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We show that the level of the core protein of the circadian clock Period (PER) expressed

by glial peripheral oscillators depends on their location in the Drosophila optic lobe. It

appears to be controlled by the ventral lateral neurons (LNvs) that release the circadian

neurotransmitter Pigment Dispersing Factor (PDF). We demonstrate that glial cells of the

distal medulla neuropil (dMnGl) that lie in the vicinity of the PDF-releasing terminals of

the LNvs possess receptors for PDF (PDFRs) and express PER at significantly higher

level than other types of glia. Surprisingly, the amplitude of PER molecular oscillations

in dMnGl is increased twofold in PDF-free environment, that is in Pdf0 mutants. The

Pdf0 mutants also reveal an increased level of glia-specific protein REPO in dMnGl. The

photoreceptors of the compound eye (R-cells) of the PDF-null flies, on the other hand,

exhibit de-synchrony of PER molecular oscillations, which manifests itself as increased

variability of PER-specific immunofluorescence among the R-cells. Moreover, the daily

pattern of expression of the presynaptic protein Bruchpilot (BRP) in the lamina terminals

of the R-cells is changed in Pdf0 mutant. Considering that PDFRs are also expressed by

the marginal glia of the lamina that surround the R-cell terminals, the LNv pacemakers

appear to be the likely modulators of molecular cycling in the peripheral clocks of both

the glial cells and the photoreceptors of the compound eye. Consequently, some form

of PDF-based coupling of the glial clocks and the photoreceptors of the eye with the

central LNv pacemakers must be operational.

Keywords: circadian clocks, glial oscillators, neuronal pacemakers, PER, PDF, drosophila glia, Drosophila

INTRODUCTION

The circadian clocks, displaying molecular oscillations of canonical clock molecules Period (PER)
and Timeless (TIM)with a period of∼24 h, are endogenous pacemakers that lay cellular foundation
for biological timekeeping (Tataroglu and Emery, 2015). There are two main types of cells that
express genes encoding PER and TIM (per, tim) in the brain of Drosophila melanogaster: the so
called clock neurons and the glial cells (Siwicki et al., 1988; Zerr et al., 1990). The former constitute
the central pacemaker whereas the latter play the function of peripheral oscillators, similar to
photoreceptors of the compound eye and to many cells in non-neural tissues of the head and body
(Hardin, 2011; Xu et al., 2011).
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In Drosophila brain, there are about 150 clock neurons of
the central pacemaker distributed in lateral and dorsal clusters
that minister different circadian functions (Helfrich-Förster,
2005; Nitabach and Taghert, 2008; Hermann-Luibl and Helfrich-
Förster, 2015). There are seven groups in each brain hemisphere,
but the most important role in the circadian network and
behavioral rhythmicity of flies plays the ventrolateral cluster
of clock neurons (LNvs), which includes neurons with small
and large cell bodies (Allada and Chung, 2010). The small-
lateral neurons (s-LNvs) are crucial for maintaining the circadian
activity rhythm (Blanchardon et al., 2001). They project toward
the dorsal protocerebrum, where they form short arborizations
(Helfrich-Förster, 1998) displaying prominent circadian changes
of morphology (Fernández et al., 2008; Gorostiza et al.,
2014). The large-lateral neurons (l-LNvs), on the other hand,
are not necessary for sustaining the rhythm of activity in
constant darkness (DD), but they are essential for light-mediated
modulation of arousal and sleep (Sheeba et al., 2008, 2010).
It is presumed that their input may be particularly robust,
since they display the molecular rhythms of PER and TIM
that are phase-advanced and of higher amplitude compared to
other clock neurons (Rosato and Kyriacou, 2008). They send
projections to the optic lobe and densely arborize on the surface
of the second optic neuropil, the medulla (Helfrich-Förster, 1998;
Helfrich-Förster et al., 2007). They are, therefore, anatomically
well-situated to receiving the light input from the retina of the
compound eye (in addition to the one they receive via activation
of their photopigment–Cryptochrome; Yoshii et al., 2008) and
conveying circadian signals to the optic lobe. They control the
output by the paracrine release of the main circadian transmitter
- the neuropeptide Pigment Dispersing Factor (PDF) (Helfrich-
Förster, 1997; Park et al., 2000), and by signaling via its receptor—
PDFR (Renn et al., 1999; Lin et al., 2004; Lear et al., 2005;
Shafer et al., 2008; Im and Taghert, 2010; Im et al., 2011). It
synchronizes different clusters of clock neurons and the whole
circadian network (Lin et al., 2004; Lear et al., 2005; Nitabach
et al., 2006; Shafer et al., 2008; Yoshii et al., 2009).

The glial cells, even though much less studied than the clock
neurons, have already proved to be integral components of the
circadian network (Zwarts et al., 2015). In Drosophila brain,
like in vertebrates, we discern many different types of glial cells
(Edwards and Meinertzhagen, 2010) based on their morphology
(Carlson and Saint Marie, 1990; Cantera and Trujillo-Cenoz,
1996), gene expression, and lineage analysis (Ito et al., 1995;
Giangrande, 1996; Klämbt et al., 1996; Edwards et al., 2012). The
early studies on clock genes expression in Drosophila revealed
that numerous glial cells display cyclic expression of per (Siwicki
et al., 1988; Zerr et al., 1990) and tim (Peschel et al., 2006), and
that the expression of per in glia might be sufficient to drive a
weak behavioral rhythm (Ewer et al., 1992). Exciting recent works
have shown that rhythmic expression of both clock proteins and
glia-specific proteins, such as Ebony are involved in regulation of
behavioral rhythms (Suh and Jackson, 2007; Ng et al., 2011; Ng
and Jackson, 2015). Glial cells of the visual system of Diptera, on
the other hand, have been shown to contribute to the circadian
plasticity of flies visual system. Epithelial glial cells of the first
visual neuropil or lamina display robust rhythmic changes in

their volume (Pyza and Górska-Andrzejak, 2004) and in the
level of expression of the catalytic subunit of sodium pump,
the Na+/K+-ATPase α subunit (Górska-Andrzejak et al., 2009).
Their modulatory input affects both the rhythm of expression of
a presynaptic protein Bruchpilot in the lamina synaptic neuropil
(Górska-Andrzejak et al., 2013) and the pattern of rhythmic
morphological changes of L1 and L2 interneurons, which are the
main postsynaptic partners of the compound eye photoreceptors
(Pyza and Górska-Andrzejak, 2004; Górska-Andrzejak, 2013).

So far, the glial clocks are known to act downstream of the
clock neurons (Suh and Jackson, 2007), but they signal back
to them as well (Ng et al., 2011). The circadian rhythmicity,
including the rhythmicity of behavior, appears therefore to
depend on the glia-neuronal communication and reciprocal
interactions (Zwarts et al., 2015; Ng et al., 2016). Nevertheless, the
exact nature of mutual influence of the neuronal and glial clocks
is far from being fully understood. It is still under investigation
how much influence the neuronal pacemakers have on the
peripheral glial oscillators and what are the exact neuronal and
glial signals that are used in their communication (Zwarts et al.,
2015).

Our results reveal heterogeneity of the optic lobe glial clocks.
We show that the glial cells situated in the vicinity of the
terminals of the circadian clock ventral LNvs may be the most
robust molecular oscillators among the glia.We also demonstrate
that the clock neurons of the ventrolateral cluster influence the
level of PER (the amplitude of the clock) in the glia and in the eye
photoreceptors by PDF signaling. Consequently, we propose a
novel role for PDF as a potential link between the central and the
peripheral clocks in glial and photoreceptor cells. Our study on
Pdf 0 mutants suggests that the LNv neurons negatively influence
the level of PER in the former and enhance the synchronization
among the latter.

MATERIALS AND METHODS

Animals
We used the following strains of D. melanogaster: wild-type
Canton-S (CS), w+; Pdf 0 mutant (referred to as Pdf 0; a kind gift
from Charlotte Förster, University of Würzburg), period mutant
(per0) and tim-Gal4 transgenic strain (a kind gift from François
Rouyer, Paris Saclay Institute of Neuroscience), as well as other
transgenic strains from Bloomington Drosophila Stock Centre
(BDSC): repo-Gal4 (BDSC, stock no. 7415), pdfR-Gal4 (BDSC,
stock no. 33070), UAS-pdfRRNAi (BDSC, stock no. 42508), UAS-
VAL10- GFP (BDSC, stock no. 35786), UAS-S65T-GFP (BDSC,
stock no. 1521), and UAS-mCD8-GFP (BDSC, stock no. 5137).
The stocks were maintained on a standard yeast-cornmeal-agar
medium, at 25 ± 1◦C, under light/dark or day/night conditions
(12 h of light and 12 h of darkness, LD 12:12; ZT0 and ZT12
denote the beginning of the day and the night, respectively, ZT—
Zeitgeber Time). 7- to 10- days old males were used for each
experiment. Following their eclosion, they were divided into two
groups which were kept either in LD 12:12, or in DL 12:12
(reversed cycle) for 1 week prior to their decapitation at several
time points during the day and night of the 24-h cycle. Flies
kept in LD 12:12 were decapitated during the light phase (day)
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of the cycle, at ZT24/0, ZT1, and ZT4, whereas flies kept in DL
12:12 were decapitated during the dark phase (night) of the cycle,
at ZT13, ZT16, ZT19, and ZT21. Flies used for experiments in
constant darkness conditions (DD) were entrained in LD 12:12
for 4 days and then transferred to DD for 2 days. On the third day
of DD they were decapitated at CT1, CT4, CT13, CT16, CT19,
CT21, and CT24 (CT0 and CT12 denote the beginning of the
subjective day and the subjective nigh, respectively, CT-Circadian
Time).

Immunolabeling
Experimental flies were immobilized with CO2 and decapitated
directly in a drop of freshly prepared fixative: the solution of
4% paraformaldehyde (PFA) in 0.1M Phosphate Buffer (PB).
Approximately 30 flies were sacrificed for each data point. After
fixation and cryoprotecting infiltration in the solution of 25%
sucrose in 0.01M sodium Phosphate Buffer Saline (PBS), their
heads were cut either in the frontal or horizontal plane into
20µm thick cryosections. Following this, they were incubated
with a rabbit polyclonal anti-PER serum (a gift from Ralf
Stanewsky, University of Munster; Stanewsky et al., 1997) and
a goat anti-rabbit Cy3-conjugated secondary antibody (Jackson
ImmunoResearch Laboratories). To visualize the clock neurons
that synthetize the neuropeptide PDF, we used a polyclonal
rabbit anti-β-PDH serum, which recognizes the insect PDF (a
gift from Ezio Rosato, University of Leicester; Dircksen et al.,
1987). We also used anti-REPO (8D12) and anti-BRP (nc82)
mouse antibodies (Developmental Studies Hybridoma Bank,
DSHB). The fluorescence staining was performed with Cy3-
conjugated secondary antibodies. Fluorescently labeled tissue
was examined using Zeiss LSM 510 Meta confocal microscope
following extensive washing and mounting in a Vectashield or
DAPI-containing Vectashield (Vector).

Quantification of Immunolabeling
Drosophila melanogaster heads that were collected at various
time points (of the same 24-h cycle) were fixed, processed and
immunolabeled in parallel, under the same conditions. Then,
their images were acquired at non saturated settings, using
identical image acquisition parameters for all data points (time
points). The circadian changes in the intensity of PER-specific
immunolabeling corresponding to the changes in the amount of
PER protein, were measured in the glial cells of the optic lobe,
as well as in the lateral clock neurons and in the photoreceptors
of the compound eye. The level (brightness) of fluorescence
represented by the Mean Gray Value (the sum of the gray values
of all pixels in the selected area, divided by the number of pixels
within the selection) was measured using ImageJ software (NIH,
Bethesda). In this software, the range of gray values (between
the Min and Max) in 8-bit images is divided into 256 bins. The
background signal was subtracted.

Statistics
To allow the comparisons between data from different
experiments, which revealed certain differences in the intensity
of labeling, the data were presented as a percentage of the
highest value (100%) that was obtained in a given experiment.

All the data were statistically analyzed using the Shapiro–Wilk
W-test for normality. The differences between experimental
groups (ZT/CT time points) were calculated based on the mean
of measurements obtained from 7 to 12 individuals within a
group (decapitated at the particular time point). The statistical
significance of differences between groups was estimated using
either ANOVA, or the nonparametric counterpart of ANOVA—
Kruskal–Wallis test (one-way test) followed by post-hocMultiple
Comparison Test. In each analysis a probability value of p < 0.05
was set for significant differences.

RESULTS

PER-specific immunolabeling was observed in the usual locations
(Siwicki et al., 1988; Zerr et al., 1990; Ewer et al., 1992) of
CS brains, as well as in brains of repo-Gal4/UAS-S65T-GFP
transgenic flies (Figure 1) that were sectioned at the end of
the dark phase/night (ZT24). It was detected in the nuclei of
circadian pacemaker neurons (of lateral and dorsal groups; LNs
and DNs), compound eye photoreceptors, and numerous glial
cells (Figure 1A). Such a pattern of labeling in CS and repo-
Gal4/UAS-S65T-GFP transgenic flies (Figure 1) confirmed the
specificity of the applied serum, which was further supported by
lack of labeling in per0 mutant—a negative genetic control.

dMnGl Display the Highest Level of PER of
All the Glia
The nuclei of PER-immunoreactive glial cells were found
in the whole brain of D. melanogaster (Figure 1A). When
checked on thin (20µm) cryosections, the intensity of their
immunolabeling (reflecting the amount of nuclear PER) was
discovered to vary significantly, depending on the location of
glia in the brain, in other words—on the type of glia. The
largest differences were observed between glia of the first (lamina)
and the second (medulla) visual neuropils (Figure 1). PER-
specific immunofluorescence was bright in glia of the medulla,
while it was barely detectable in glial cells of the lamina
(LGl). Interestingly, the highest level of immunofluorescence
was observed in the small nuclei of glia inhabiting the distal
part of the medulla (hereafter referred to as distal medulla
neuropil glia, dMnGl), whose cell bodies are located precisely
on the border between the cortex and the neuropil of the
medulla (Figures 1A–C). The average level of PER-specific
immunofluorescence in the nuclei of dMnGl was 58% higher
than in the lamina neuropil glia (LGl), 67% higher than in the
cortex/satellite glia of medulla (McGl), and 47% higher than
in the tract glia of the inner chiasm (iChGl) (Kruskal–Wallis
Test: H[3, N = 59] = 32.5, p = 0.00001, followed by Multiple
Comparison Test, p = 0.0008, p = 0.000003, and p = 0.0004,
respectively; Figure 1). These cells also expressed the highest
level of GFP reporter of tim, when examined in tim-Gal4/UAS-
S65T-GFP transgenic flies (Figures 1D–D”). The differences in
the expression level of GFP reporter of tim (driven by tim-Gal4
pan-circadian driver) and the intensity of PER-specific staining in
different types of glia indicate that the population of glial clocks is
heterogeneous. The particularly high levels (as far as the glial cells

Frontiers in Physiology | www.frontiersin.org 3 March 2018 | Volume 9 | Article 230

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Górska-Andrzejak et al. PER Level Variations in Drosophila Glial Clocks

FIGURE 1 | (A) Compound eye retina and underlying optic lobe of flies with targeted expression of Green Fluorescent Protein (GFP) to glial cells

(repo-Gal4/UAS-S65T-GFP) and immunolabeled with anti-PER serum. PER-positive nuclei (magenta) belong to the clock cells of the lateral protocerebrum, the so

called ventral lateral neurons-LNvs (arrow), the compound eye photoreceptors (asterisks) and the glial cells (arrowheads). R-retina, L-lamina, M-medulla, Lo, and Lp-

two parts of the lobula complex, oCh- outer chiasm and iCh-inner chiasm. Scale bar: 50µm. (B) The glial cells selected for measurements of PER-specific

immunofluorescence (arrowheads): the epithelial glial cells of the lamina neuropil (LGl, 1), the medula cortex glia (McGl, 2), the distal medulla glia (dMnGl, 3), and the

inner chiasm glia (iChGl, 4). R-retina, L-lamina, M-medulla, Lo, and Lp- two parts of the lobula complex. Scale bar: 20µm. (B’) PER-specific immunofluorescence of

cells shown in (B). Scale bar: 20µm. (C) The average level of PER-specific immunofluorescence (±SD) in the nuclei of LGl (1), McGl (2), dMnGl (3), and iChGl (4) in the

optic lobe of CS flies at the end of the night (ZT24). The statistically significant differences are marked by asterisks (***p ≤ 0.001). (D–D”) The lamina and medulla of

flies with targeted expression of GFP (green) to tim expressing cells (tim-Gal4/UAS-S65T-GFP) and immunolabeled using 8D12 Mab against pan-glial REPO marker

(magenta). Among many glial cells that are marked by REPO-specific immunofluorescence, only dMnGl (arrows) express the GFP reporter on such a high level. The

low level of GFP is seen in the nuclei of other glial cells, especially glia of the lamina cortex, or lamina neuropil (arrowheads). R, retina; L, lamina; M, medulla. Scale bar:

20µm.

are concerned) of PER and TIM in dMnGl imply high-amplitude
cycling of the clock proteins.

dMnGl Are Weaker Oscillators Than
Neuronal Clocks, but Work in Phase With
Them
Daily changes of nuclear PER-specific immunofluorescence
(reflecting PER rhythmic accumulation in the nucleus) were
generally the same in the nuclei of dMnGl as in the nuclei
of clock cells of the lateral protocerebrum (LNvs), or in the
photoreceptors of the eye (R-cells; Figure 2). The fluorescence
was the most intense at the end of the night and at the
beginning of the day (ZT24, ZT1), and undetectable (the
same as in the surrounding cytoplasm) at the beginning of
the night (ZT13; Figure 2), which confirmed the similarity of

PER nuclear accumulation patterns in neurons and glial cells.
dMnGl were in phase with rhythms of the LNvs and the R-
cells, suggesting that they are coupled with the circadian timing
system. Even though the oscillatory pattern of the glia was
similar to that of the neuronal oscillators (cf. Figure 2), the
average daily level of nuclear immunofluorescence in dMnGl
was 52% lower than in the LNvs and 65% lower than in
the R-cells (Kruskal–Wallis Test: H [2, N = 210] = 59.7,
p = 0.00001, followed by Multiple Comparison Test, p =

0.00002 and p = 0.000001, respectively). The considerable

differences in the level of PER-specific immunofluorescence

in dMnGl and LNvs or R-cells were observed at each

of the time points of LD cycle, at which the nuclear

accumulation of PER can normally be observed (ZT16-ZT4;

Figure 2).
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FIGURE 2 | The daily (LD) and circadian (DD) rhythms in PER-specific immunofluorescence (average ± SD) as the measure of PER molecular oscillations in the nuclei

of dMnGl, the large-lateral ventral pacemaker neurons (LNv) and photoreceptors of the compound eye (R-cells) in the optic lobe of CS flies. Like in the LNv neurons

and the R-cells, the average level of PER-specific fluorescence in dMnGl changed significantly in the course of the day in LD (dMnGl: Kruskal–Wallis Test: H [6, N =

67] = 48.7, p = 0.00001; LNvs: Kruskal–Wallis Test: H [6, N = 73] = 58.8, p = 0.00001; R-cells: Kruskal–Wallis Test: H [6, N = 70] = 59.8, p = 0.00001), and in DD

(dMnGl: Kruskal–Wallis Test: H [6, N = 69] = 36.8, p = 0.00001; LNvs: Kruskal–Wallis Test: H [6, N = 110] = 65.8, p = 0.00001; R-cells: Kruskal–Wallis Test: H [6, N

= 70] = 41.2, p = 0.00001), but with considerably smaller amplitude. Below the charts: exemplary images collected at different time points (ZTs or CTs), showing the

peak and trough accumulation of PER in the nuclei of dMnGl, LNvs, and R-cells. Scale bar: 5µm. White and black bars on the bottom indicate light and dark periods,

respectively.
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In DD conditions the amplitude of oscillations of PER
expression was smaller in all three types of cells (Figure 2).
The maximum levels of fluorescence (at CT1, CT4, CT21, and
CT24) were reduced (e.g., in the R-cells and dMnGl at CT1 and
CT4), while the minimum levels (e.g., in the R-cells and the
LNvs at CT13) were increased with respect to LD (Figure 2).
The elevation of fluorescence intensity at CT13, however, was
not observed in dMnGl. The average daily level of fluorescence
in dMnGl was on average 70% lower than in the LNvs and in
the R-cells (Kruskal–Wallis Test: H [2, N = 249] = 130.1, p =

0.0001, followed by Multiple Comparison Test, p = 0.00001 in
case of both dMnGl vs. LNvs and dMnGl vs. R-cells). Hence,
the main difference between dMnGl and the neuronal oscillators
(LNvs and R-cells) concerns mainly the amplitude of PER
oscillations.

dMnGl Possess Receptors for PDF (PDFRs)
The distinguishing feature of dMnGl is the location of their cell
bodies in the neighborhood of the optic lobe terminals of the LNv
neurons, which secrete the neuropeptide PDF (Figure 3). This
anatomical proximity enables the direct and strong influence
of the LNvs on the circadian function of dMnGl. To find out
whether the particularly high level of PER in dMnGl might
result from this proximity (Figures 3B,C) and this influence, we
checked if (i) dMnGl were equipped with receptors for PDF
(PDFRs) and (ii) whether the level of PER was lower in dMnGl
of Pdf 0 mutants (due to PDF absence) and of repo-Gal4 /UAS-
pdfRRNAi flies (due to RNAi-driven silenced expression of PDFRs
in glia).

FIGURE 3 | Confocal images of the optic lobe of repo-Gal4/UAS-S65T-GFP

transgenic flies showing cytoplasmic and nuclear expression of GFP (green) in

glial cells, in combination with anti-PDF immunolabeling (magenta), and DAPI

nuclear labeling (blue). (A) The location of dMnGl in relation to

PDF-immunoreactive varicosities of the LNvs on the medulla neuropil surface

in frontal section of the optic lobe. PDF-positive cell bodies of the LNvs

(arrowhead) are located in the accessory medulla, whereas their optic lobe

terminals reside in the distal part of the medulla neuropil, where small nuclei of

dMnGl (arrows) are located. Scale bar: 20µm. (B) Magnification of dense

varicose arborization of PDF-positive fibers of the LNvs and the nuclei of

dMnGl (arrow). Scale bar: 10µm. (C) The horizontal section reveals that PDF

releasing terminals (arrowhead) are located right beneath the medulla cortex,

in close proximity to dMnGl cell bodies (arrow). R, retina; L, lamina; M,

medulla; Lc, lamina cortex; Ln, lamina neuropil; Mc, medulla cortex; Mn,

medulla neuropil. Scale bar: 50µm.

To resolve the first issue, we investigated in detail the
pattern of expression of pdfR-Gal4 driver (which reflects the
endogenous pdfR expression according to Lear et al., 2009), in
the region of dMnGl residence. It turned out that the cytoplasmic
and nuclear GFP in pdfR-Gal4/UAS-S65T-GFP transgenic flies
exposed dMnGl (Figures 4A–B’), which indicated the presence
of PDFRs in these cells. The level of GFP fluorescence in their
nuclei was, however, by 70–78% lower than in the nuclei of other
GFP-positive cells localized in their proximity, such as the LNvs
and other neurons (Figures 4B,B’). Even though dMnGl express
relatively lower amounts of PDFR, they must belong to the LNv
target cells, being not only conveniently positioned in the vicinity
of the PDF releasing terminals of the LNvs (Figure 3), but also
capable of receiving the PDF conveyed circadian information
(Figures 4B,B’).

The GFP expression controlled by pdfR-Gal4 driver exposed
also the varicose network of the LNv terminals on the surface
of the medulla neuropil (Figure 4A). Their examination in
the medulla of pdfR-Gal4/UAS-S65T-GFP (cytoplasmic GFP)
and pdfR-Gal4/mCD8-GFP (membranous GFP) transgenic
flies revealed the presence of much brighter spots of green
fluorescence—presumably patches of PDFR aggregation
(Figures 4A,C). Interestingly, these bright PDFR patches
were settled right next to sites of PDF release immunolabeled
with anti-PDF Ab (Figure 4C). The LNv terminals, which
both release PDF and receive PDF-conveyed information,
seem to envelope the center of each unit (column) of the
medulla neuropil (Figure 4D). Consequently, the processes
that build the medulla column (with dMnGl processes among
them) must receive (directly or indirectly) the PDF-conveyed
synchronizing signals sent to the optic lobe by the LNv
pacemakers. Each medulla column is innervated by PDF
neurons and comprises processes that possess PDFRs. It appears,
however, that PDF diffuses as far as the proximal part of the
first optic neuropil or lamina, since the lamina marginal glia
that reside at that part of neuropil strongly express PDFRs
(Figure 4E).

The Level of PER Increases in Glia of Pdf0

Mutants
In order to account for the influence of PDF on the clock
mechanism of dMnGl, we checked whether the level of nuclear
PER in dMnGl would be lower in Pdf 0 mutants than in CS flies.
Contrary to our expectations, however, in the absence of PDF the
level of PER was higher (Figures 5A,B). In LD conditions, PER-
specific immunofluorescence in dMnGl of Pdf 0 with respect to
CS was 50% higher at ZT24 (t-test, t = −4.86, df = 18, p =

0.0001), 32% higher at ZT1 (t-test, t =−3.5, df= 18, p= 0.003),
and 18.7% higher at ZT4 (t-test, t = −2.2, df = 15, p = 0.04). It
was 50% lower in Pdf 0 than in CS only in the middle of the night,
at ZT16 (t-test, t = 2.2, df = 19, p = 0.04), suggesting a delay in
nuclear aggregation of PER in Pdf 0 glia (Figure 5C).

In DD conditions (Figure 5D) PER-specific
immunofluorescence in dMnGl of Pdf 0 showed significant
increase with respect to CS at CT1 (48%; t-test, t = −4.6, df
= 16, p = 0.003) and CT13 (93%; t-test, t = −5.5, df = 20, p
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FIGURE 4 | An overview of pdfR-Gal4 expression pattern in Drosophila optic neuropils. (A–B’) The medulla of pdfR-Gal4/UAS-S65T-GFP flies immunolabeled with

anti-REPO Mab (magenta). (A) The cytoplasmic and nuclear expression of S65T-GFP reporter (green) shows numerous nuclei and processes of cells that express

PDFR, the cell bodies (LNv) and terminals (arrowheads) of the LNvs among them. Lo and Lp-parts of the lobula complex, iCh-inner chiasm. Scale bar: 20µm. (B,B’)

Higher magnification of the area at the interface of medulla cortex (Mc) and medulla neuropil (Mn) reveals the presence of S65T-GFP reporter (B’) is REPO-positive

nuclei of glia (B), which due to their location must belong to dMnGl (arrows). The terminals of the LNvs are marked by patches of cytoplasmic GFP (arrowheads).

GFP-positive, but REPO negative nuclei (asterisks) belong to PDFR-expressing neurons. (C,D) The distal medulla of pdfR-Gal4/UAS-mCD8-GFP flies immunolabeled

using anti-PDF antibodies (magenta). Mc, medulla cortex; Mn, medulla neuropil. (C) Membranous expression of mCD8-GFP reporter reveals that the sites

(arrowheads) of PDFR expression (green) and PDF release (magenta) are localized next to each other on the LNv terminals. (D) PDFR-expressing processes (green)

encircle the medulla columns (cl). There are PDF releasing varicosities (magenta) visible on some of these processes (arrowheads). Scale bar for (B–D): 5µm.

(E) Expression of mCD8-GFP in the marginal glia (arrows) localized at the margin of the lamina neuropil (Ln) in relation to the LNv terminals (arrowheads) in the distal

medulla. Lc, lamina cortex; Mc, medulla cortex; Mn, medulla neuropil. Scale bar: 10µm.

= 0.00002). The high level of fluorescence at CT13 was rather
unexpected, as in CS it is usually the lowest at this time of the day
in both LD and DD (Figure 2). This high level of fluorescence,
however, was accompanied by the highest dispersion of results
obtained from different individuals. It may imply that the
population of Pdf 0 was not well synchronized (which typically
shows up at the beginning of the day or the night).

The increase of PER at CT13 (by 73% with respect to
ZT13) was also observed in dMnGl of the flies with silenced
expression of PDF receptors in glia (repo-Gal4/UAS-pdfRRNAi,
Figure 5E). The level of PER was 64% higher than at CT1

(Kruskal–Wallis Test: H [3, N = 36] = 23.1, p = 0.0001,
followed by Multiple Comparison Test: p = 0.00003 for CT13
vs. ZT13 and p = 0.004 for CT13 vs. CT1). The increase at
CT13 (58%; with respect to ZT13) was also observed in the
control flies (repo-Gal4/UAS-VAL10-GFP). In this case, however,
the fluorescence at CT13 was not significantly higher than
at CT1 (Kruskal–Wallis Test: H [3, N = 38] = 13.9, p =

0.003, followed by Multiple Comparison Test: p = 0.002 for
CT13 vs. ZT13 and p = 0.08 for CT13 vs. CT1; Figure 5E).
Also, the lack of statistically significant differences between the
experimental and the control flies observed at all the studied
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FIGURE 5 | The daily rhythm in the intensity of PER-specific

immunofluorescence as the measure of PER molecular oscillations in optic

lobes of CS and Pdf0 flies. (A,B) Horizontal sections of optic lobes of flies

sacrificed at ZT24. Due to considerable differences in the level of PER

immunolabeling in dMnGl (arrowheads) and iChGl (arrows) of CS and Pdf0,

the images collected at the same image acquisition parameters show the

nuclei of CS glia on the verge of visibility, when the nuclei of Pdf0 glia are

shown very clearly (with the signal being almost saturated). Mc, medulla

cortex; Mn, medulla neuropil; L, lobula; Lp, lobula plate; LNv, ventral lateral

neurons. Scale bar: 20µm. (C) Daily profile of anti-PER labeling of Pdf0 dMnGl

(Kruskal–Wallis Test: H [6, N = 71] = 55.95, p = 0.00001, followed by Multiple

(Continued)

FIGURE 5 | Comparison Test: ZT13 vs. ZT1 [p = 0.000002], ZT4 [p = 0.03],

ZT21 [p = 0.004], and ZT24 [p = 0.00001], also ZT16 vs. ZT1 [p = 0.00005],

ZT21 [p = 0.049], and ZT24 [p = 0.00001]) to compare with the profile of CS

dMnGl (Kruskal–Wallis Test: H [6, N = 66] = 48, p = 0.00001 followed by

Multiple Comparison Test: ZT13 vs. ZT1 [p = 0.000001], ZT4 [p = 0.004],

ZT21 [p = 0.00003], and ZT24 [p = 0.001], also ZT16 vs. ZT1 [p = 0.0001],

ZT21 [p = 0.002], and ZT24 [p = 0.04], *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001).

(D) The circadian profile of anti-PER labeling of Pdf0 dMnGl (Kruskal–Wallis

Test: H [6, N = 74] = 22.62, p = 0.0009, followed by Multiple Comparison

Test: CT1 vs. CT4 [p = 0.02] and CT16 [p = 0.02], as well as CT24 vs. CT4

[p = 0.003], and CT16 [p = 0.005]) to compare with the profile of CS dMnGl

(Kruskal–Wallis Test: H [6, N = 69] = 36.8, p = 0.00001 followed by Multiple

Comparison Test: CT13 vs. CT1 [p = 0.008], CT4 [p = 0.04], CT16 [p = 0.03],

CT19 [p = 0.02], CT21 [p = 0003], and CT24 [p = 0.000001], *p ≤ 0.05, **p

≤ 0.01, ***p ≤ 0.001). (E) The average level (±SD) of PER-specific

immunofluorescence in dMnGl of repo-Gal4/UAS-pdfRRNAi at ZT1/ZT13 and

CT1/CT13.

time points indicates that the silencing of PER expression in
these flies was not strong enough to bring up visible changes of
fluorescence.

Pdf 0 mutation affected the level of PER also in glia of
other locations (Figure 6A). At the end of the night, the
level of PER-specific immunofluorescence in iChGl (like in
dMnGl) was twice as strong as in their counterparts of CS
(t-Test, t = 6.9, p = 0.0000001, and t = 3.8, p = 0.0008,
respectively). In the case of LGl, there was a smaller (23%), but
statistically significant (Mann–Whitney Test, U = 51, p = 0.03)
increase in the intensity of fluorescence in Pdf 0 (Figure 6B).
This increase considerably improved detectability of LGl in
Pdf 0 lamina probed for PER presence. (PER-specific staining
in CS lamina was usually faint and less reproducible than
in other parts of the brain). Finally, the immunofluorescence
in McGl of Pdf 0 was only 20% stronger than in McGl of
CS (Mann–Whitney Test, U = 58, p = 0.3) (Figure 6B).
Since PER-specific immunofluorescence increased significantly
in Pdf 0 glia of all considered locations in the optic lobe,
it appears as though PDF-conveyed signals from the LNv
pacemakers attenuated the expression of PER in glia in the
wild type flies. Consequently, the CS LNv pacemakers appear to
negatively influence the amplitude of molecular oscillations in
glial clocks.

The comparison of PER level between different types of glia
(dMnGl, LGl, McGl, and iChGl) in Pdf 0 mutants (Figure 6B) not
only confirmed the presence of type-related differences (Kruskal–
Wallis Test: H [3,N = 74]= 53.2, p= 0.00001) observed initially
in CS optic lobe (Figure 1C), but it showed them more clearly
due to general increase of PER-specific immunofluorescence.
Like in CS flies, the level of PER was the highest in the case of
dMnGl (Figures 6A,B). It was 75, 83, and 50% higher in dMnGl
than in LGl (p = 0.0000001), McGl (p = 0.0000001), and iChGl
(p = 0.03), respectively (Figure 6B). The differences between
dMnGl and LGl or McGl increased by 17 and 16% with respect
to the corresponding differences in CS. The difference between
the iChGl and McGl in Pdf 0 was also statistically significant
(p = 0.001). Hence, the differences in PER-labeling (PER level)
observed between varied types of CS glia appear to be enhanced
in Pdf 0 mutants (Figure 6B).
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FIGURE 6 | (A) The confocal image of Pdf0 optic lobe displaying type-dependent differences in the level of PER-specific immunofluorescence in the optic lobe glial

cells at the end of the night. These differences are similar to those observed in the optic lobe of CS (cf. Figure 1B’) but better visible. The strongest signal was

observed in dMnGl and iChGl of the medulla neuropil, whereas the weakest was seen in McGl of the medulla cortex and in the lamina. R, retina; L, lamina; M, medulla;

Lo, lobula complex. Scale bar: 20µm. (B) The average level of PER-specific immunofluorescence (±SD) in the nuclei of dMnGl, LGl, McGl, and iChGl of Pdf0 flies

(dark bars) at ZT24, to compare with the signal in the same types of glia in CS flies (light bars) (*p ≤ 0.05, ***p ≤ 0.001). (C) Horizontal section of the optic lobe of CS

flies immunolabeled for REPO. dMnGl-distal medulla neuropil glia, R-retina, L-lamina, M-medulla. Scale bar: 20µm. (D) The average level of REPO (±SD) in dMnGl of

CS and Pdf0 at ZT24. Glia od Pdf0 mutants display higher level of REPO than glia of Canton-S (*p ≤ 0.05).

The Level of Repo Increases in Glia of Pdf0

Mutants
Next, we wanted to find out whether differences in glial PER
could affect glia-specific functions. Therefore, we checked if
the elevation of glial PER in Pdf 0 mutants was accompanied
by alterations in the level of the major glial regulator—
the glia-specific homeodomain transcription factor reversed
polarity (REPO). The comparative analysis of REPO-specific
immunofluorescence (Figure 6C) in the nuclei of dMnGl of CS
and Pdf 0 at ZT24 indeed revealed the 24% increase of the signal
in dMnGl of Pdf 0. The difference between the levels of REPO
in dMnGl of CS and in Pdf 0 (Figure 6D) was not as big as the
respective difference in the level of glial PER (50% difference in
PER-specific immunofluorescence). It was, however, statistically
significant (Mann–Whitney Test, U = 26, p= 0.04). Therefore it
appears that the REPO-controlled glial functions are maintained
at higher level in dMnGl of Pdf 0 than in CS flies. Moreover,
they are possibly modulated in the circadian manner by neuronal
pacemakers (at least by the PDF-releasing LNv neurons).

R-Cells of Pdf0 Display De-synchrony of
PER Molecular Rhythm
Further, we checked whether the absence of PDF-conveyed
information influences the autonomous clock of Pdf 0

photoreceptors (R-cells), which (like the glial cells) belong
to the peripheral circadian oscillators. The comparative
analysis revealed that daily patterns of changes (in LD) of
PER-specific immunofluorescence in the nuclei of Pdf 0 and CS
photoreceptor cells were similar (Figure 7A). The average level
of immunofluorescence (level of PER), however, was smaller in
Pdf 0. Interestingly, this decrease resulted from higher variability
in the level of fluorescence in the compound eye photoreceptors
(Figure 7B). The standard deviation in Pdf 0 was twice as big
as in CS. Therefore, PER molecular oscillations in the retina
photoreceptors may be regarded as less synchronized in the
absence of PDF. This can be also observed in DD. The level
of PER in DD was much lower in Pdf 0 than in CS, showing
very small amplitude (Figure 7C). Since we have not observed
the R-cells to express PDFRs, they appear to receive this signal
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FIGURE 7 | (A) The average level (±SD) of PER-specific fluorescence in the

nuclei of compound eye photoreceptors (R-cells) of CS and Pdf0 at different

ZTs of LD12:12. (B) Fragments of CS and Pdf0 retinas immunolabeled using

anti-PER serum. The differences in the level of PER-specific fluorescence

among the R-cells of Pdf0 are much bigger than among the R-cells of CS,

which show the annotations of the Mean Gray Value for the nuclei indicated by

arrows. Lower panel: the projection of three (a–c) consecutive optical sections

of the two nuclei of Pdf0 R-cells, marked as 1 and 2. They display the same

level of PER-specific fluorescence (1-low and 2-high) throughout their whole

depth—at all three optical sections (a–c). Scale bar: 10µm. (C) The average

level (±SD) of PER-specific fluorescence in the R-cells nuclei of CS and Pdf0

at different CTs (CS: Kruskal–Wallis Test: H [6, N = 70] = 41.23, p = 0.00001,

followed by Multiple Comparison Test: CT21 vs. CT1 [p = 0.0004], CT4 [p =

0.000003], CT13 [p = 0.02], and CT24 [p = 0.03], as well as CT19 vs. CT4 [p

= 0.003] and CT13 [0.04]); Pdf0: Kruskal–Wallis Test: H [6, N = 74] = 20.70,

p = 0.002, followed by Multiple Comparison Test: CT16 vs. CT1 [p = 0.03]

and CT19[p = 0.03]).

indirectly. It may occur through the marginal glia of the proximal
lamina, which strongly express PDFRs (Figure 4E).

Lack of PDF Changes the Daily Pattern of
Abundance of BRP Protein in the Lamina
Synaptic Cartridges
Since the lack of PDF in Pdf 0 flies influences PER expression in
both the glial and the retinal clocks (although in different ways),

we checked the impact of PDF absence on the daily pattern of
expression of the presynaptic protein, Bruchpilot (BRP) in the
synaptic units (cartridges) of the first visual neuropil (lamina)
of Pdf 0 flies. In the lamina neuropil, the BRP daily pattern of
expression (composed of two peaks-the morning peak and the
evening peak, Górska-Andrzejak et al., 2013), was slightly altered
in Pdf 0 flies (Figure 8). While the evening, clock-regulated (glia
dependent) peak was firm (there was a statistically significant
difference between ZT13 and ZT4; Kruskal–Wallis Test: H [3,
N = 44] = 15.5, p = 0.001, followed by Multiple Comparison
Test, p = 0.0007), the morning, light-regulated (photoreceptor-
dependent) one was small and statistically insignificant (ZT1 vs.
ZT4: p= 0.2; ZT1 vs. ZT13; p= 0.09; ZT1 vs. ZT16: p= 0.9). This
seems to be consistent with the molecular rhythm strengthening
in glia and with de-synchrony that can be observed among the
retina photoreceptors.

DISCUSSION

Glial Oscillators Are Weaker Than Neuronal
Oscillators
The abundance of PER, the prime repressor in the mechanism of
circadian clock (Landskron et al., 2009; Hardin, 2011), is known
to influence the pace of the clock and the phase of the circadian
rhythm (Baylies et al., 1987). Therefore, flies with the lowest
levels of PER have slow-running biological clocks (Baylies et al.,
1987), while temporary increase in PER concentration can alter
the phase of the rhythm (Edery et al., 1994). Our studies revealed
lower intensity of PER staining in the optic lobe glial cells than
in the l-LNv central pacemakers, as well as in the R-cells of the
compound eye, which indicates that the optic lobe glia maintain
lower amplitude of PER molecular oscillations. Consequently,
they are weaker oscillators with respect to the neuronsmentioned
above and so they are not able to drive outputs in DD conditions
for a longer time (Weiss et al., 2014).

Glial Oscillators Are Heterogeneous—They
Express PER at Different Levels
Glial cells of Drosophila are known, however, to be highly
diversified both morphologically and functionally (Edwards
and Meinertzhagen, 2010). Our studies showed that the large
population of glial cells that function as glial clocks (PER-
expressing glia) appear to be heterogeneous, as the cells in
different locations express different amounts of PER. Because
certain oscillatory subgroups (residing in different regions of
the optic lobe) display different amplitudes of their molecular
rhythms, the strength of their regulatory influence must also
differ. Consequently, the lower level of PER in the lamina glia
and the higher level of PER in the medulla glia (which is by far
the most easily noticeable difference) suggest that the circadian
network of these two neuropils require different amounts of the
glial circadian activity. Indeed, the epithelial glial cells of the
lamina, which envelope the synaptic units (cartridges) of the
lamina neuropil (Boschek, 1971; Pyza and Górska-Andrzejak,
2008), might not need to express per at high level, as the
presynaptic terminals of photoreceptors—the main components
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FIGURE 8 | The average level (±SD) of BRP-specific immunofluorescence measured in confocal images of the lamina of Pdf0 mutants at specific time points of LD

12:12. Data represent the average score of fluorescence intensity obtained for the lamina synaptic units called cartridges, which are seen in the lamina fragment on

the right (the single cartridge in the frame; ***p ≤ 0.001). Scale bar: 10µm.

of the cartridge—are equipped with their own, autonomous
circadianmechanism (Siwicki et al., 1988; Zerr et al., 1990; Cheng
and Hardin, 1998).

dMnGl Display the Highest Level of PER
The highest level of PER in dMnGl, on the other hand, implies
that these cells belong to the strongest of glial oscillators. It may
also support the hypothesis that PER in glia is required for the
regulation of circadian light sensitivity (Zwarts et al., 2015), in
which dMnGl could cooperate with their close neighbors, the l-
LNv pacemakers (Yoshii et al., 2016). This agrees with the fact
that the level of PER in glia, and especially in dMnGl, is elevated
in Pdf 0 mutants in LD at ZT1 and in DD at CT1. It is tempting
to speculate that in the absence of PDF signaling from the l-
LNvs the glial cells increase their PER expression (the strength
of their molecular rhythms) to compensate for that lack. In DD
conditions, they appear to do so at two crucial time points, at the
beginning of the circadian day (regulated predominantly by light)
and at the beginning of the subjective night (clock-regulated time
point).

Lack of PDF Changes the Level of PER in
Glia
As already mentioned, the main function of the LNv pacemakers
is coupling different pacemakers/clock centers within the
fly brain (Helfrich-Förster, 1998; Renn et al., 1999). PDF
synchronizes the different clock neurons that make up the
Drosophila circadian neural circuit via PDF receptors (Renn et al.,
1999; Lin et al., 2004; Lear et al., 2005; Nitabach et al., 2006;
Shafer et al., 2008; Im et al., 2011). It therefore appears as a
good candidate for linking up the glial oscillators to the neuronal
oscillatory network. This notion agrees with the fact that glial
cells take part in the output regulation, since modifications of
gliotransmission, calcium stores, or glial ionic gradients result in
the arrhythmic locomotor activity (Ng et al., 2011).

Assuming that the highest level of PER specifically in dMnGl
results from the direct influence of PDF signaling from the
LNvs (Helfrich-Förster, 1998), we checked the glial level of
PER in null Pdf 0 mutants, which display reduced morning
behavior and advanced evening behavior in LD conditions,
as well as progressive dampening of locomotor rhythmicity
and shortened period in DD (Yoshii et al., 2016). We found
out that Pdf 0 mutants displayed higher level of glial PER
than CS. This confirmed the notion that dMnGl belong to
multiple targets of PDF but are normally (in CS) negatively
influenced by PDF. We conclude this because the level of glial
PER is elevated in the absence of PDF. PDF regulation of
per and tim rhythms in Drosophila optic neuropils has been
reported by Damulewicz et al. (2015). PDF has also been
reported to act on PDF neurons themselves to regulate their
rhythmic strength (in addition to evening activity phase and
period length regulation in non-PDF clock neurons; Lear et al.,
2009).

These results also show the range of PDF inhibition. In Pdf 0

mutants, all types of glia exhibit higher level of PER, maintaining
differences among the glia of different locations (which are
observed in CS). We therefore conclude that PDF influences
the entire glial circadian system. Since the amplitude of the
molecular rhythm is proportional to the level of PER, the increase
in the level of PER in glia in the PDF-free tissue must result in
strengthening of the glial circadian functions and, consequently,
in increased impact of the glial oscillators on the whole circadian
network.

The significantly higher level of PER in glia of Pdf 0 mutant
also suggests that the glial cells may play a submissive role in the
circadian system. Modulating their amplitude, the PDF-positive
clock cells actually influence the gear of circadian clock of the
glial cells, which seem to be capable of expressing PER at much
higher level when allowed by the LNv pacemakers (the lack of
PDF appears to be interpreted by the glial cells as green light for
amplitude enhancement).
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PDFR in Glia
Till now, the presence of PDFRs have been reported in the PDF
and non-PDF clock neurons (Lear et al., 2009; Im and Taghert,
2010) and the non-neuronal (glial) cells situated at the base
of the compound eye (Im and Taghert, 2010). Our analysis of
the pattern of expression of pdfR-Gal4 driver using sequences
upstream of the pdfR-gene (Lear et al., 2009) revealed that dMnGl
express receptors for PDF. On this view, the LNvs can be said to
communicate not only to other clock neurons but also to the glial
clocks, which can be one of the components of the output of the
LNv circuit. The fact that the glial clocks belong to the PDFR-
responsive targets indicates their importance for the activity of
the whole circadian network. It also implies that the glial clocks
have to be synchronized in the same way (via PDF) as different
clusters of neuronal pacemakers.

The above findings may explain the observation by Lear
et al. (2009), who reported that the rescue of Pdfr mutant
phenotypes using Pdf-Gal4 and npf-Gal4 drivers (which do not
drive expression to glial cells) failed to rescue significantly both
the LD and DD phenotypes. This failure may have been caused
by the absence of the relevant glia-derived circadian components.

Judging by the intensity of GFP fluorescence, however, the
level of PDFR in glia appears to be lower than in other cells,
which may be related to the negative influence of PDF on the
level of PER in glia. This mechanism would enable modulation,
but at the same time it would protect against the complete
switching off the glial circadian functions. The low level of PDFR
expression may also explain why dMnGl were not visible when
PDFR was detected by the antibodies raised against N- (Hyun
et al., 2005) or C-terminus (Mertens et al., 2005). Detectionmight
thus be restricted to the cells with relatively high level of PDFR
expression.

The results assessing the level of PER-immunofluorescence
in flies with silenced expression of PDFR show the tendency
to increase PER level at CT13, similar to the one observed in
Pdf 0. They are, however, not entirely conclusive, as the increase
observed in the experimental flies is not statistically significant
with respect to the control flies. It appears that the RNAi-
mediated silencing did not suppress the PDFR expression in glia
efficiently enough to mimic the complete lack of PDF in Pdf 0

mutants.

Glial Cells of Pdf0 Display Higher Level of
REPO, the Glia Specific Protein
We observed that Pdf 0 mutants display an increased level of
REPO, a glia-specific, paired-like homeodomain transcription
factor, which inhibits neuronal and activates glial differentiation
during development (Xiong et al., 1994; Halter et al., 1995).
The lack of PDF-conveyed signals from the LNvs influences
the glial functions controlled by REPO. The function of REPO
in the adult brain is still unclear. Recently it has been found,
however, that REPO controls glutamate receptor clustering and
synaptic physiology at Drosophila larval neuromuscular junction
(Kerr et al., 2014). Importantly, the expression of glial repo is
also required for the Long-Term Memory (LTM) formation, as
its expression increases upon LTM induction (Matsuno et al.,

2015). Artificially elevated REPO expression can also rescue
mutants with LTM defects and the knockdowns of KLINGON,
the cell adhesion molecule required for LTM formation, which
localizes to juncture between neurons and glia. Consequently,
REPO influences the KLG-mediated communication between
neurons and glia (Matsuno et al., 2015). Higher levels of REPO in
dMnGlmay, therefore, reflect the higher level of communication.
The coincidence of the elevated levels of PER and REPO in
Pdf 0 mutants suggests that the circadian clock modulates both
REPO-controlled glial functions and neuron-glia interactions.

R-Cells Respond to Lack of PDF in a
Different Way Than Glial Cells
Photoreceptors of the compound eye (and ocelli) of the fruit fly
were among the first, in which robust circadian oscillations of
PER and TIM were observed (Siwicki et al., 1988; Zerr et al.,
1990). Later studies confirmed that circadian oscillations in the
R-cells occur autonomously, i.e., independently of the central
circadian pacemaker in the brain (Cheng and Hardin, 1998),
being involved in regulation of the visual system sensitivity
to daily changes of light intensity (Giebułtowicz, 2000). Our
results suggest that the PDF-releasing LNvs, which directly
perceive light, influence the circadian oscillations of the retina
photoreceptors via PDF signaling. PDF has been known to
provide feedback facilitating synchronization of different groups
of the clock neurons within the brain (Lin et al., 2004). The
primary role of PDF may lie in enhancing and synchronizing
individual clock oscillations (Hyun et al., 2005; Mertens et al.,
2005). Since different R-cells of Pdf 0 retina displayed major
changes in the level of PER nuclear accumulation at the
beginning of the day, revealing signs of desynchronization, our
results show that the eye multiple oscillators may also be coupled,
at least to some extent, via PDF. The eye photoreceptors may thus
depend on PDF synchronization. This also explains the necessity
of the clock neurons to have direct light input through CRY. On
the other hand, the compound eye CRY appears to have a minor
contribution to light entrainment. Flies expressing cry in the eyes
do not entrain significantly better than crymutants (Emery et al.,
2000; Yoshii et al., 2016).

Lack of PDF Influences Daily Pattern of
BRP
Daily remodeling of the lamina synaptic contacts has been
observed using immunohistochemistry based on Bruchpilot—
specific Nc82 antibody (Górska-Andrzejak et al., 2013). The
level of Bruchpilot (BRP), the large scaffold protein that is a
major constituent of the presynaptic ribbons (so called T-bars) of
synapses, fluctuated during the day and night (Górska-Andrzejak
et al., 2013). The morning and evening peaks, observed in
LD 12:12, are regulated in different ways. The morning peak
depends predominantly on the light and phototransduction
pathway in the R-cells of the retina and also on the clock
gene per. The evening peak, on the other hand, is regulated
endogenously, by the input from the pacemaker located in the
brain. In addition, the two peaks depend on the clock gene-
expressing photoreceptors and on the glial cells of the visual
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system, respectively. Interestingly, in Pdf 0 mutant, the first peak
was smaller and insignificant, while the second was still present.
The results concerning the level of PER in the glia and the R-cells
of Pdf 0 mutant, appear to explain such pattern of BRP expression
in these flies. The first peak, which depends predominantly on
the presence of the light stimuli and the R-cells activity may be
smaller due to visible desynchronization of the compound eye
photoreceptors, whereas the second peak is maintained since it
is driven by the glial cells, which (judging by increased level of
PER in their nuclei) appear to be more active in this mutant
than in the wild type flies. Similar results were obtained by
Damulewicz et al. (2013) on the expression of the α-subunit of
the sodium-potassium pump in Pdf 0 mutants.

PDF-conveyed information is able to reach the R7 and R8
photoreceptors, as they project to the medulla neuropil, where
they terminate in different layers of synaptic connections; R7
in layer M6, R8 in layer M3 (Kremer et al., 2017). It is also
possible, however, that paracrine release of PDF can reach the
proximal lamina, where the terminals of R1-R6 end. It cannot
be a coincidence that the receptors for PDF are expressed both
in the marginal glia of the proximal lamina (Figure 4E) and in
the glial cells situated at the base of the compound eye (Im and
Taghert, 2010). The former cells extend their processes toward the
distal part of the lamina so high that they branch among processes
of the epithelial glial cells and contact the terminals of R1–R6
(Edwards et al., 2012). Although they do not appear to form
such intimate connections with photoreceptor terminals as the
epithelial glial cells (which invaginate the terminals forming the
so called capitate projections, Stark and Carlson, 1986), they do
invaginate photoreceptor terminals at some sites of contacts and
contain coated vesicles (as shown in EM by Edwards et al., 2012).
Small, club-headed capitate projections of glial cells invaginating
the terminals of R7 and R8 in the medulla (Takemura et al.,
2008; Edwards and Meinertzhagen, 2009) are most probably the
projections of dMnGl (Edwards et al., 2012), which we have
shown to poses PDF receptors.

To sum up, our studies show for the first time that glial cells
in general and dMnGl in particular, belong to PDF downstream
circuits as the integral part of the LNv pacemakers output. It is
the first step toward understanding how the activity of peripheral
oscillators, such as the glial cells or the eye photoreceptor cells,
is synchronized with the circadian network and adjusted by the
central clock. Further studies should elucidate in greater detail
whether other types of glia possess PDF receptors, and dissect the
molecular mechanism by which PDF acts on glial cells in order to
regulate their clock and circadian activity.
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