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Purpose. To identify CD8+ T lymphocyte-related coexpressed genes that increase CD8+ T lymphocyte proportions in breast
cancer and to elucidate the underlying mechanisms among relevant genes in the tumor microenvironment. Method. We
obtained breast cancer expression matrix data and patient phenotype following information from TCGA–BRCA FPKM.
Tumor purity, immune score, stromal score, and estimate score were calculated using the estimate package in R. +e CD8+

T lymphocyte proportions in each breast carcinoma sample were estimated using the CIBERSORTalgorithm.+e samples with
p< 0.05 were considered to be significant and were taken into the weighted gene coexpression network analysis. Based on the
CD8+ T lymphocyte proportion and tumor purity, we generated CD8+ T lymphocyte coexpression networks and selected the
most CD8+ T lymphocyte-related module as our interested coexpression modules. We constructed a CD8+ Tcell model based
on the least absolute shrinkage and selection operator method (LASSO) regression model and robust model and evaluate the
prediction ability in different subgroups. Results. A breast carcinoma CD8+ T lymphocyte proportion coexpression yellow
module was determined. +e coexpression genes in the yellow module were determined to increase the CD8+ T lymphocyte
proportion levels in breast cancer patients. +e yellow module was significantly enriched in the antigen presentation process,
cellular response to interferon-gamma, and leukocyte proliferation. Subsequently, we generated CD8+ T cell-related genes
lasso regression risk model and robust model, and eight genes were taken into the risk model. +e risk score showed significant
prognostic ability in various subgroups. Expression levels of proteins, encoded by CD74, were lower in the breast carcinoma
samples than in normal tissue, suggesting expression differences at both the mRNA and the protein levels. Conclusion. +ese
eight CD8+ T lymphocyte proportion coexpression genes increase CD8+ T lymphocyte in breast cancer by an antigen
presentation process. +e mechanism might suggest new pathways to improve outcomes in patients who do not benefit from
immune therapy.

1. Introduction

Breast cancer has entered the era of individualized treatment
by way of molecular classification. In addition to traditional
surgery, chemotherapy, and radiotherapy, breast cancer
treatment includes endocrine therapy, molecular targeted
therapy, and immunotherapy [1]. Of these, immunotherapy
has achieved remarkable effects in the treatment of a variety
of malignant tumors. However, immunotherapy for breast
cancer is a recent development. Breast cancer is a “cold”
tumor in terms of immunotherapy, the exploratory studies
of PD-1/PD-L1 inhibitors using monotherapy were absent,

and the population that benefits is very limited [1]. At
present, the most critical issue in breast cancer immuno-
therapy is the issue of selection of the appropriate population
and reasonable treatment mode, so that more patients can
benefit from immunotherapy, survival can be extended, and
quality of life can be improved.

Lack of CD8+ tumor-infiltrating lymphocytes, low PD-
1 expression, and tumor mutation burden factors are
thought to be the primary influencing factors leading to
insensitivity to immunotherapy in advanced breast cancer.
In triple-negative breast cancer, the positive expression rate
of PD-L1 is about 20%, which is higher than that of other
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subtypes of breast cancer [2]. An advanced breast cancer
analysis suggested that PD-L1 is not only related to ad-
vanced breast cancer prognosis, and it is also a biomarker
for screening suitable populations for immunotherapy [3].
A meta-analysis involving 8583 breast cancer patients of
various subtypes suggested that PD-L1 overexpression is
significantly negatively correlated with the overall survival
of patients, and the mechanism may be that high PD-L1
expression promotes breast cancer immune escape [4].
Although clinical immunohistochemistry can be used to
assess tumor PD-L1 expression levels, there remain limi-
tations to using PD-L1 expression as a biomarker of im-
munotherapy sensitivity. Tumor PD-L1 expression is
heterogeneous [5] and is affected by previous treatments
such as chemotherapy and radiotherapy [6].

Tumor-infiltrating lymphocytes are polymorphic,
mainly existing in the microenvironment of tumor tissues;
they include CD4+, CD8+ T cells, B cells, and NK cells [7].
Studies have shown that there are more TILs in the tumor
microenvironment of HER2-positive breast cancer and this
is related to prognosis [8]. In a meta-analysis of non-small
cell lung cancer, more CD8+ TILs were associated with
improvement in overall survival [9]. In patients with ad-
vanced melanoma treated with pembrolizumab, the density
of CD8+ T cells in the invasion margin and tumor center of
the tissue specimens of responders was higher than those of
nonresponders [10].

In the present study, we hypothesized that increasing the
content of CD8+ T lymphocytes would improve outcomes
after immunotherapy. By constructing a coexpression net-
work of CD8+ T lymphocyte content, we explored the bi-
ological functions and related coexpression factors that are
most related to CD8+ lymphocyte content.

2. Method

2.1. CD8+ T Cell Proportion, Tumor Purity, and Tumor
Mutation Burden. We downloaded +e Cancer Genome
Atlas TCGA–BRCA FPKM data (http://cancergenome.nih.
gov/) containing 1097 samples (Supplementary Table 1).
GSE78220 [11] was also download from the GEO database.
We evaluated CD8+ T lymphocyte cell proportions based on
the LM22 matrix using the CIBERSORT [12] algorithm.
Breast tissue samples with p< 0.05 were considered to be
significant and were taken into the subsequent analysis. +e
Estimation of Stromal and Immune cells in Malignant
Tumor tissues using Expression data (ESTIMATE) is a
method that infers the fraction of stromal and immune cells
using gene expression signatures [13]. Using the ESTIMATE
package, we calculated tumor purity in each breast cancer
sample. Tumor mutation burden (TMB) per megabyte was
calculated by dividing the total number of mutations by the
size of the target coding region [14, 15].

2.2. Coexpression Network Generation. Weighted gene
coexpression network analysis (WGCNA) is a system bi-
ology method that transforms correlations into connection
weights or topology overlap values [16]. We used this

method to generate a CD8+ T lymphocyte proportion
coexpressing network. +e expression patterns are similar
for genes with the same pathway and biological effect
[17, 18]. In this study, we built a scale-free topology network;
set the soft threshold at 5, R square� 0.93, slope� −2.09; we
set the number of genes in the minimum module at 30. +e
CD8+ T lymphocyte proportion was considered for phe-
notype files in the WGCNA analysis. In this manner, a
cluster of CD8+ T lymphocyte proportion-related genes
with a similar pathway process was determined in the same
module. We identified factors with CD8+ T lymphocyte
correlation greater than 0.4 and module correlation greater
than 0.6 in the most coexpression modules.

2.3. Function Enrichment and Protein-Protein Network of
Coexpression Module. +e Database for Annotation, Visu-
alization and Integrated Discovery (DAVID, v6.8) is an
open-source database that performs function enrichment
[19]. +e Kyoto Encyclopedia of Genes and Genomes
(KEGG) [20] (https://www.genome.jp/kegg/) and Gene
Ontology (GO) [21] (http://geneontology.org/) analysis were
applied to determine the biological function, cellular com-
ponent, and molecular function in each coexpression
module. Cytoscape was used to conduct the protein-protein
interaction network for the coexpression genes.

2.4. CD8+ T Lymphocyte Genes Prognostic Value. +e
Kaplan–Meier analysis was used to calculate the clinical
outcome significance of these CD8+ T lymphocyte coex-
pression genes. Subsequently, the least absolute shrinkage
operator (LASSO) and robust prognosis model was applied
to conduct CD8+ T lymphocyte coexpression genes prog-
nostic model. We evaluated the CD8+ T lymphocyte
coexpression genes prognosis model in various subgroups.
Finally, we calculated the difference of these coexpression
genes in various subgroups, including tumor purity, survival
status, and TMB.

2.5. Gene Set Enrichment Analysis and the Human Protein
Atlas Database. Gene Set Enrichment Analysis (GSEA) [22]
was used to calculate the most involved pathway to these
coexpression genes. +e Human Protein Atlas (HPA)
(http://www.proteinatlas.org) [23] was used to demonstrate
differences in coexpressing genes at the protein level.

3. Results

+e flow chart of the experimental protocol is shown in
Figure 1.

3.1. CD8+TLymphocyte, Tumor Purity, and TumorMutation
Burden Evaluation. We obtained the tumor purity, matrix
score, immune score, and tumor mutation burden corre-
sponding to each sample. Using the screening principle of
p< 0.05, we obtained 860 breast cancer samples accurately
evaluated by CD8+ T lymphocytes (Figure 2(a)). By inte-
grating the immune microenvironment scoring file with the
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Figure 1: +e flow chart of the experimental sequence.
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Figure 2: Continued.
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CD8+ T lymphocyte content samples, we determined
WGCNA’s phenotype entry files.

3.2.CD8+TLymphocyteCoexpressionNetworkConduction in
TCGA. Weighted gene coexpression network analysis
(WGCNA)was performed using TCGA–BRCA.A hierarchical
clustering tree was built using the dynamic hybrid cutting
method (Figure 2(b)); 22 coexpression models were identified
(Figure 2(c)). +e correlation coefficients among CD8+
T lymphocyte proportion, tumor purity, TMB, and coex-
pression modules are shown in Figure 2(c).+e yellow module
had the strongest correlation with CD8+ T lymphocyte pro-
portion in the TCGA - BRCA cohort (Cor� -0.41; p � 1e− 28)
(Figure 2(c)). Based on these findings, we supplemented the
heat map of the correlation between the factors in the yellow
module (Figures 2(d)–2(g)). +e yellow module showed a
significant correlation with CD8+ T cell (Cor� 0.78,
p � 9.7e− 59), tumor purity (Cor� 0.86, p � 1.7e− 83), im-
mune score (Cor� 0.98, p � 1.2e− 197), and stomal score
(Cor� 0.28, p � 1.9e− 06).

3.3. CD8+ T Lymphocyte Coexpression Module Functional
Enrichment. We determined 28 CD8+ T lymphocyte
proportions positively coexpressing mRNA with coef-
ficient > 0.4 in the TCGA-BRCA yellow module (Table 1).
+e 28 CD8+ T lymphocyte proportions positively coex-
pressing mRNA were most significantly enriched in the
antigen processing and presentation and response to

interferon-gamma, suggesting that these biological pro-
cesses might promote CD8+ T lymphocyte infiltration in
the breast cancer microenvironment (Figure 3(a)). +e
CD8+ T lymphocyte negatively coexpressing module was
most significantly enriched in the extracellular matrix
organization (Figure 3(b)). +e protein-protein interaction
network of the yellow module and green module is shown
in Figure 3.

3.4. Clinical Outcome of CD8+ T Lymphocyte Infiltration-
Related Genes. To demonstrate their significance on clinical
outcomes, we performed a survival analysis. +e patients in
low expression groups for GZMA (TCGA : p< 0.001), CD74
(TCGA :p< 0.001), IL2RG (TCGA :p � 0.009), CD3E
(TCGA :p< 0.001), CCL5 (TCGA :p< 0.001), CD3D
(TCGA :p< 0.001), CORO1A (TCGA :p< 0.001), HLA-
DMA (TCGA :p � 0.003), SELPLG (TCGA :p � 0.002),
HCST (TCGA :p< 0.001), HLA-DPB (TCGA :p � 0.001),
GZMK (TCGA :p � 0.001), CD48 (TCGA :p< 0.001),
PAMB9 (TCGA :p � 0.005), CD2 (TCGA :p � 0.003),
CD27 (TCGA :p � 0.003), IRF1 (TCGA :p � 0.003), CD8A
(TCGA :p � 0.005), GBP4 (TCGA :p � 0.048), TNFRSF1B
(TCGA :p � 0.011), GMFG (TCGA :p � 0.006), CST7
(TCGA :p � 0.001), GZMB (TCGA :p � 0.049), PSMB10
(TCGA :p � 0.002), and HLA-E (TCGA :p � 0.046)
showed survival risk against high expression groups (Fig-
ure 4). +ese results suggest that these CD8+ T lymphocyte
infiltration-related genes act in protective roles in breast
cancer.
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Figure 2: (a) We evaluated 860 breast cancer samples accurately using CD8+ T lymphocytes. (b) Hierarchical clustering tree was built using
the dynamic hybrid cutting method. (c) Twenty-two coexpression models were identified. +e yellow module had the strongest correlation
with CD8+ T lymphocyte proportion in the TCGA-BRCA cohort (Cor� -0.41; p � 1e− 28). (d) +e yellow module showed a significant
correlation to CD8+ T Cell (Cor� 0.78, p � 9.7e− 259), (e) tumor purity (Cor� 0.86, p � 1.7e− 83), (f ) immune score (Cor� 0.98,
p � 1.2e− 197), and (g) stomal score (Cor� 0.28, p � 1.9e− 06).
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Table 1: +e module and gene significance for CD8+ T cells related genes.

ID ModuleColor GS.TcellsCD8 p.GS.TcellsCD8
CD8A Yellow 0.637280634 3.56E− 77
GZMA Yellow 0.615288086 1.27E− 70
NKG7 Yellow 0.596372475 2.19E− 65
CST7 Yellow 0.543848238 1.57E− 52
CD2 Yellow 0.523524185 3.85E− 48
CD3D Yellow 0.505128651 2.05E− 44
GZMK Yellow 0.493345337 3.81E− 42
GZMB Yellow 0.489263621 2.22E− 41
CD3E Yellow 0.485176437 1.27E− 40
CCL5 Yellow 0.484214853 1.91E− 40
CXCL9 Yellow 0.466110209 3.17E− 37
IRF1 Yellow 0.456695053 1.26E− 35
HLA-E Yellow 0.449975369 1.64E− 34
HLA-DPB1 Yellow 0.447710011 3.83E− 34
CD74 Yellow 0.446926288 5.13E− 34
IL2RG Yellow 0.443336997 1.94E− 33
PSMB9 Yellow 0.429897672 2.47E− 31
CD27 Yellow 0.426640739 7.73E− 31
GBP4 Yellow 0.422872734 2.85E− 30
CORO1A Yellow 0.42090121 5.61E− 30
PSMB10 Yellow 0.419193325 1.00E− 29
GIMAP4 Yellow 0.416341962 2.63E− 29
CD48 Yellow 0.416335453 2.64E− 29
HLA-DMA Yellow 0.4146621 4.63E− 29
SELPLG Yellow 0.414330462 5.17E− 29
TNFRSF1B Yellow 0.413004893 8.05E− 29
HCST Yellow 0.406386032 7.12E− 28
GMFG Yellow 0.403523457 1.80E− 27
GS : gene significance.
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Figure 3: (a) +e 28 CD8+ T lymphocyte proportions positively coexpressing mRNA were most significantly enriched in the antigen
processing and presentation and response to interferon-gamma, which suggested these biological processes might promote CD8+ T
lymphocyte infiltration in the breast cancer microenvironment. (b) +e CD8+ T lymphocyte negatively coexpressing module was most
significantly enriched in the extracellular matrix organization.
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3.5. Lasso Regression Risk Model of CD8+ T Lymphocyte
Coexpression Genes. A CD8+ T lymphocyte coexpression
gene lasso regression hazard model was conducted based on
these breast cancer prognosis protective factors. Risk� –0.0017∗
CD74–0.0128∗IRF1–0.0024∗CCL5+0.0055∗GIMAP4–0.02
7∗HCST–0.0064∗CST7–0.0037∗PSMB10–0.0002∗HLA–DMA.
+e samples in high-risk score level samples showed worse
clinical survival outcomes for breast cancer patients (TCGA :

p< 0.001; HR� 1.83) (Figure 5).+e risk score was evaluated
in various subgroups, including age, gender, stage, tumor
purity, tumor mutation burden, metastasis status, Ki-67, and
EGFR. +e results were significant in these subgroups.

3.6. Robust Survival Analysis. Based on the 25 prognostic
genes obtained from the coexpression network, we performed
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Figure 4: +e patients in low expression groups for GZMA (TCGA : p< 0.001), CD74 (TCGA :p< 0.001), IL2RG (TCGA :p � 0.009),
CD3E (TCGA :p< 0.001), CCL5 (TCGA :p< 0.001), CD3D (TCGA :p< 0.001), CORO1A (TCGA :p< 0.001), HLA-DMA (TCGA :
p � 0.003), SELPLG (TCGA :p � 0.002), HCST (TCGA :p< 0.001), HLA-DPB (TCGA :p � 0.001), GZMK (TCGA :p � 0.001), CD48
(TCGA :p< 0.001), PAMB9 (TCGA :p � 0.005), CD2 (TCGA :p � 0.003), CD27 (TCGA :p � 0.003), IRF1 (TCGA :p � 0.003), CD8A
(TCGA :p � 0.005), GBP4 (TCGA :p � 0.048), TNFRSF1B (TCGA :p � 0.011), GMFG (TCGA :p � 0.006), CST7 (TCGA :p � 0.001),
GZMB (TCGA :p � 0.049), PSMB10 (TCGA :p � 0.002), and HLA-E (TCGA :p � 0.046) showed survival risk against high expression
groups.
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a robust survival analysis of these genes. To obtain the most
stable prognostic model with the lowest degree of freedom,
the Rbsurv package and AICs are used to select the prognostic
model with the parameter as follows: iteration times� 100 and
max concern genes� 20 (Table 2). ∗ in Table 2 represents
prognostic genes included in the robust model. Later, we
identified eight prognostic factors based on the common
prognostic genes of the robustnessmodel and the lassomodel.

3.7. Clinical Phenotype and Immunophenotype. Having de-
fined a clinical prognostic risk propensity weighted score
consisting of four factors, we then found that these factors
were coexpressed with one another and were closely related
to the level of CD8+ T lymphocyte infiltration. +ese factors
affect outcomes. +en, to demonstrate the relationship

between these factors and clinical phenotype and immu-
nophenotype more specifically, we drew multiple sets of box
plots. +e content of CD8+ T lymphocytes in the high
expression group of these four factors showed a higher level
of infiltration, suggesting that our four factors and related
biological processes promoted the infiltration of CD8+
T lymphocytes in tumor tissues (Figure 6(a)).+e expression
levels of genes in the 5-year mortality group were lower than
those of the 5-year survival group, suggesting their pro-
tective effect on outcomes.+is trend was the same as that of
CD8+ T lymphocytes (Figure 6(b)). +en, we found that
expression levels of these factors were low in the high tumor
purity group, and these factors in the high immune score
group were low (Figures 6(c) and 6(d)). +ese directly or
indirectly indicate that these four factors promote the CD8+
T lymphocyte infiltration. We also drew a scatter plot of
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Figure 5: (a-b) Establishment of a risk signature using the lasso regression curve and verification. (c) +e samples in high-risk score level
samples showed worse clinical survival outcomes for breast cancer patients (TCGA :p< 0.001; HR� 1.83). (d) +e risk score was evaluated
in various subgroups, including gender, stage, metastasis status, Ki-67, and EGFR. +e results were the of the same significance in these
subgroups.
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Table 2: +e best prognosis-related model results selected by Rbsurv package in R.

Order Gene nloglik AIC Selected
0 0 285.87 752.73
1 CD74 267.7 715.41 ∗
2 IRF1 252.02 708.03 ∗
3 CCL5 250.31 685.62 ∗
4 GIMAP4 246.07 656.15 ∗
5 HCST 245.42 623.76 ∗
6 CST7 242.89 608.11 ∗
7 PSMB10 242.24 592.05 ∗
8 HLA-DMA 242.11 565.02 ∗
9 IL2RG 241.68 541.32 ∗
10 CD3E 240.76 531.97 ∗
11 SELPLG 240.65 523.94 ∗
12 CORO1A 239.77 513.5
13 CD3D 239.62 508.48
14 GZMK 239.59 506.19
15 CD48 236.85 504.99
16 PSMB9 236.21 495.24
17 CD2 213.77 493.53
18 GBP4 203.21 480.42
19 CD8A 202.82 470.63
AIC: akaike information criterions; nloglik: negative log-likelihood.
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Figure 6: (a) +e CD8+ T cell proportion level in different gene expression patterns. (b) +e gene expression level in different survival
statuses. (c) +e gene expression level in different tumor purity. (d) +e gene expression level in different immune scores.
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correlations with clinical stages (Figure 7(a)), CD8+
T lymphocytes (Figure 7(b)), and M2 macrophages
(Figure 7(c)) to further illustrate the clinical phenotypic
correlation of these factors.

3.8. GSEA and HPA. Antigen processing and presentation,
the chemokine signaling pathway, B cell receptor signaling
pathway, and the T cell receptor signaling pathway were
related to the high expression group in CD74, GIMAP4,
HCST, and HLA-DMA (Figure 8).

We compared the various expression levels of these genes
between normal and tumor tissues. Labeling with HPA010592,
an antibody against CD74, showed higher intensity in the
tumor tissue than that in normal tissue (Figure 9).

4. Discussion

In 2000, immune checkpoint inhibitors were used to en-
hance the antitumor ability of the immune system and
achieved a better curative effect. In 2011, the world’s first
immune checkpoint inhibitor, cytotoxic T lymphocyte-
associated antigen 4 (CTLA-4) antibody, was approved by
the U.S. Food and Drug Administration, marking a new era
in tumor immunotherapy. Checkpoint inhibitors and
programmed cell death receptor-1 (PD-1) antibodies in-
crease the 5-year survival rate of relapsed/refractory non-
small cell lung cancer from 5% to 16% [24]. Tumor im-
munotherapy is further promoted to the status of a research
hotspot, such that immunotherapy has become the main
treatment for some tumors. Biomarkers closely related to
immunotherapy include PD-L1 IC (IC immune cell), PD-
L1 TC (tumor cell), CD8+ T cells, tumor mutational
burden, and others. +eir expression levels and roles differ
in various stages of particular tumors. It has been reported
that immunotherapy is more effective in the context of
T cell proliferation [25]. For this reason, we intended to
identify the most relevant biological processes and coex-
pression networks in the tumor microenvironment with
CD8+ T lymphocyte infiltration and to determine whether
these biological processes and related factors would im-
prove outcomes by promoting CD8+ T lymphocyte
infiltration.

We obtained 1,097 breast cancer samples through TCGA-
BRCA and constructed a CD8+ T-related coexpression
network by estimating the proportion of CD8+
T lymphocytes in each sample. WGCNA identifies gene
modules with similar expression patterns. By calculating the
correlation between multiple modules and CD8 content, the
most relevant biological functions and coexpression networks
of CD8+ T lymphocytes can be screened out. We determined
that the 25 factors in the yellow module were most closely
related to the content of CD8+ T lymphocytes and were most
related to the antigen presentation process and interferon
responses. Studies showed that the drug resistance of PD-1 or
PD-L1 monoclonal antibody after immunotherapy was
closely related to tumor antigen mutation and antigen pre-
sentation process [26]. In addition, the tumor interferon
signaling pathway was related to the multigene resistance
program that blocks immune checkpoints [27].

Twenty-five factors can be used as independent prog-
nostic protective factors in breast cancer patients. +is
conclusion is consistent with the trend of the influence of
CD8+ T lymphocytes on outcomes. +en, we constructed a
lasso regression model consisting of eight factors, based on
the 25 independent prognostic factors. CD74, GIMAP4,
HCST, and HLA-DMA not only showed good clinical
phenotype correlation but also correlated with M2 type
macrophages, tumor purity, and immune score.

CD74 encodes a protein related to major histocom-
patibility complex (MHC) class II that regulates immune
response antigen presentation. As the cell surface receptor of
the cytokine macrophage migration inhibitory factor, CD74
initiates survival pathways and cell proliferation when
combined with the encoded protein [28]. Basha et al.
demonstrated the CD74-dependent MHC class I cross-
presentation pathway in dendritic cells, which is thought to
be related to the response of MHC class I restricted cytolytic
T lymphocytes (CTL) to cell-related antigens [29]. GIMAP4,
also known as GTPase, encodes proteins belonging to the
immune-related nucleotide (IAN) subfamily of GTP-bind-
ing superfamily and nucleotide-binding proteins.
Mégarbané et al. found that the lack of GIMAPs may play a
tumor-suppressive role against breast cancer [30]. +e
HCST encodes a transmembrane signaling adapter that
encodes a protein that forms part of the immune recognition
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Figure 7: +e correlation between CD8+ T cell coexpression genes and clinical stages (a), CD8+ T lymphocytes (b), and M2 macrophages
(c).
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Figure 8: Antigen processing and presentation, the chemokine signaling pathway, B cell receptor signaling pathway, and the Tcell receptor
signaling pathway were related to the high expression group in CD74, GIMAP4, HCST, and HLA-DMA.
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Figure 9: We compared the various expression levels of these genes between normal and tumor tissues. HPA010592 was the antibody of
CD74, which showed higher intensity in the tumor tissue against normal tissue.
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receptor complex with type C lectin-like receptor NKG2D
[31]. Gilfillan et al. found that, in dap10-deficient mice,
CD8+ T cells lack NKG2D expression and cannot mediate
tumor-specific responses [32]. HLA-DMA is also called
MHC class II, DM alpha [33]. Both HLA-DMA and HLA-
DMB genes are needed for the formation of MHC class II/
peptide complexes in antigen-presenting cells [34].

To determine whether coexpression of CD8+
T lymphocytes improves the inference of immunother-
apy, we attempted to identify the cohort with immuno-
therapy outcomes. Unfortunately, we did not find such
breast cancer results. We only found the factors in a
follow-up cohort of immunotherapy for melanoma and
found that GIMAP4 can be used as an independent
prognostic factor after immunotherapy (Figure 10).

+is article has certain limitations. First, only samples
from two cohorts were included, and joint analysis is still
needed for more cohorts. In addition, this article only ex-
plains the coexpression network that promotes the infil-
tration of CD8+ T lymphocytes from the perspective of
computational biology. More in-depth cell labeling exper-
iments need to be performed. In the end, we did not obtain
enough immunotherapy follow-up samples, and statistical
systematic errors are inevitable.

+ese eight CD8+ T lymphocyte proportion coex-
pression genes increase CD8+ T lymphocyte in breast cancer
by an antigen presentation process. +e mechanism might
provide new ideas to improve the curative effect in patients
who do not benefit from immune therapy.
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