denoted by ®3(qit, gij, qix ; 1’ T'"), where "= (0:019i0, 00410, oiokgio)’
and 5
1 —ojy  0ilj — 0i010i0j Oilk — Oi0I0i0k
2
' = | ouj —oioioio; 1— Ojoj  Oijk = 0i0;0i0k
2
Oilk — 0i0I0i0k Oijk — 0i0j0iok 1 — Ojg;

These conditional moments are easily derived under a Gaussian copula.

3 Relative Efficiency Under Particular Estimating Equations
3.1 A Study of Asymptotic Relative Efficiency

Here we examine the asymptotic relative efficiency of four different conditional esti-
mating equations as a function of the strength of the within-family association through
the functions:

asvarA(l’p\) ’ AREC(;ﬁ\)z asvarA(:/p;)’ and ARED({p\) _ asvarA(llp\)

ARE(¥) = asvarB(I’p\) asvarc (y) asvarD(ll//\)’
where asvar() denotes an asymptotic variance and its subscript indexes the adopted
conditional estimating equations proposed in Sect. 2.2 . All three simplified conditional
estimating equations are compared with the conditional estimating equations with full
G; and full covariance matrix W;.

Consider two-generation families composed of two parents and two children,
n; = 3. The proband is randomly selected from the four family members and is
indexed by j = 0. A Weibull distribution is adopted for the onset time for all family
members; F(1;;|X;j: ) = exp ( — (Aj)* exp(X;;jB)), where X;; is a binary vari-
able with P(X;; = 1) = 0.5, j = 0,1,2,3, and we assume that X;; L X,
J#ki0 =« B). Let k = 1.2, B = log1.2, and choose A to give a median
age of 45 years for disease onset for group with X;; = 0. The clinic entry time for
the proband Cjo is normally distributed with mean 50 and variance 20, and fami-
lies are recruited into the study only if their probands satisfy the selection condition
Tio < Cjo. For non-proband j in the selected family 7, let C;; be the random age of
contact, following N(u = 60, 0> = 10) for individuals in the first generation and
N(u = 30, ol = 10) for the individuals in the second generation, j = 1, 2, 3; the age
at contact for individuals in both generation are truncated at 90 years. We consider a
Gaussian copula to induce an exchangeable within-family association for simplicity
here, and let Kendall’s 7 vary from 0 to 0.5 to reflect independence to strong within-
family association. The second-order model with a Fisher transformation link function
is simply log ((1 + T /(1 — rijk)) = Y0, 0 < j < k < 3. The asymptotic variances
of estimators based on conditional estimating equations in (2) are approximated by
Monte Carlo simulation based on 20,000 samples.

Figure 1 shows the trends of asymptotic relative efficiencies of estimators under
different conditional estimating equations as a function of the within-family associa-
tion. It is apparent that the conditional estimating equations with full G; and full W;
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Fig. 1 Asymptotic relative efficiencies of estimators under conditional estimating equations with full G;
and WPI W; (AREg), simplified G! and WPI W; (ARE(), simplified GI' and WPI W; (AREp) compared
with that under conditional estimating equation with full G; and full covariance matrix W;; within-family
dependence of disease onset times is induced by a Gaussian copula with exchangeable structure with
Kendall’s 7 varying from 0 to 0.5; (log A, logk, ) = (—4.11,log 1.2,log 1.2), n; = 3, m = 20,000

(G-W) lead to the most efficient estimators, and the efficiency gain is most apprecia-
ble for the association parameter. With the WPI matrix W;, adopting G! yields more
efficient estimators than that using G'I, especially when the within-family association
is strong. This makes sense as the former utilizes additional information about y from
the conditional mean p;. The conditional estimating equations with the full G; and
WPI matrix W; (G-WPI) perform worse than other approaches when the association is
less than 0.45; see Fig. 1. This indicates that with a working covariance matrix, using
the full derivative matrix increases the complexity, but does not improve efficiency;
on the contrary, it leads to less efficient estimators. This is similar to the findings
reported by Balemi and Lee [1] where they compare the performance of GEE1 and
GEE2 estimators for clustered binary data.

3.2 Finite Sample Study of the Conditional Estimating Equations
Here we conduct a simulation study to assess the validity and finite sample performance
of these four conditional estimating equations for family data from response-dependent

sampling. The parameter settings are the same as in Sect. 3.1 and we let Kendall’s
7 = 0.0, 0.2, and 0.4 for an exchangeable Gaussian copula. We also consider a more
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general case where the within-family association is induced by a Gaussian copula with
structured correlation matrix. For the two-generation families composed of two parents
and two children, let Kendall’s 7,, = 0.1 for parents, Kendall’s Tpe = 0.2 for parent—
child, and Kendall’s 7gs = 0.4 for siblings to reflect the existence of both environmental
and genetic effects on the age of onset. One thousand datasets of m = 200 and
1000 ascertained families are generated, the four proposed conditional estimating
equations are used for analysis, and the empirical properties of estimates of § and
yo are summarized in Table 1 for the exchangeable Gaussian copula and 8 and y =
(%0, y1, y2)’ for the structured Gaussian copula in Table 2. The performance of the
estimators for the parameters of the baseline hazard was excellent under the (correct)
Weibull specification in all settings and so we do not tabulate these results.

The results under the exchangeable Gaussian copula in Table 1 show that when
the Weibull model is specified for the onset time distribution, the empirical biases are
negligible for all conditional estimating equations; there is very slight finite sample
bias for the association parameter when m = 200 and the within-family association
is strong (Kendall’s T = 0.4). The empirical standard errors (ESE) agree with the
average standard errors (ASE) based on the robust variance form, and the empirical
coverage probabilities (ECP) of nominal 95% confidence intervals are in general within
the acceptable range. Consistent with the theoretical results of Sect. 3.1, the greatest
efficiency came from the conditional estimating equations with the full derivative
matrix and full covariance matrix (G-W), followed by those with G! and WPI matrix
W; (GI-WPI). The empirical performance of the conditional estimating equations with
the full G; and WPI matrix W; is worse than the others, again in alignment with the
conclusion based on Fig. 1.

When considering a more flexible marginal model with a piecewise constant (3
pieces) baseline hazard function, we set the cut-points at # = 20 and 40. For the large
sample size m = 1000, performance was excellent for inference regarding 8 and very
good for the dependence parameter 3y when the association was small; properties of
the estimator of yy became worse with stronger within-family dependence, possibly
as a result of the crude approximation of the piecewise constant hazard. While one
might expect superior performance if more pieces were accommodated, convergence
problems arose even with just three pieces under the smaller sample sizes for some
replicates (typically less than 2.5%); the percentages of replicates failing to converge
are reported in the last column and where necessary the properties of estimators from
converged replicates are given. The G!-WPI estimating equation always resulted in
convergence. The convergence issues likely arose due to the right-truncated nature
of the proband onset time and the severe censoring from a current status observation
scheme of non-probands; these combine to yield little information to estimate the
hazard function in small samples.

Under more general association structure, results under G'-WPI estimating equa-
tion are not summarized because of high non-convergence percentage for such more
general association structure. For the other three conditional estimating equations, their
performance was again excellent under the correct Weibull model and again 100% of
the replicates lead to convergence for m = 200 and m = 1000; see Table 2. Empirical
biases were generally small, there was a good agreement between the empirical and
average robust standard errors, and the empirical coverage probability was generally
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within the acceptable range. Under the piecewise constant model, convergence rate
was 100% when m = 1000 and the empirical properties of the estimators for 8 and
y were good in such settings. When m = 200, performance remained good but with
small finite sample bias and good empirical coverage probability.

4 Impact of Misspecifying the Dependence Structure
4.1 Limiting Bias Under Misspecified Conditional Estimating Equations

While standard GEEI only requires correct specification of the marginal mean for
consistent estimation of the marginal parameters, the conditional estimating equations
require correct specification of the marginal distribution and the dependence structure
for consistent estimation, even for the simplified conditional estimating equations G!-
WPI and G'-WPI. As is often the case, the efficiency gains coming from the use of
higher-order moments in the conditional estimating equations such as G-W come at
the cost of poorer robustness. We explore the limiting behavior of estimators from
misspecified models here based on large sample theory [31]. Specifically, if U (y) is
an estimating function for v based on a misspecified model, then the solution @ for
U (y) = 0 asymptotically follows:

V@ =y ~ N (0. A7 @HB@HAT () ®)

as m — oo, where A(y) = E[-3U;(¥) /8y’ ; £, B(y) = E[U:(¥)U(¥) : ¢], and
¥* is the solution to E[U(¥); ¢] = 0, where E[ -; ¢] denotes an expectation taken
with respect to the true distribution indexed by ¢. Note that E[U (¥/); ¢] can be written
as

Y EWUi®):¢l =) E {G; w;! (’;;Eg B fj) + DV (Tio — u,-o>} . (6)
i=1 i=1 i !

where p¥(¢) = E[Yi|Tio, Xi, Ci1 and nj(¢) = E[Z;|T;o, X;., C;] are the conditional
expectations of Y; and Z; given {T;o, X;, C;} under the true model. The expectation
on the right-hand side of (6) is taken with respect to the remaining random variables
{T;0, X;, C;}. Of course, when the model is correctly specified, then ¢* = ¢ but this
is not the case more generally; we investigate the limiting bias of estimators under the
misspecified model by examining ¢¥* — ¢.

Here we consider two-generation families composed of two parents and two chil-
dren, and the proband is randomly selected from the four family members. The
probands are recruited into the registry only if T;o < C;o. We adopt the same param-
eter settings as in Sect. 3.1, but assume here that the true within-family association
structure is induced by the Clayton copula

— _ _ -1/¢
H(k(),k],,knl,¢)=(k0¢+kl¢++knl¢_nl> , (7)
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Fig. 2 Asymptotic relative biases of estimators under conditional estimating equations when a Gaussian
copula with an exchangeable structure is adopted for within-family dependence modeling; the true within-
family dependence structure is induced by a Clayton copula; (log A, logk, B) = (—4.11,log 1.2,1log 1.2)

where Kendall’s 7 = ¢ /(¢ + 2). The adopted estimating functions are misspecified
in that the dependence structure is modeled based on a Gaussian copula with an
exchangeable association structure. We consider the values of Kendall’s T ranging from
0 to 0.5 to reflect independence to strong within-family dependence. We evaluate the
limiting relative biases of estimators using Monte Carlo methods to take the expectation
in (6) and solving the resulting equation.

From Fig. 2, we see that the conditional estimating equations with the full G; and
WPI matrix W; is the most sensitive to misspecification. Although one might antici-
pate that the full G; and full covariance matrix W; (G—W) would be less robust than
G'-WPI or G''-WPI, the asymptotic relative biases of estimators defined through G-W
are in general no larger than those under G'-WPI and G'-WPI when Kendall’s  is less
than 0.3; the sensitivity of estimators from G—W to misspecification becomes more
apparent, compared to those based on G'-WPI and G'-WPI, when Kendall’s 7 is larger
(i.e., > 0.3); GI-WPI is slightly more sensitive to this form of misspecification than
G'-WPI. Furthermore, the asymptotic relative biases for g under the conditional esti-
mating equations are all relatively modest when Kendall’s t is small to modest. If one
is primarily interested in the estimation of 8, then the proposed conditional estimating
equations are reasonably robust to misspecification of the copula function for modest
Kendall’s 7, but the asymptotic biases of the dependence parameters are appreciable
under misspecification of the dependence structure. This conclusion is analogous to
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those made regarding misspecification of the random effect distribution with response-
dependent sampling [11,13,23]. We also conducted supplementary simulation studies
demonstrating a good agreement between the finite sample and asymptotic biases in
studies with 200 and 1000 families (see Supplementary Material).

4.2 Power Implications of Dependence Structure Misspecification

We next investigate the effect of dependence structure misspecification on the power
of tests regarding covariate effects. Based on our previous findings regarding asymp-
totic relative efficiency and robustness, here we focus our attention on the preferred
estimating functions G-W and G!-WPI. We consider a test of Hy : 8 = o = 0 versus
Hy : B # 0, and let B4 be the clinically important effect. When both the marginal
and association models are correctly specified from (2), we have

JmB =) S N©, o2)), ®)

as m — oo, where 02(1//) is the diagonal element in the robust covariance matrix
AT BW) [A_l (w)]/ corresponding to 8. Under a two-sided Wald test with sig-
nificance level 1001 %, the required number of families to ensure 100(1 — )% power
to detect B4 is the smallest m satisfying

. {Zal/z o (Y0) + 2ay 0 (Y a) }2’ ©

Ba

where o (¥0) and o (¥ 4) are the square roots of asymptotic variances of /m (E —
B) under the null and alternative hypotheses; o = (A, «, Bo,y’) and ¥4 =
(A ke, Basy)). zu is the 100(1 — u)% percentile of standard normal
distribution.

When the dependence structure is misspecified, the limiting value of estimators
under the conditional estimating equations is ¥ *(# ¢) (Sect. 4.1). Then based on
(6), we can calculate the limiting values of x’i under the null and alternative hypothe-
ses when the dependence structure is misspecified, and denote them as v/ and ¥,
respectively. Furthermore, we can show that under the null hypothesis the estimator
based on the misspecified conditional estimating equations satisfies

Im@ =y S N©. T, (10)

as m — oo, and under the alternative hypothesis

m@ =y S N, T, (11)

where

Iy = A WBWHIA )T ,andl = A~ () B IA™ ()T
V=v; Y=y}
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Hence, the asymptotic properties of E can be determined by considering the corre-
sponding component of 1://\ . When the copula model is misspecified, the actual power
of such two-sided Wald test of Hy : B = Bo = 0 versus Hy : B # 0, at the clinically
important effect 84 given sample size m and significance level a1, is

_ * * _ X "
POWER:CD( fea2% - ﬁﬁf‘)ﬂb( Z“‘/ZG‘)J“/%SA), (12)

%
04 04

where o and o' are the square roots of the diagonal elements of I'§ and I'; , respec-
tively, corresponding to .

Here we report on an asymptotic study to examine the effect of copula misspecifi-
cation on the power. Assume that each family consists of two parents and two children,
and the proband is randomly selected from the four family members. As before we
presume that the families are recruited to the study only if 7;9 < C;o. The parameter
settings are the same as in Sect. 3.1 but we consider two specific scenarios: (i) the true
within-family association structure is based on a Gaussian copula with an exchange-
able association structure and (ii) the true within-family association structure is based
on a Clayton copula (7); in both cases, we set Kendall’s T = 0.4. At the design stage,
we adopt a Gaussian copula with an exchangeable association structure for the within-
family dependence, and let Kendall’s 7 = 0.4. We therefore only consider the case in
which the form of the dependence structure is misspecified. In this setting, we calculate
the required sample size to achieve 80% power to reject Hy at B4 = log 1.2 by (9),
where o () is obtained from the Gaussian copula. The minimum numbers of families
are 420 and 422 based on estimating equation G-W and G'-WPI, respectively. Under
these sample sizes, the actual power of such a design can be computed by (12) for
the values of § ranging from O to log 1.2. The power curves are plotted in Fig. 3 from
which we infer that when the association model is correctly specified, tests based on
the conditional estimating equations G—-W and G!-WPI have the desired power at the
clinically important effect; as expected, the power decreases when the true value of
B approaches 0. When the copula is misspecified (i.e., the true dependence structure
is set by a Clayton copula but a Gaussian copula is used for sample size calculation),
tests based on both conditional estimating equations lead to a loss in power, with a
greater loss in power under G-W compared to G'-WPI. This is reasonable since the
G-—W estimating equations exploit information from higher-order dependencies more
than G'-WPI, which is less robust than the latter. In summary, based on the compre-
hensive investigation of these conditional estimating equations in terms of efficiency
and robustness, estimating equation G'-WPI is suitable in the absence of informa-
tion about the association structure, but if information is available about the structure,
estimating equation G—W could be adopted to achieve higher efficiency.

5 Application to The Psoriatic Arthritis Family Study
Hereditary factors are thought to be important in psoriatic arthritis, as some studies

have suggested that close blood relatives of affected individuals are at higher risk of
developing the disease compared to the general population. Interest therefore lies in
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Fig. 3 Power curves of a two-sided Wald test for Hy : f = 0 under conditional estimating equations
G-W and G'-WPI when the within-family dependence structure is correctly specified or misspecified;
true within-family dependence is induced by Gaussian copula with exchangeable structure or Clayton
copula, and adopted family dependence structure in the design stage is Gaussian copula with exchangeable
association; Kendall’s 7 = 0.4, 84 = log 1.2

characterizing the effect of genetic markers on the risk of disease; we consider four
human leukocyte antigen (HLA) markers reported in the literature as being associated
with psoriasis or psoriatic arthritis including HLA-B8, HLA-B27, HLA-C6, and HLA-
C12. Characterizing the nature of the within-family association structure can also
provide useful insight into the genetic basis of the disease. Particular interest lies in
assessing the “parent-of-origin™ effect; preliminary evidence suggests that there may
be a stronger risk of paternal transmission, over maternal transmission, of risk of
disease; we refer readers to Pollock et al. [24] for associated results based on binary
analyses.

Here we consider an application to the motivating family study on the genetic basis
of psoriatic arthritis conducted in the Centre for Prognosis Studies in the Rheumatic
Diseases at the University of Toronto. One hundred and sixty-nine families composed
of 2 to 7 members, including the proband, were recruited for study. The date of disease
onset is available for probands from the clinic registry but only the disease status of
other individuals is available when they are examined, yielding current status data.
A Weibull model is adopted for the marginal distribution of the PsA onset time with
survivor function F(¢|X;;; 6) = exp(—(At)"* exp(X;jﬂ)) where 0 = (A, «, B, j =
1,...,n;,andi =1, ..., 169. A flexible model for the within-family dependence is
formulated based on a Gaussian copula with different pairwise dependencies between
parents (tpp), between siblings (zss), between a father and his child (z), and between
a mother and her child (tyc). This can be formulated in terms of a second-order
regression model given by

log ((1 4 7ijx) /(1 — Tijr)) = o + Y1vijr1 + Y2vijk2 + Y3Viji3, (13)

where v;jr1 = I((/, k) pair are siblings), v;jx2 = I((j, k) pair is father—child), and
vijk3 = 1((J, k) pair is mother—child). The hypotheses Ho : y» —y3 = 0 and Hy :
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y2» — y3 # 0 are the basis of a test regarding the parent-of-origin question. There are
only 8 pairs of parents, which leads to insufficient data to estimate the intercept in (13)
and so we constrain that parameter to be zero with the implicit assumption that there
are no environmental determinants of PsA.

Table 3 summarizes the results with the top half obtained from the full derivative
and covariance matrices (G=W) and the bottom half reporting the results from G!-
WPI. A model with no HLA covariate is given in the first column followed by four
univariate models, with the last column containing results from a multivariate model
including all four markers. The estimates for the association parameters are given in
terms of y and the three Kendall’s T parameters.

Based on the model with no HLA covariates, we find 7qs = 0.337 (95% CI: 0.113,
0.528; p value = 0.002), indicating highly significant association between siblings in
the disease onset time. The father—child association is lower at 7. = 0.225 (95% CI:
—0.030, 0.452) and not quite statistically significant (p value = 0.072). For the mother—
child association, we find e = 0.130 (95% CI: —0.153, 0.393) which is weaker still
and insignificant (p value = 0.364). A test of the parent-of-origin hypothesis based
on Hy : y» — y3 = 0 yields a Wald statistic of 1.435 (p value = 0.151). As this is
not statistically significant at the 5% significance level, there is insufficient evidence
to claim a statistically significant “parent- of-origin” effect. The results are broadly
comparable for the HLA regression analyses based on the other conditional estimating
equation (G!-WPI). For the association parameters, the estimates are somewhat lower
with Tgs = 0.220 (95% CIL: —0.003, 0.423; p value = 0.046), Trs = 0.104 (95% CI:
—0.128, 0.324; p value = 0.378), and 7,5 = —0.018 (95% CI: —0.256, 0.222; p value
= 0.886). The Wald statistic of 1.682 (p value = 0.092) does not suggest a “parent-
of-origin” effect.

The large sample theory we develop can be used to plan a future family study and
it is possible to calculate how many families would be required to ensure adequate
power to test the parent-of-origin hypothesis in a future study. In a new study, we
may consider recruitment of families of members of the registry and presume that
the distribution of family members, ages at assessment, and other factors are similar
in the new study. We use the sample size formula similar to (9) but for y» — y3
and determine that 627 families would be required to ensure 80% power to detect a
significant difference between the father—child and mother—child associations using
estimating function G—=W when the true effects correspond to those seen in the first
column of Table 3. The current study therefore appears to be grossly under-powered
to formally test the parent-of-origin hypothesis.

None of the HLA markers were shown to have a significant effect on the time to
the onset of PsA. Based on the G-W estimating equations, there is a trend toward a
reduction in risk with HLA-B8 and a trend toward an increased risk with the presence
of each of the other HLA markers.

6 Discussion

Estimating functions have been developed to model the nature and extent of
within-family dependence in disease onset times from family studies under response-
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dependent sampling. A novel aspect of this work is the formulation of the dependence
measures on the basis of the disease onset time and the recognition that the avail-
able data on family members are handled more naturally as current status data rather
than binary data. This approach utilizes all available data from probands and their
relatives in assessing the association between age of onset and covariates and in
evaluating the association structure of age of onset among family members. The
biased sampling scheme typically employed in family studies is addressed by the
use of conditional estimating equations where the conditioning event reflects the
selection criteria. Several specific estimating functions within the class proposed
are assessed in terms of efficiency and robustness; these results complement the
standard results of second-order estimating functions since all moments in the pro-
posed equations are conditional. We also outline how sample size requirements for
family studies can be assessed based on this framework to ensure that power objec-
tives are met. Code for solving the conditional second-order estimating equations
(1) and for obtaining the variance estimates of Sect. 2.2 are available at Github
https://github.com/Yujie-zZhong/CGEE2.

We have focused on the use of estimating functions for the analysis of family
data in part because the likelihood can be challenging to compute when the size of
the family is large. Nevertheless, some assessment of the loss of efficiency in com-
parison to this optimal approach would be worthwhile. The validity of the proposed
conditional second-order estimating equations hinges on correct specification of the
dependence structure, a requirement that is analogous to the need for correct speci-
fication of the mixing distribution in random effects models for data obtained based
on a response-dependent sampling scheme [23]. Assessing model adequacy is best
done by testing for the need for model expansion; this could be carried out by testing
the need for more cut-points in the baseline hazard function to accommodate a more
flexible hazard function, or the need to test for a more general dependence structure.
In the present setting, the dependence structure is most easily formulated by selecting
a working copula model for the joint distribution of the onset times in the population.
If this dependence structure is misspecified, inconsistent estimates are obtained, and
we examine their consequences in Sect. 4 to make recommendations on the use of
a particular derivative and working covariance matrix. The properties of estimators
under model misspecification can be explored using large sample theory [31], but these
will be influenced by response-dependent sampling schemes and so a more general
study of the effect of misspecification in this framework represents an important area
for further research.

We have restricted our attention to parametric models for the onset time distribution.
Natural extensions would be to introduce non-parametric or semi-parametric methods
for estimating the marginal distributions. In the latter case, one can look at multi-
plicative Cox models, accelerated failure time models, and Aalen’s additive model,
among many other methods. Joint estimation based on the most general conditional
estimating equation can be challenging in this setting, but two-stage estimation proce-
dures may be feasible; this is an area of current research. The preliminary work based
on the piecewise constant baseline hazard model, however, suggests that studies may
need to recruit a lot of families if the incidence rate is low to estimate the marginal
onset time distribution. If the disease onset times are available for all or even some of
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the non-probands found to have the disease, these data could help in estimation; the
estimating equations we present can be modified in this case to incorporate such data.
Aucxiliary samples can also be useful to enhance inferences.

While there is an increasing amount of attention given to the use of disease onset
time as a basis for modeling within-family dependence, there remain challenging issues
that warrant further attention. The primary challenge is in quantifying dependence in
the presence of the competing risk of death [12,26]. The classical illness—death process
is a natural framework for modeling the occurrence of disease in individuals who are
at risk, and generalization of this set-up to model within-family dependence is an area
warranting attention. This issue is not unique to analyses based on disease onset times;
when current status data are treated as binary data, the requirement that individuals
are alive at the time of contact is ignored.
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