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The potential for dengue fever epidemic due to climate change remains uncertain in
tropical areas. This study aims to assess the impact of climate change on dengue fever
transmission in four South and Southeast Asian settings. We collected weekly data of
dengue fever incidence, daily mean temperature and rainfall from 2012 to 2020 in
Singapore, Colombo, Selangor, and Chiang Mai. Projections for temperature and rainfall
were drawn for three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585)
scenarios. Using a disease transmission model, we projected the dengue fever epidemics
until 2090s and determined the changes in annual peak incidence, peak time, epidemic
size, and outbreak duration. A total of 684,639 dengue fever cases were reported in the
four locations between 2012 and 2020. The projected change in dengue fever transmission
would be most significant under the SSP585 scenario. In comparison to the 2030s, the peak
incidence would rise by 1.29 times in Singapore, 2.25 times in Colombo, 1.36 times in
Selangor, and >10 times in Chiang Mai in the 2090s under SSP585. Additionally, the peak
time was projected to be earlier in Singapore, Colombo, and Selangor, but be later in
Chiang Mai under the SSP585 scenario. Even in a milder emission scenario of SSP126, the
epidemic size was projected to increase by 5.94%, 10.81%, 12.95%, and 69.60% from the
2030se2090s in Singapore, Colombo, Selangor, and Chiang Mai, respectively. The outbreak
durations in the four settings were projected to be prolonged over this century under
SSP126 and SSP245, while a slight decrease is expected in 2090s under SSP585. The results
indicate that climate change is expected to increase the risk of dengue fever transmission
in tropical areas of South and Southeast Asia. Limiting greenhouse gas emissions could be
crucial in reducing the transmission of dengue fever in the future.
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1. Introduction

Dengue fever, a mosquito-borne infectious disease, is becoming a growing health concern worldwide. In the past fifty
years, reported cases of dengue fever have increased more than thirty times, with transmissions mainly occurring in tropical
regions that have warm and wet climates (Bhatt et al., 2013; Ebi & Nealon, 2016). In addition to the rapid population growth
and frequent national travel that accelerate the rising dengue fever transmission, climate change is also a potential
contributor to the increased incidence of dengue fever and its geographical expansion, as global warming could create more
favourable environments for mosquito breeding and the spread of the disease (Lowe et al., 2021).

Ambient temperature and rainfall are two critical factors that regulate the environmental suitability for the transmission
of most mosquito-borne infectious diseases, such as Zika and dengue fever. Previous laboratory and field research has
quantitatively estimated the impact of temperature on vector traits, demonstrating a positive association between normal
ambient temperature and vector traits like biting rate and extinct incubation rate (Mordecai et al., 2017; Yang et al., 2009). The
primary focus of rainfall on the vector-borne disease transmission is on the aquatic stage. Typically, a moderate rainfall can
create more breeding sites for mosquitoes, leading to a higher risk of disease spread (Nuraini et al., 2021). On the other hand,
heavy rainfall can be disruptive to the vectors due to the flushing-out effect (Benedum et al., 2018).

Several studies have projected the transmission potential of dengue fever under climate change based on the association
between meteorological factors and disease transmission (Caldwell et al., 2021; Taghikhani & Gumel, 2018). According to the
studies, the future may show an increasing trend in disease transmissibility and vectorial capacity (Kakarla et al., 2020;
Ngonghala et al., 2021; Taghikhani & Gumel, 2018). The increased transmission risk highlights not only an increased dengue
fever incidence, but also geographic expansions to non-epidemic areas (Baylis, 2017; Butterworth et al., 2017). Due to the
intricate influence of meteorological factors on disease transmission, the patterns of disease epidemics, such as the epidemic
size and peak time, may be subject to a change under global warming (Liu-Helmersson et al., 2016; Sadeghieh et al., 2021). For
instance, a longer duration of dengue fever epidemics was expected in the future due to a prolonged environmental-
favourable period for the dengue fever vector in Europe (Liu-Helmersson et al., 2016). In addition, spatial heterogeneity
suggests a variability in the projections of dengue fever transmission across different regions. Compared to temperate areas,
tropical regions like South and Southeast Asia are expected to maintain a more favourable condition for dengue fever vectors
in the future (Davis et al., 2021), and dengue fever transmission in the future may thus behave differently.

To examine the impact of climate change on dengue fever epidemics, our study employed a compartmental model
parametrized with temperature and rainfall variability to simulate dengue fever epidemics under projected greenhouse gas
emission scenarios. The epidemics were projected from the 2030s to the end of the century in four settings, including
Singapore, Colombo (Sri Lanka), Selangor (Malaysia), and Chiang Mai (Thailand). We evaluated the changes of key charac-
teristics of dengue fever epidemics, including peak incidence, peak time, epidemic size, and outbreak duration. The findings of
this study could assist in the prevention and control of dengue fever spread under climate change.
2. Materials and methods

2.1. Data

We collected weekly dengue fever incidence data between 2012 and 2020 in four locations named Singapore, Colombo,
Selangor, and ChiangMai from official surveillance reports (Wang et al., 2022). The data sources were noted in Supplementary
Table A1. Daily mean temperature and total rainfall data over the same time period were retrieved from the National Centers
for Environmental Information (NCEI), which provides weather data recorded by one or more weather stations in each
setting. The projected monthly mean temperature and total rainfall data for the 2030s, 2050s, 2070s, and 2090s under three
Shared Socioeconomic Pathways (SSP) scenarios (i.e., SSP126, SSP245, and SSP585 for low, middle, and high greenhouse gas
emissions, respectively) were collected from 11 general circulation models (GCMs) in Phase 6 of the Coupled Model Inter-
comparison Project (CMIP6) via the WouldClim website (Supplementary Table A2). GCMs selection was based on previous
studies (Hamed et al., 2022). Location-specific projected daily mean temperature series were calculated by adding the dif-
ferences between the projected and nine-year averaged monthly mean temperature to the nine-year averaged daily mean
temperature. The ratio between projected and nine-year averaged monthly total rainfall was multiplied by observed nine-
year averaged daily rainfall in the corresponding month to get the projected daily rainfall series. Details in temperature
and rainfall projections are noted in Supplementary Methodology (Supplementary material).
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2.2. Disease transmission model

This study employed a SEI-SEIR compartment model to investigate the dynamics of dengue fever and to evaluate the
impact of temperature and rainfall on disease transmission (Caldwell et al., 2021), as illustrated in Fig. 1. The model in-
corporates the following equations:

dSv
dt

¼ EFDðTÞ*pEAðTÞ*MDRðTÞ* 1
mvðTÞ

*

�
1� Nv

KðT ;RÞ
�
*Nv � bðTÞbvðTÞIh

Nh
*Sv � mvðTÞ*Sv (1)

dEv
dt

¼ bðTÞbvðTÞIh
Nh

*Sv � ðgvðTÞ þ mvðTÞÞ*Ev (2)

dIv
dt

¼ gvðTÞ*Ev � mvðTÞ*Iv (3)

dSh
dt

¼ ðmn þ ieÞ*Nh �
bðTÞbhðTÞIv

Nh
*Sh � ðmh þ ieÞ*Sh (4)

dEh
dt

¼ bðTÞbhðTÞIv
Nh

*Sh � ðgh þ mh þ ieÞ*Eh (5)

dIh
dt

¼ gh*Eh � ðsh þ mh þ ieÞ*Ih (6)

dRh
dt

¼ sh*Ih � ðmh þ ieÞ*Rh (7)

In this model, the total vector population (Nv) was separated into Susceptible (Sv), Exposed (Ev), and Infected (Iv) compart-
ments, while the total human population (Nh) included Susceptible (Sh), Exposed (Eh), Infected (Ih), and Recover (Rh) com-
partments. The parameters used in this model were summarized in Table 1, and the temperature-dependent parameters were
shown in Table 2.

The temperature and rainfall-dependent carrying capacity (K) was modeled as:
Fig. 1. Model framework for dengue fever transmission. Sv, susceptible vector; Ev, exposed vector; Iv, infected vector; Sh, susceptible human; Eh, exposed human;
Ih, infected human; Rv, recovered human.
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Table 1
Summary of the parameters in the SEI-SEIR model.

Parameter Definition Values Range Sources

mn Human natural birth rate (per
1000 people)

Singapore: 9.26 8.50e10.10 Worldbank (https://data.worldbank.org/indicator/SP.DYN.
CBRT.IN)Colombo: 15.65 14.24e17.32

Selangor: 16.50 15.40e17.30
Chiang Mai: 10.36 9.18e11.75

mh Human death rate (per 1000
people)

Singapore: 4.84 4.50e5.20
Colombo: 7.04 6.90e7.18
Selangor: 5.10 4.91e5.31
Chiang Mai: 6.83 6.46e7.26

ie Immigration/emigration rate 0.001 0.001e0.005 Worldbank (https://data.worldbank.org/indicator/SM.POP.
NETM?end¼2021&start¼1960)

1=gh Intrinsic incubation period (days) 5.9 gamma (m¼5.9,
s¼0.5)

Chan and Johansson (2012)

1=sh Human infectivity period (days) 5.0 gamma (m¼5.0,
s¼0.5)

b Biting rate (day�1) Temperature-dependent Table 2 Mordecai et al. (2017)
EFD Eggs laid per female per day
pEA Probability of mosquito egg to-

adult survival
MDR Mosquito. egg to adult

development rate (day�1)
mv Vector mortality rate
bh Probability of mosquito

infectiousness
bv Probability of mosquito infection
gv Virus extrinsic incubation rate

(day�1)

K Carrying capacity Temperature and rainfall
dependent

Caldwell et al. (2021)

Table 2
Temperature-dependent parameters.

Trait Function c (in 10�4) Tmin (�C) Tmax (�C)

mean 95% CI mean 95% CI mean 95% CI

EFD Briere 85.6 [37.80, 141.00] 14.58 [8.08, 20.60] 34.61 [34.00, 35.77]
pEA Quadratic �59.90 [-68.20, �51.30] 13.56 [12.56, 14.51] 38.29 [37.54, 39.02]
MDR Briere 0.79 [0.58, 0.99] 11.36 [7.19, 15.03] 39.17 [39.00, 39.54]
b Briere 2.02 [1.20, 2.80] 13.35 [8.27, 17.41] 40.08 [40.00, 40.28]
1/ mv Quadratic �1480 [-2060, �980] 9.16 [6.69, 12.33] 37.73 [35.68, 39.89]
bh Briere 8.49 [5.07, 12.00] 17.05 [12.56, 21.26] 35.83 [35.06, 36.69]
bv Briere 4.91 [3.33, 6.41] 12.22 [5.61, 17.76] 37.46 [35.70, 39.29]
gv Briere 0.67 [0.36e1.09] 10.68 [3.86, 18.33] 45.90 [39.73, 52.92]

*Briere function: cT(T � Tmin) (Tmax � T)1/2; Quadratic function: c(T � Tmax) (T � Tmin); T means daily mean temperature, Tmax and Tmin mean the maximum
and minimum temperatures for each trait; c is the rate constant. The parameters were assumed based on Mordecai et al., 2017.
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KðT;RÞ ¼ EFDðToÞ*pEAðToÞ*MDRðToÞ*mvðToÞ�1 � mvðToÞ
EFDðToÞ*pEAðToÞ*MDRðToÞ*mvðToÞ�1 *Nv:max*e

�EA*ðT�ToÞ2
q*ðTþ273Þ*ðToþ273Þ*f ðRÞ (8)

where T0 was set to 29.00 �C, the activation energy (EA) was set as 0.05, and the q (Boltzmann constant) was set as 8.617e-
05 eV/K based on previous research (Huber et al., 2018). Nv. max refers to themaximumvector-to-host ratio, andwas set to two
for the four locations in this study.
2.3. Rainfall function selection

According to previous research, the most suitable rainfall function might vary among locations (Caldwell et al., 2021).
Therefore, the relationship between rainfall and carrying capacity was modeled using three different rainfall functions (f ðRÞ)
(Caldwell et al., 2021):
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f ðRBriereÞ ¼ c*R*ðR � RminÞ*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRmax � RÞ

p
*z (9)

f
�
RQuadratic

� ¼ c*ðR � RminÞ*ðR � RmaxÞ*z (10)
1

f ðRInverseÞ ¼ R

*z (11)
These functionsweremodeledwith 14-days cumulative rainfall (mm), and a value of less than 1mmormore than 123mm
was set as cut-off value (Benedum et al., 2018). The parameter c was set as 0.79e�4 and �59.90e�4 for the Briere and
Quadratic functions, respectively. The scaling factor z has a range of 0.15e0.25, 0.015e0.025, and 0.30e0.70 for Briere,
Quadratic, and Inverse functions, respectively. Models with the above-mentioned different rainfall functions and scaling
factors were constructed to simulate daily dengue fever cases in each location between 2012 and 2020. The nine-year average
total population for Singapore, Colombo, Selangor, and Chiang Mai were 5,551,545, 2,393,667, 6,223,810, and 1,719,512,
respectively. The initial proportions were set as Sv¼ 0.95, Ev¼ 0.03, Iv¼ 0.02, Sh¼ 0.50, Eh¼ 0.003, Ih¼ 0.002, and Rh¼ 0.495.
We set a burn-in period of 365 days to ensure the model's invariance to the initial status. Subsequently, the weekly dengue
fever cases simulated from 2013 to 2020 were compared to those observed. The location-specific model with the lowest
Akaike information criterion (AIC) value was selected for further analysis (Supplementary Methodology).

2.4. Projecting dengue fever transmission under climate change

To simulate dengue fever incidence in the future, the study utilized location-specific temperature and rainfall projections.
The total population (Nh) was set as 100,000 in each location, with an initial status of Sv ¼ 2*Nh � 150, Ev ¼ 100, Iv ¼ 50,
Sh ¼ Nh � 15, Eh ¼ 10, Ih ¼ 5, Rh ¼ 0. We characterized the peak dengue fever incidence (i.e., the peak daily new dengue fever
cases in a year), peak time (i.e., number of days between the first day of a year and the daywith peak incidence), epidemic size
(i.e., the final population in the Recover compartment), and outbreak duration (i.e., the number of consecutive days with daily
new cases exceed the outbreak cut-off values in a year). For Singapore, Colombo, and Selangor, an outbreak was defined as
daily dengue fever cases exceeding 100 cases, while a cut-off value of 10 cases was used to define a dengue fever outbreak in
Chiang Mai due to the relatively moderate dengue fever epidemic status in this location.

2.5. Uncertainty and sensitivity analysis

To perform uncertainty and sensitivity analysis, the study utilized Latin Hypercube Sampling (LHS) and partial rank
correlation coefficients (PRCCs) (Marino et al., 2008; Okais et al., 2010). A total of 29 fixed parameters and their corresponding
ranges are presented in Tables 1 and 2. PRCCs range from�1 to 1, with a higher value indicating a more significant impact on
the model output. We determined the PRCCs between each fixed parameter and the transmission characteristics of dengue
fever, such as epidemic size and peak incidence. The projected dengue fever transmissions under all climate change scenarios
were determined through 1000 iterations of simulation, and the uncertainty was also assessed. To test the impact of pro-
jection uncertainty of climate change scenarios on disease transmission, five (i.e. ACCESS-CM2, EC-Earth3-Veg, INM-CM5-0,
MICRO6, and MPI-ESM1-2-HR) out of the 11 GCMs were randomly selected to generate a new set of temperature and rainfall
projections, and the simulated transmission dynamics were compared with the original results. All statistical analyses were
conducted using R 4.0.2 software with the deSolve package.

3. Results

From 2012 to 2020, four locations including Singapore, Selangor, Colombo, and Chiang Mai reported a total of 684,639
cases of dengue fever. Among these locations, Selangor reported the highest number of dengue fever cases at 409,704, with
the highest dengue fever incidence of 72.35 cases per 10,000 people per year, followed by Colombo with 52.11 cases per
10,000 people per year. Singapore and Chiang Mai showed relatively lower dengue fever incidences by 25.34 and 22.90 cases
per 10,000 people per year. The average mean temperature in these locations was around 28.0 �C, with average daily rainfall
ranging from 2.89 mm to 8.10 mm over the study period, as shown in Table 3. The Quadratic rainfall function with a scale
factor z of 0.015 showed the lowest AIC in all four locations (AIC for Singapore: 8415.65, Colombo: 7548.35, Selangor: 8540.74,
and Chiang Mai: 4343.24), and was used for further analysis.

According to the simulation results, the peak incidences of dengue fever generally increased in the four study settings
under different climate change scenarios, as depicted in Figs. 2 and 3. Dengue fever transmission showed less noticeable
change over this century under SSP126, whereas a remarkable increase in peak dengue fever cases was found under SSP245
and SSP585 scenarios (Fig. 2). In comparison to the 2030s, the peak dengue fever incidence in Singapore was projected to
increase by 1.19 times from 593 cases per day to 707 cases per day under SSP245, and 1.29 times from 615 cases per day to 796
cases per day under SSP585 by the end of this century. A similar rising trend was observed in Selangor, in which the peak
dengue fever incidence would increase from 487 cases per day in 2030s to 668 cases per day (1.37 times) in 2090s under
SSP245, and from 503 to 684 (1.36 times) under SSP585. Colombowould showan increase in the peak incidence by 2.25 times
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Table 3
Dengue fever situation and climate conditions in the four study locations from 2012 to 2020.

Total number of cases Mean annual incidence (/10,000) Daily mean temperature (�C) a Daily rainfall (mm)a

Singapore 126,962 25.34 27.87 (27.29, 28.42) 6.28 (2.73, 9.00)
Colombo 112,757 52.11 28.06 (27.35, 28.75) 6.89 (1.06, 10.00)
Selangor 409,704 72.35 28.17 (27.47, 28.82) 8.10 (2.37, 11.94)
Chiang Mai 35,216 22.90 26.91 (25.56, 28.62) 2.89 (0, 4.43)

a Daily mean temperature and rainfall were shown as mean and the first and the third quartile over the study period.

Fig. 2. Projected dengue fever incidence under climate change scenarios.
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in this century under SSP585, and the double-peak pattern would be less pronounced. The most significant increase was
projected in Chiang Mai, with a more than 10-fold increase in peak dengue fever cases by the end of this century under the
middle-to-high emission scenario.

As shown in Figs. 2 and 3, the epidemic peak of dengue fever consistently appeared earlier in a year in Singapore, Selangor,
and Colombo. Compared to the 2030s, the peak time in Singapore would be 13 days, 29 days, and 84 days earlier in 2090s
under SSP126, SSP245, and SSP585, respectively. Similarly, Selangor would experience a 106-day earlier dengue fever peak in
2090s compared to the 2030s under SSP585. In contrast, the peak time was projected to be 80 days later in Chiang Mai in
2090s compared to 2030s under SSP585. Regardless of the SSP scenarios, the peak time in Colombo would have less
remarkable changes with about 15 days earlier from 2030s to 2090s.

Our study projected obvious increases in the dengue fever epidemic size and duration, as shown in Figs. 2 and 3. The
epidemic size was projected to increase by 5.94%, 10.81%, 12.95%, and 69.60% from the 2030se2090s under SSP126 for
650



Fig. 3. Uncertainty analysis of the key dengue fever epidemic characteristics.
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Singapore, Colombo, Selangor, and Chiang Mai, respectively. A similar rising trend was found under SSP245, while SSP585
showed the most apparent increase in epidemic size. Under the high emission scenario, the epidemic size would increase by
8.02%,16.29%, 27.00%, and 32.17 times for Singapore, Colombo, Selangor, and ChiangMai, respectively, from the 2030se2090s.
The outbreak duration in Singapore and Selangor would be around 200 days in 2030s under SSP126, and it was expected to
increase by approximately 10 days in 2090s under SSP126 and SSP245, while a slight decline was projected in 2090s under
SSP585. Similarly, the outbreak duration would increase by 20 days in Colombo from 2030s to 2090s under low and middle
greenhouse gas emission scenarios, while a slight decrease trendwas found since 2070s under SSP585. Despite the significant
uncertainties (Fig. 3), a prolonged dengue fever epidemic duration was also projected in Chiang Mai.

The sensitivity analysis showed that the dengue fever transmission was mainly sensitive to several temperature-
dependent parameters (Fig. 4, Supplementary Fig. A1). The biting rate (b), probability of mosquito infectiousness (bh), and
the mosquito mortality rate (mv) were the influential drivers of the final epidemic size and peak incidence. In addition, the
results accounting the variability of projected temperature and rainfall from a new set of GCMs only showed a slight dif-
ference in terms of the projected epidemic curves in different SSP scenarios (Supplementary Fig. A2).
4. Discussion

Global warming, as a result of climate change, is likely to develop a more favourable living environment for the dengue
fever vector. This study utilized amathematical model to project the transmission of dengue fever in four South and Southeast
Asian settings under climate change scenarios. The model simulation projected an increase in peak incidence and epidemic
size of dengue fever, along with an earlier peak time and a prolonged outbreak duration in the future generally. The biting
651



Fig. 4. Sensitivity of the final dengue fever epidemic size in 2030s under SSP126 to fixed parameters in four locations. The bars indicate the partial rank cor-
relation coefficients (PRCC). T0 represents the minimum temperature, Tm means the maximum temperature.
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rate, probability of mosquito infectiousness, and vector mortality were identified as the most influential temperature-
dependent parameters affecting the predicted dengue fever incidence.

We showed the peak incidence and epidemic size of dengue fever would increase in the future, consistent with previous
research (Huber et al., 2018; Li et al., 2017). Compared with SSP126 that would have relatively conservative temperature
elevation, SSP585 with a significant temperature increase was expected for the most remarkable rise in dengue fever inci-
dence. The increase in mosquito activity can be considered as the driving force behind the rising trends, which is directly
linked to the elevated ambient temperatures. According to the laboratory and field research, some vector traits such as biting
rate and virus transmissibility between host and vector would increase in a warmer environment, while the mosquito
mortality rate and the extrinsic incubation period (EIP) would decline at the same time (Mordecai et al., 2017). Of note, the
rising trend would be apparent before 2050s, while less noticeable change was predicted from 2070s to 2090s, and this may
be due to the different speeds in temperature and rainfall change before and after 2050s.

The study's findings of an earlier peak time of dengue fever epidemic and longer outbreak duration in the future are
consistent with some previous studies (Bal & Sodoudi, 2020). As noted earlier, the rising temperature contributes to an
accelerated EIP and rapid virus spread, resulting in an earlier peak time. Generally, dengue fever incidence peaks in summer
and is lower in the winter seasons. With global warming, the rising temperature in spring and autumn allows a more
favourable meteorological condition for survivorship and transmissions of dengue fever virus from Aedes spp., and thus
outbreak duration is likely to be prolongedwith an earlier peak time of epidemic. Nevertheless, we found a delayed peak time
in Chiang Mai, and the more apparent temperature and rainfall seasonality in this location may contribute to the inconsis-
tency in the change of peak time among these settings (Wang et al., 2019). Changing in disease outbreak duration was also
reported by studies in Australia and Brazil, which showed a decline in dengue fever epidemic duration under climate
warming due to high vector mortality rates (Williams et al., 2016), and a shortened outbreak duration for Zika, an infectious
disease that shares the same vector with dengue fever (Sadeghieh et al., 2021). These inconsistencies may be due to the
threshold effect of temperature on dengue fever vector, which suggests an inverse U-shape association between ambient
temperature and dengue fever vector traits, and once the temperature exceeds the optimal threshold, the dengue fever vector
mortality increases and the infection risk declines (Paul et al., 2021; Taghikhani & Gumel, 2018). In this study, the dengue
fever outbreak duration under SSP585 was projected to decline in 2090s, and this could also be attributed to the beyond
optimum temperatures under this scenario. Similar to its epidemic patterns in history, dengue fever in Colombo was pro-
jected to have double waves in 2030s and 2050s due to two monsoon seasons in a year. However, the second dengue fever
wave in a year would be less significant after 2050s under high emission scenarios, and the dengue fever epidemic duration
would decline as well. While the temperature and rainfall patterns in Colombo are expected to remain consistent throughout
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this century, the degree of elevation in temperature and rainfall under different SSPs could potentially lead to alterations in
the climate patterns of the region, ultimately contributing to a less significant second wave in the future.

The primary means by which rainfall impacts the transmission of mosquito-borne diseases is through its effect on the
aquatic vector, and most prior research has utilized a rainfall-dependent carrying capacity to model the influences. The
carrying capacity represents the total amount of immature vector population a system can accommodate based on the
available water in this system (Morin et al., 2015). With increased rainfall, a system would be able to carry more aquatic
mosquitos and consequently contribute to a rising disease spread potential. However, the flushing away effect and increased
density-dependent mortality risk highlight the negative impact of heavy rainfall on disease transmission (Benedum et al.,
2018; Morin et al., 2013). This study projected that a moderate increase in rainfall would create more breeding sites for
immature vectors, resulting in a larger dengue fever epidemic and an earlier peak incidence. In addition to carrying capacity,
other vector traits such as the egg development rate were also suggested to be rainfall-dependent by previous research
(Bonnin et al., 2022; Gutierrez et al., 2022; Okuneye& Gumel, 2017). However, since the rainfall-transmission relationship on
mosquito-borne diseases is not yet fully understood, models with more comprehensive rainfall functions are needed to
improve the disease transmission projections.

Compared to other parameters, the projections were found to be sensitive to the biting rate, probability of mosquito
infectiousness, and vectormortality. In linewith previous research, these temperature-dependent parameters are expected to
have a major impact in shaping dengue fever transmission in the future (Ngonghala et al., 2021; Taghikhani & Gumel, 2018).
Biting rate plays a vital role in dengue fever spread due to its impact on both host-to-vector and vector-to-host virus
transmission. As a result, the biting rate might have a greater impact on disease projections than other temperature-
dependent parameters. The study also found that vector mortality was a sensitive parameter given to its intricate effects
on the EIP, biting behavior, oviposition rate, and other vector traits, highlighting its importance in disease incidence pro-
jections (Yang et al., 2009). Thus, focusing on these sensitive parameters that dominate dengue fever transmissionwould help
to prevent and control dengue fever transmission more efficiently in the future.

There are several notable strengths to this study. Firstly, the SEIR-SEI model parameter was chosen based on observed
incidence data, which greatly improved the precision of the modelling outcomes. Secondly, the study examined the trans-
mission dynamics of dengue fever through the use of both temperature and rainfall projections, leading to more dependable
findings than those based solely on temperature-dependent parameters. Thirdly, the study utilized the most recent CMIP-6
climate change data, and its results can serve as a valuable scientific reference for preventing dengue fever spread in the
future.

Several limitations of this study should be acknowledged. Firstly, the impact of rainfall on dengue fever transmission was
modeled mainly by regulating the carrying capacity, which may differ from the real situation. Since this study mainly focused
on projecting the change of dengue fever transmission under climate change, and the rising trend would still be inspiring for
dengue fever prevention and control in the future. Secondly, this study projected dengue fever transmission with mean
temperature and rainfall only. Although other climate factors such as humidity also help to modulate dengue fever spread,
they were not included into this study due to a lack of reliable data (Gutierrez et al., 2022; Xu et al., 2020). Thirdly, this study
applied the SEIR-SEI model based on some assumptions such as assuming an infected vector would remain infectious until its
death, and there was no vertical transmission and natural protection. Given the complicated virus transmission mechanisms
between host and vector, more comprehensive modelling research is expected to achieve more precise projections. Fourthly,
this study collected projected temperature and rainfall data from 11 GCMs, and uncertainty may exist even though a
sensitivity analysis was conducted. Lastly, the interventions on policies and interventions such as using clean energy,
increasing energy efficiency, and implementing carbon pricingmechanismwere not studied bymodulating their effects in the
transmission model. Nevertheless, the effect of these kinds of interventions could actually be proxied by the climate change
scenarios. For example, SSP126 is indeed an intervention scenario with intensive emission restriction on reducing the impact
from climate change.
5. Conclusion

Ourmodelling study projected dengue fever transmission in South and Southeast Asian settings under climate change.We
demonstrated that climate change reshaped dengue fever epidemics in terms of an increase in peak incidence and outbreak
size, especially under high emission scenarios and after the middle of this century. The projections also showed that the
seasonal epidemic was likely to arrive earlierwith longer duration in a year. Our study thus improves the understanding of the
relationship between climate change and dengue fever transmission, providing a useful framework for planning control and
prevention strategies for dengue fever epidemics in the future.
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