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Abstract: An increasing number of fires are occurring with the rapid development of cities, resulting
in increased risk for human beings and the environment. This study compares geographically
weighted regression-based models, including geographically weighted regression (GWR) and
geographically and temporally weighted regression (GTWR), which integrates spatial and temporal
effects and global linear regression models (LM) for modeling fire risk at the city scale. The results
show that the road density and the spatial distribution of enterprises have the strongest influences
on fire risk, which implies that we should focus on areas where roads and enterprises are densely
clustered. In addition, locations with a large number of enterprises have fewer fire ignition records,
probably because of strict management and prevention measures. A changing number of significant
variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and
suburban areas of Hefei city, where human-related facilities or road construction are only clustered in
the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the
variables while GWR and LM cannot. An approach that integrates space and time enables us to better
understand the dynamic changes in fire risk. Thus governments can use the results to manage fire
safety at the city scale.
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1. Introduction

Fire is a natural phenomenon that occurs worldwide in complex environments. Fire presents a
great threat to people and the natural environment and scientists are aware of the necessity to manage
fire risk. An example is the big fire that occurred in Chicago in 1871 when flying debris obscured
the sky and Chicago was overcome by fire. To date, it is still a challenge for scientists to explain the
occurrence and spread of natural fires, and it is even more difficult to predict fires. Fires have been
studied in many regions around the world [1–5], such as in Spain [6,7] and many other countries [8].
However, few studies have examined fire risk at the city scale and its influence on the environment
requires further studies. Worldwide, it is widely known that human activities play an important
role in fire risk [9–12]. Dense urban population in urban areas and related hidden sources of hazards
such as electrical installations and power lines may lead to the occurrence of fires as described in
previous studies [13,14]. Places with a high population density such as markets and residential areas
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are especially vulnerable to high levels of fire risk. In addition, other factors such as road density,
distance to water bodies, average temperature, precipitation, relative humidity, wind speed, slope, and
aspect, which can be summarized as socioeconomic, climate and topographic predictors, were found
to be associated with fire risk [7,13,15].

Several studies have adopted global linear regression models (LM) to study fire risk [15,16].
However, because of the relationship between fire risk and its influencing factors that may vary over
space, which is referred to as spatial heterogeneity, LM, including ordinary least squares (OLS) models,
may not be adequate for examining the spatially varying relationship between multiple predictors
and fire occurrence. This limitation is mostly due to the constant coefficients in LM. Geographically
weighted regression (GWR) has been widely used to take into account the spatial heterogeneity because
of the unique characteristics of the model. GWR allows the regression coefficients to vary for individual
locations, capturing the effects of non-stationarity and revealing variations in the importance of the
variables across the study area. The use of GWR focuses particularly on data analysis and interpretation
rather than prediction [8,16,17]. Aside from the popular spatially varied coefficient model, GWR was
extended further and geographically and temporally weighted regression (GTWR) was developed to
deal with both spatial and temporal non-stationarity [17]. GWR-based models are not just designed for
improving model fitness; rather they facilitate the spatiotemporal exploration of natural phenomena.

GTWR integrates both temporal and spatial information in the weight matrices to capture spatial
and temporal heterogeneity simultaneously [17,18]. The approach has been used in models of house
prices and land use change [17–19]. The statistical performance of the GTWR is better than that of the
GWR and the OLS in terms of goodness-of-fit. It is a well-known fact that fire risk is a phenomenon
that changes over space and time [11,20–22]. The frequency of fire and its ignition locations show
spatiotemporal dependence such as clustering, lagging and seasonal trends. Therefore, the existing fire
models could be improved by incorporating temporal effects by integrating both spatial and temporal
information in the weighting matrices [17,18,23]. Therefore, we aim to use GTWR to discover the
potential rules for fire risk and to compare the approach with GWR and LM.

Before developing a GWR or GTWR model, the first task is to select variables and to fit an LM by
adopting the OLS method for the purpose of comparison. The process of selecting variables is complex
and different criteria or approaches may be used for different models, such as the Akaike information
criterion (AIC), Bayesian information criterion (BIC), cross validation (CV), stepwise regression, and
mean squared errors (MSE) reduction [15,24,25]. Further, an accuracy assessment of predictive spatial
models needs to account for spatial autocorrelation. However, little attention has been paid to the
influence arising from the presence of spatial autocorrelation in geospatial data and residuals, which
may result in overfitting or underestimation [26]. By using spatial cross validation and bootstrap
strategies, spatial prediction errors in the resampling-based accuracy assessment can be improved
and the bias caused by residual spatial autocorrelation (RSA) can be corrected [26,27]. R statistical
software and the packages “spgwr”, “sperrorest”, and “caret” have been used to calibrate the spatial
cross validation (SCV) process and thus the resampling-based variable importance and prediction
error across data folds can be achieved [26,28]. Therefore, it is necessary to first select variables by
using SCV before using the variable in a further regression model.

This study compares geographically weighted regression-based models (including GWR and
GTWR, which integrates spatial and temporal effect) and LM for modeling fire risk at the city scale.
We use historical fire records and related datasets for Hefei city in China to undertake the comparative
analysis. The study is divided into three tasks. First, SCV and CV are separately employed and
compared in order to obtain the importance of the variables and then the relatively important predictors
are selected after multicollinearity test. We also compare SCV and CV and identify the specific
differences between them. Second, we adopt the selected variables from the previous step and fit
the OLS model using the “caret” package in the R software. The significance level and the relative
importance of the variables in the OLS model are quantified and the non-significant variables are
removed. Third, we use the significant variables to fit a GWR model and visualize the local coefficients,
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the local significance of the coefficients and the residual distribution. GTWR is then employed and
the fitness of the three models is summarized, along with a semivariogram analysis of residuals in
different time periods. In this study, we adopted the original GTWR model created by Huang [18].
Therefore, the other improved GTWR models are not examined in the study.

The study shows that by using advanced GIS and spatial statistical methods along with detailed
historical datasets of fire ignition, it is possible to build valid and meaningful models to explain fire
risk. We can use them to improve the management of fire risk and safety in urban areas as well as in
the natural environment.

2. Materials and Methods

2.1. Study Area

The study area is in Hefei city, which is located in the middle of Anhui Province in China. The
city comprises a total area of around 7029 km2 and had a population of about five million prior to 2010.
The land use in Hefei in 2005 and 2010 is shown in Figure 1. The data set with a spatial resolution of
300 m is provided by the Database of Global Change Parameters, Chinese Academy of Sciences [29].
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Figure 1. Land use in Hefei city in 2005 and 2010.

Although the study area is small relative to previous studies, there still exists considerable
diversity in its socioeconomic, climate, topographic, and other attributes. In previous studies,
researchers mainly adopted complex socioeconomic factors for fire occurrence and fire risk, which
include population density, population structure, road density, slope, and other factors. These factors
play important roles in fire occurrence, as shown in Figure 2, which is a conceptual summary of various
fire risk factors and was developed by Corcoran et al. [13].

2.2. Dependent Variable and Preliminary Analysis for Infrastructure Fire Frequency

A dataset of fire records for the period of 2002–2010 in Hefei was obtained from the Fire Bureau in
Anhui Province, China. The contained information includes the time of occurrence, event type, location,
event damage, and fire-fighting time. A total of 12,629 historical infrastructure fire fighting records
were extracted. The annual demographic and climate records including population, precipitation
(Prec), relative humidity (Rehu), sunshine duration (Sun), temperature (Temp), GDP, and the average
housing area of urban residents (UH) and rural residents (RH) in Hefei were provided by the statistical
bureau of Anhui Province (http://www.ahtjj.gov.cn/tjj/web/index.jsp).

http://www.ahtjj.gov.cn/tjj/web/index.jsp
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Figure 2. Conceptual model of fire risk [13]. (License No.: 4046910333494, permitted by Elsevier).

Moreover, we conducted a deeper analysis by using a scatter point matrix to study the internal
relationships between the annual explanatory predictors and the per capita annual fire frequency.
The results are shown in Figure 3, which indicates that almost all of the predictors have a certain
degree of deviation. These predictors have a positive effect on fire frequency except sunshine duration.
In addition, the correlations about the per capita annual fire frequency and the change in population
are shown in Figure 4. It shows that the plot of per capita annual fire frequency has a very similar
trend to the plot of annual fire frequency, which could be explained by the population growth and the
fire risk caused by human activities.
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Figure 3. Scatter plot matrix for the internal relationships among annual predictors. Prec, Sun, Rehu,
Sun, urban residents (UH), and rural residents (RH) are the abbreviations of precipitation, relative
humidity, sunshine duration, temperature, average housing area of urban residents, and average
housing area of rural residents respectively.
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Figure 4. Annual summaries for fire records (2002–2010) and the relationship with population growth.

Moreover, Figure 4 shows that in the latest years, fire frequency per capita has decreased more
than fire frequency. Table 1 also shows that human-caused fires play an important role in explaining
ignitions and places of interest (POI), and areas, where population is clustered, represent the main
potential causes of fire risk, evidenced by the high proportion of fire occurring in those places, with
the exception of fires associated with chemical industries, traffic, and electrical appliances.

Table 1. Statistical summary for fire categories.

Category Number Proportion

Population-clustered places (hotel, school, market, etc.) 2993 0.502941
Other 967 0.162494
Traffic-related 938 0.157621
Important buildings (warehouse, gas stations, etc.) 566 0.09511
Electricity 256 0.043018
High-rise buildings 109 0.018316
Chemical industries 88 0.014787
Underground buildings 34 0.005713

In order to make comparisons between GTWR and other models, we divided the entire time
period of nine years into five temporal periods of nearly 22 months each. Thus, we could obtain the
spatial distribution of the fire ignition points for different time periods. The spatial distribution of fire
ignition points is shown in Figure 5 The response variable, called average fire density, was derived
using the kernel density method, which turns discrete points in a study area into a continuous density
surface to minimize the uncertainty and mistakes in the ignition records [15]. Fire density is defined in
this study as the ignition frequency in one grid cell (occurrence number per period per km2).
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Figure 5. Ignition points between 2002 and 2010, divided into five time periods.

A spatial resolution of 1 km × 1 km and a fixed bandwidth of 5 km were used as a rule of thumb
after comparing several different bandwidth values (from 1 km to 10 km) [6]. Water bodies and similar
land cover types where fire cannot occur were excluded from the analysis. The resulting base grid had
6985 cells covering the entire study area excluding water bodies. The centers of the pixels were used as
the initial sample points. In order to mitigate the effect of spatial autocorrelation, rather than using all
6985 grids, 1000 sample points distributed randomly in space were selected for each time period, thus,
5000 sample points in total were used in the process of training the model. In addition, 500 samples
dispersed spatially were used as validation samples across the five time periods.

2.3. Explanatory Variables: Selection and Pre-Processing

A total of 25 explanatory variables covering a variety of socioeconomic attributes were extracted
from the databases [13,30–34]. These variables consider the influence of socioeconomic conditions
on fire occurrence, as well as the influence of climate and topographic conditions. These explanatory
variables were derived from the previous literature and several new variables consisting of the spatial
distribution of buildings were selected for the modeling process of infrastructure fire occurrence.
These explanatory variables are shown in Table 2. Some variables, including static and dynamic
variables, are illustrated in Figure 6. It should be noted that the uncertain geographic context problem
(UGCoP) could affect the reallocation of fire risk spatiotemporally because of the dynamic change of
socioeconomic attributes in urban areas [35]. This highlights the reason for the need of spatiotemporal
models. All the explanatory variables were resampled to a resolution of 1 km × 1 km to achieve the
same resolution as that of the fire density.
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Table 2. Candidate explanatory variables.

Variable Name Code Data Source Resolution/Unit

Elevation DEM

The data set is provided by Geospatial Data
Cloud site, Computer Network Information
Center, Chinese Academy of Sciences
(http://www.gscloud.cn)

30 m

Slope SLOPE Calculated by ArcGis 10.2
surface analysis tool 30 m

Aspect ASPECT The same as SLOPE 30 m

Topographic Position Index POSITION The same as DEM 30 m

Terrain Ruggedness Index TRI The same as DEM 30 m

Shaded relief SHADE The same as SLOPE 30 m

Normalized Difference
Vegetation Index NDVI The same as DEM 500 m

Yearly average maximum
surface temperature TEMMAX The same as DEM 1 km

Yearly average minimum
surface temperature TEMMIN The same as DEM 1 km

Yearly average mean
surface temperature TEMAVE The same as DEM 1 km

Population POPULATION GPWv4, NASA Socioeconomic Data and
Applications Center (SEDAC) [36] 1 km

Line density of roads LINE
Product Specification of Earth
Data Pacifica (Beijing) Co., Ltd.
(http://www.geoknowledge.com.cn)

1 km

Kernel density of
residential points RESIDENT The same as LINE 1 km

Kernel density of
market points MARKET The same as LINE 1 km

Kernel density of
hotel points HOTEL The same as LINE 1 km

Kernel density of schools,
universities, etc. EDU The same as LINE 1 km

Kernel density of
enterprise points ENTERPRISE The same as LINE 1 km

Value of 11 for land
cover- Post-flooding or
irrigated croplands

LAND11

The data set is provided by Database
of Global Change Parameters,
Chinese Academy of Sciences.
(http://globalchange.nsdc.cn)

300 m

Value of 14 for land cover-
Rainfed croplands LAND14 The same as LAND11 300 m

Value of 20 and 30 for
land cover- Mosaic
cropland/vegetation

LAND2030 The same as LAND11 300 m

Value of 190 for land cover-
Artificial surfaces and
associated areas

LAND190 The same as LAND11 300 m

The other values
of land cover LANDOTHER The same as LAND11 300 m

Distance to water bodies DW The same as LINE and calculated by
ArcMap 10.2 spatial analysis toolbox m

Distance to fire stations DF The same as DW m

Distance to roads DR The same as DW m

DEM: digital elevation model.

http://www.gscloud.cn
http://www.geoknowledge.com.cn
http://globalchange.nsdc.cn
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2.3.1. Topography

Topographic features affect the spatial patterns, the composition, and the flammability of
vegetation in addition to influencing local climatic conditions [7,8,31,37–40]. The elevation for Hefei
city was obtained from the MODIS Global Digital Terrain Model (GDTM) 30-m resolution digital
elevation model (DEM) dataset [41]. All topographic variables were resampled to 1 km by using the
“resample” tool in ArcGIS 10.2. Areas of low elevation are more likely chosen for developing human
settlements and thus capture the density of buildings. POSITION and SHADE were calculated based
on the DEM dataset using the platform of the Computer Network Information Center at the Chinese
Academy of Sciences, as shown in Table 2. Slope, aspect and terrain ruggedness index were calculated
using the ArcGIS 10.2 (ESRI, Redlands, CA, USA) surface analysis tool and aspect was converted to
a numeric variable with a range between −1 and 1 by using the aspect index based on the cosine
function as shown in Equation (1) [42]:

Aspect index = − cos(θ × 2 × π/360) (1)

The proportion of the different topographic classes in each grid cell was then retrieved by using
the “extract-multi-values-to-points” tool in ArcGIS 10.2. In total, six variables were obtained.

2.3.2. Land Cover and NDVI

Different land cover types may reflect different sources that characterize the nature of fire [8,16].
As different land cover types reflect the potential area of human activities, it is important to pay
attention to their distribution. Since previous studies have found a strong association between land
cover types and fire occurrence [7,43], this study also considered the proportion of different land cover
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types that occurred at different time periods of the study (from 2002 to 2010). Land cover types whose
proportion was too small (below 1%) or whose relevance to infrastructure fire was not high were
excluded such as forest and grassland. The land cover types irrigated croplands, rain-fed croplands,
mosaic cropland/vegetation, and artificial surfaces and associated areas were extracted from the land
use map for the following analysis. The categories of land use type were converted into dummy
variables, which facilitated the quantitative analysis as shown in Table 2. In order to diminish the effect
of collinearity, LANDOTHER was excluded as the control group so it would not be in the model. The
normalized difference vegetation index (NDVI) was used as the vegetation index for further analysis.
Monthly MODND1D NDVI data was downloaded with a resolution of 500 m by using the platform of
the Computer Network Information Center at the Chinese Academy of Sciences, as shown in Table 2.
NDVI reflects the fuel greenness and the amount of actively growing vegetation in one grid cell [3].
The spatial distribution of NDVI for each time period was obtained by using “raster calculator” tool in
ArcGIS 10.2, with which the layers of monthly NDVI were superimposed and averaged accordingly.
Areas with a low value of NDVI likely indicate a higher cover of buildings than vegetation, suggesting
where there is much greater likelihood of infrastructure fire occurrence.

2.3.3. Temperature

The analysis includes three main climate variables: average surface temperature, maximum
surface temperature, and minimum surface temperature (from 2002 to 2010). The temperature-related
variables has the similar characteristics of spatial distribution in terms of the heat island effect, which
can indicate the area where is the city center. The source of the original input dataset was the daily
MOD11A1 data (version 5 with tile data) and we obtained the temperature variables by extracting the
monthly MODIS synthetic products in China from the Computer Network Information Center at the
Chinese Academy of Sciences (http://www.gscloud.cn). Afterwards, the average value of temperature
in each time period was further processed by using the “raster calculator” tool in ArcGIS 10.2 thus we
could get the value of temperature in each grid cell.

2.3.4. Spatial Distribution of Population and Human Activities

Human activity is strongly related to fire occurrence [1,7,44–46]. The locations where human
activities occur and where humans concentrate such as markets or hotels are also the locations of more
frequent fires [13]. The spatial distribution of the population and the POIs such as business enterprises,
educational facilities, residential areas, markets and hotels were included in this study. These types of
POIs were seldom included in past studies of fire occurrence, which may lead to misleading results.

The geographic location and details about the POIs were obtained from EarthData Pacifica
(Beijing) Co., Ltd. (http://www.geoknowledge.com.cn). A kernel density estimation with a fixed
bandwidth was chosen to derive density surfaces for the other predictor variables including business
enterprises, educational facilities, residential areas, markets, and hotels. The optimal fixed bandwidth
was obtained by comparing a series of values from 5 km to 10 km, resulting in choosing 5 km for POIs
except for hotels and educational facilities, where a bandwidth of 7 km was used.

Based on the method used for the Gridded Population of the World (version 4) for the estimation
of human population density, we assigned population values to 30 arc-second (1 km) grid cells for 2000,
2005, and 2010 [36]. In detail, the population in period 2 can be obtained by interpolating the value
of 2000 and 2005, and so on. The population density grids were derived by dividing the population
count grids by the land area grids. The pixel values represent persons per square kilometer for the
average distribution of the population in different temporal periods.

2.3.5. Other Variables

In addition to the socioeconomic variables described above, the analysis also included other
variables such as the distance from the ignition points to roads, the distance to water bodies, the
distance to fire stations, and the line density of roads defined as road length per unit area. We chose

http://www.gscloud.cn
http://www.geoknowledge.com.cn
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these variables for modeling because they may affect the distribution of fire risk to some extent and
even influence the losses caused by fire [47,48]. In addition, degree of freedom (DF) will definitely
influence the final loss and it is a common sense, however, it will not affect the likelihood of fire
occurrence. The values of these variables were obtained by integrating the “neighbor analysis”,
“network analysis”, and the “line density” tools in ArcMap 10.2 (ESRI, Redlands, CA, USA) where the
distance refers to Euclidean distance.

2.4. Models and Methods

2.4.1. Data Preprocessing

Correlation coefficients that were too high (greater than 0.75) were used as the criterion to remove
explanatory variables in order to mitigate the effects of multicollinearity among the explanatory
variables [15]. In addition, data normalization and Box-Cox transformation were performed with
the Z-score method by using SPSS software (IBM, North Castle, NY, USA) and R statistical software
(R Development Core Team, Boston, MA, USA) in order to meet the basic assumption of normality for
linear regression.

2.4.2. Variable Selection for LM

Five-thousand sample points were used for the training set and for the initial selection of variables
and error estimation. As described in the introduction section, spatial cross validation (SCV) was
employed and non-spatial cross-validation (CV) was calculated separately. The “sperrorest” and
“errorest” packages in R software were used for this part of the analysis [26,49]. To be more specific, in
order to obtain alternative estimates of the confidence intervals, a non-overlapping spatial k-means
bootstrap approach was applied, which accounted for spatial autocorrelation. A 10-repeated-10-fold
SCV/CV for LM adopting a k-means algorithm was applied, which meant that the whole study region
was divided into 10 sub-regions and one fold was used as the testing set while the remaining nine
folds were used as the training sets.

After SCV and CV process, we removed the variables with a very small mean importance (less than
1.0 × 10−4), which meant that their contribution to fire risk could be safely neglected. We also obtained
the kernel density estimation of the variable importance and the prediction error among the 100-fold
data sets.

2.4.3. GWR and GTWR

The selected variables were included in the linear regression model using 10-repeated-10-fold
CV in the “caret” package in the R software. The fitted model was further evaluated to assess outliers.
Observations with a Cook’s distance greater than four times the mean may be classified as influential.
The outliers were deleted and the variables which were not significant (with a t-test value of less than
1.96) were removed for the simplification and robustness of the model. The final predictors were then
used to develop the GWR model by using an adaptive bandwidth searching approach. We chose a
bisquare kernel function for building the spatial weight matrix and fitting the model by using “spgwr”
package in R software. The results of the GWR model including the t-test values of the coefficients
were interpolated visually by using ordinary kriging. We thus obtained the nonstationary spatial
distribution characteristics for the contribution of the variables and revealed the varying significance
levels across space.

In addition, the selected predictors were added to the modeling process of the GTWR which can
uncover spatiotemporal heterogeneity. We adopted the original GTWR model created by Huang [18]
and used a Gaussian kernel function to generate the spatiotemporal weight matrix. The program was
developed in MATLAB R2014a (MathWorks, Natick, MA, USA), which provided the results including
the coefficients and the t-test values for the included predictors. The results were then interpolated by
using ordinary kriging to get a continuous surface of the coefficients and t-test values for the different
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time periods. Meanwhile, the goodness-of-fit was compared among the three models (LM, GWR, and
GTWR). Based on the residual sum of squares (RSS) and the coefficient of determination (R-squared),
we can compare the statistical performance of the GWR and GTWR models [18]. The variables might
exhibit non-stationarity if the inter-quartile range (25% and 75% quartiles) of the GWR parameters is
greater than ±1 standard deviation (SD) of the equivalent global OLS parameters [16]. This test was
described in the following section.

In view of residual spatial autocorrelation (RSA), if no autocorrelation remained in the residuals
of the regression models, the spatial pattern observed in the dependent variable could be explained
by the spatial pattern observed in the predictors [15,27]. The residuals were obtained separately for
the different periods. In order to analyze the explanatory power with regard to the spatial structure,
semivariograms of the residuals with the function of distance were derived from the different models
and these residuals were visualized with different colors to examine the heterogeneity and unstable
performance of the models.

Furthermore, in order to investigate the potential regularity that influences the dynamic change of
fire occurrence in different temporal periods, we standardized the change of the predictors for the grid
cells of the training sets. Considering the characteristics of dynamic change for socio-economic and
infrastructural predictors across temporal periods, we analyzed the correlation between the changes in
fire density and the variable predictors, which can reflect the sensitivity and explain the reasons for
changes in fire density over time. Moreover, the number of significant variables in the different spatial
locations was evaluated for the five time periods.

2.4.4. Model Validation

Models were validated by using an independent dataset. Five-hundred sample points were used
to compare the fitness among the three models and the RSS was calculated. The coefficient values of
the predictors for the validation points were obtained by extraction from the continuous surface in
ArcGIS 10.2. By comparing the models’ predictive accuracy for fire risk analysis, we will be able to
choose a relatively robust model for fire prevention and better understand the dynamics of fire.

3. Results

3.1. Results of the Variables Selection for the LM

All the variables were investigated and the fire density obtained by using the kernel density was
converted by using a natural logarithm transformation. The variables ENTERPRISE, EDU, HOTEL,
RESIDENT, and MARKET were converted by using a Box-Cox transformation when the value of λ

was −0.5. All of the independent variables were then standardized. After the collinearity analysis
that examined the correlations among the independent variables, LAND11, HOTEL, LANDOTHER
and EDU were excluded from the modeling process. Further, we obtained the correlations among the
predictor variables and visualized the results using the “corrgram” package in R studio (Figure 7).
As shown in Figure 7, we reordered on the rows and columns of the matrix (made by principal
component method) in order to have similar variables with related patterns together. We obtained the
variance inflation factor (VIF) values of these variables except for the five dummy variables for the
land use types. There was no VIF value greater than 5, indicating that there exists no multicollinearity
among the variables. The remaining independent explanatory variables were included in the initial
SCV and CV training processes.
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Using global linear regression as the training model, estimates of the prediction error and variable
importance were obtained as shown in Table 3. The resampling-based prediction error results across
the 100-fold dataset are plotted in Figure 8, which indicates that the contribution to fire risk for each
independent variable varies in the different sub training sets because the importance value is not
constant. Furthermore, the difference between the absolute value of the prediction error is less for the
SCV in the training set and the testing set than for the CV models. The figure also indicates that the
prediction error in both training set and testing set for the SCV model is more dispersive while the
prediction error is more gathered for the CV model, which may reflect that the prediction deviation
is not normal for the CV. However, the mean importance for some variables changes considerably
for different sub-regions, especially for LINE, RESIDENT, and NDVI, whose contribution to fire risk
become negative in the random resampling process of the CV model. The results produced by the CV
model may be unreliable because they are contrary to the common-sense knowledge that infrastructure
fires - are often clustered in densely populated areas.

As Table 3 shows, ENTERPRISE and LINE, which are closely related to human activities, were
the most important variables influencing the value of fire risk. According to the results of the SCV
model, POSITION, ASPECT, DR, DF, SHADE, TEMMAX, TRI, DW, and TEMMIN were removed
because of their small importance values. The remaining 12 variables were used in the following LM
training process. We infer that the distance to fire stations has little correlation with the probability
of fire ignition, which means that the spatial distribution of the fire stations for improving response
efficiency does not affect the occurrence of fires, though the fire stations should be located in areas
with a high demand for service. In addition, some of the topographic predictors have little influence
on fire risk such as SHADE, and those variables were deleted because of their low average value of
variable importance.
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Table 3. Results of SCV and CV for linear regression.

Indicators
LM

SCV CV

Mean of Train.error −0.371 −0.450
Mean of Test.error −0.426 −0.446
Mean Imp of LINE 6.30 × 10−3 −1.79 × 10−3

Mean Imp of POPULATION 6.03 × 10−3 1.11 × 10−4

Mean Imp of LAND2030 2.55 × 10−3 3.39 × 10−3

Mean Imp of RESIDENT 2.10 × 10−3 −1.37 × 10−4

Mean Imp of LAND190 1.39 × 10−3 3.85 × 10−3

Mean Imp of LAND14 1.07 × 10−3 −6.83 × 10−3

Mean Imp of POSITION 5.72 × 10−4 −9.51 × 10−4

Mean Imp of ASPECT 4.11 × 10−4 1.14 × 10−3

Mean Imp of DR 3.60 × 10−4 4.15 × 10−4

Mean Imp of SHADE 1.80 × 10−4 −2.17 × 10−4

Mean Imp of TEMMAX 1.60 × 10−5 −1.65 × 10−3

Mean Imp of TRI −8.20 × 10−4 −5.48 × 10−4

Mean Imp of DW −9.61 × 10−4 2.61 × 10−4

Mean Imp of DF −1.10 × 10−3 3.85 × 10−2

Mean Imp of SLOPE −1.65 × 10−3 6.41 × 10−3

Mean Imp of TEMAVE −1.87 × 10−3 6.65 × 10−3

Mean Imp of TEMMIN −6.32 × 10−3 1.79 × 10−2

Mean Imp of MARKET −9.41 × 10−3 1.22 × 10−3

Mean Imp of DEM −9.81 × 10−3 −7.00 × 10−4

Mean Imp of NDVI −1.01 × 10−2 1.25 × 10−2

Mean Imp of ENTERPRISE −4.53 × 10−2 −3.43 × 10−3

“Imp” means the mean importance of variables. The underlined and italic values represent a negative effect towards
the response variable while normal text represents a positive effect.
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3.2. Results of the LM and the GWR-Based Model

The remaining 12 variables were first used in the training process for the LM after the feature
selection of the SCV. The regression results after the diagnosis of outliers in the LM results are shown
in Table 4. LINE, ENTERPRISE, DEM, NDVI, LAND2030, TEMAVE, and SLOPE were significant and
were included. Meanwhile, the adjusted R-squared in the LM was 0.2385 and the RSS was 3801.229.
The degree of freedom (DF) in the LM was 4992. Both LINE and ENTERPRISE are important for
the modeling of fire risk but their effect is opposite to each other. The higher the road density, the
higher the density of fire is. However, the places where enterprises are clustered have a low fire
density, because these locations are under a strict risk control management, leading to relatively scarce
occurrence of fire risk.

Table 4. Statistical summary of the LM.

Explanatory Variables Coefficient (C) Std. Error t Value Pr (>|t|)

Intercept 0.00001 0.01234 −0.001 0.9995
LINE 0.12850 0.01465 8.771 <2.0 × 10−16 ***

ENTERPRISE −0.32200 0.01581 −20.364 <2.0 × 10−16 ***
DEM −0.07834 0.01360 −5.759 0.000001 ***
NDVI −0.07091 0.01416 −5.007 <2.0 × 10−16 ***

LAND2030 −0.02292 0.01262 −1.816 0.0694 †
TEMAVE 0.07167 0.01326 5.404 0.000001 ***

SLOPE −0.02595 0.01324 −1.960 0.0500 †

“***” means the significance is at the level of 0.001 and “†” means the significance is at the level of 0.1.

Using the same data, the GWR and GTWR models were also tested and the results are reported
in Table 5. “C” is the coefficient value of the LM, “Std. Error” is the standard error of the LM
variable coefficients, ”-“ represents no value, and the bold text indicates the corresponding variable is
significantly non-stationary or one of the quantile values is bigger than “C ± Std. Error”. The adaptive
bandwidth was chosen as 0.374 and 0.242 for the GWR and GTWR models respectively, which meant
the selected sample points were weighted for the local least squares process. The results indicated
that local models based on the GWR had a better fit than the LM. The summary results show that the
GTWR model has a better fit than the GWR model and the change in the local significance level occurs
when the weight matrix is obtained from two to three dimensions.

Table 5. Statistical summary of the GWR and GTWR models.

Explanatory
Variables

GWR GTWR

Quantile (25%, 75%) C ± Std. Error Quantile (25%, 75%) C ± Std. Error

Intercept (−0.0100, 0.2175) (−0.0123, 0.0123) - -
LINE (0.0862, 0.5346) (0.1139, 0.1432) (−0.0070, 1.4744) (0.1139, 0.1432)
ENTERPRISE (−0.3433, −0.2143) (−0.3378, −0.3062) (−1.7656, 0.4415) (−0.3378, −0.3062)
DEM (−0.1752, −0.0248) (−0.0919, −0.0647) (−0.2915, 0.2071) (−0.0919, −0.0647)
NDVI (−0.1225, 0.0117) (−0.0851, −0.0568) (−0.1230, 0.1369) (−0.0851, −0.0568)
LAND2030 (−0.0462, −0.0013) (−0.0355, −0.0103) (−0.1097, 0.1554) (−0.0355, −0.0103)
TEMAVE (0.0308, 0.0949) (−0.0584, 0.0849) (−0.1026, 0.3715) (0.0584,0.0849)
SLOPE (−0.0422, 0.0092) (−0.0392, −0.0127) (−0.1376, 0.0880) (−0.0392, −0.0127)

R squared 0.2837 0.8705
RSS 3403.22 646.52

RSS
improvement GWR vs. LM: −398.01 GTWR vs. LM: −3154.71 GTWR vs. GWR: −2756.70

“C” is the coefficient value of LM. “Std. Error” is the standard error of LM variable coefficients; “-” represents no
value and the bold texts indicate that the corresponding variables are significantly non-stationary.

As seen in Table 5, all of the predictors except the intercept term are significant non-stationary
variables in the GWR and GTWR models. However, the quantile range of predictors is different for the
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GTWR and GWR models. It is worth noting that the absolute values of the upper and lower limit of
the coefficients are greater in the GTWR than in the GWR model. This reflects the need to consider the
distribution of the selected predictors as a dynamic spatiotemporal parameter in predicting fire risk
and the importance of considering the contribution of the time dimension to the fit of the model.

Additional details about the distribution and varying significance of the coefficients for the GTWR
model across space-time are shown in Figures 9 and 10. By taking the periods 1, 3, and 5 as an example,
the varying distribution of the coefficients and the correspondent t-test values (at the significance levels
of 0.01 and 0.05) are somewhat different for the three periods. We created graphs of ENTERPRISE,
LINE, and DEM (a, b, and c) as an example because of limited page space. For each predictor, the
coefficient and the t-test value change over time. In addition, heterogeneity exists both in space and
time as the varied parameter values in Figures 9 and 10 indicate.

The dark areas of ENTERPRISE and LINE indicate a positive effect mainly in some northern and
northeastern regions of the city and this may uncover strong spatial variability. Therefore, we can
determine the areas with different significance level, allowing us to make dynamic decisions to prevent
fire occurrence.
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Figure 10. t-test values of the coefficients for GTWR in different periods at the resolution of 100 m.
The letters (a–c) represent ENTERPRISE, LINE, and DEM respectively. The darker of the color, the
more significant the coefficient is. White means the variable is not significant within that region, black
indicates the variable is at the significance level of 0.01, and dark gray indicates a significance level of
0.05 (t-test value is 2.58 and 1.96 respectively).

3.3. Test of Spatial Autocorrelation for Residuals

The spatial distribution of the residuals was tested by using semivariograms and taking period
1, 3 and 5 as an illustration (Figure 11). As for GWR and LM, the semivariograms indicate a spatial
autocorrelation for the residuals of the dependent variable with a spatial lag of up to nearly 12 km;
the semivariance remains rather steady up to 100 km, beyond which it increases again to some
extent. This is good proof that the various spatial clustering patterns change at different spatial scales.
The GTWR model showed lower values of semivariance than the other two models, and exhibited
a flat semivariance line for the entire distance, as indicated by the fit curve in Figure 11. The results
show a strong ability of the GTWR model for explaining the spatial structure. The distribution of the
residuals for all time periods is shown in Figure 12, which indicates that the residuals in the GTWR
model are mostly generated outside the center of the city. In addition, the spatial shape and scope of
the distribution of the residuals are different for the five time periods.
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3.4. Assessment of Independent Validation for the Models

An independent validation was applied initially to the 500 sample points across the different
time periods. Afterward, only 491 of these 500 sample points were used in the validation process after
eliminating the points without effective values. The final GWR and GTWR models and their related
predictor coefficient values were extracted and the RSS were obtained as shown in Table 6. The GTWR
model proved more robust in the independent validation because it’s the model that has the lowest
RSS value, which indicates that for our dataset, the GTWR model is assumed the best prediction model.
The results for the RSS are nearly identical for the GWR (571.516) as for the LM (570.207).

Table 6. Statistical comparison among the three models (accounting for the RSS).

Time Period
Model

LM GWR GTWR

1 567.517 567.919 507.709
2 573.082 574.668 506.101
3 569.504 570.852 507.263
4 575.697 572.586 508.224
5 565.234 571.556 510.529

RSS Average value 570.207 571.516 507.965

Although statistical performance varies between the different time periods and considering the
differences in the fitting mechanism of the GTWR and GWR models, we may infer that the GTWR
model performs best not only in the training sets but also in the independent validation sets. Previous
research has shown that GTWR was statistically the best among LM, GWR, and GTWR [17,18] and our
results provide further evidence of this.

3.5. Heterogeneity of the Variable Significance Level

The number of variables which are significant at different levels is unevenly distributed in space
and time. As shown in Figure 13, we observed that for the GTWR model in different time periods, the
number of variables with different significance levels (0.01 and 0.05) varied across the entire city.
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Meanwhile, the figure indicates that all seven variables are significant in the center area, which
has the densest population while the number of significant variables changes hierarchically in some
northern and eastern regions. The results show that the heterogeneity mainly exists in rural areas
where human-related facilities or road construction are only clustered in the sub-centers. GTWR can
detect imperceptible changes and this finding illustrates the advantage of GTWR when compared to
GWR and LM.

3.6. Spatiotemporal Changes in Fire Density

We studied the causes of the spatiotemporal changes in fire occurrence at the city scale. The seven
predictors chosen by the models were not constant all the time and LINE and ENTERPRISE were the
most important variables. Therefore, the changes in value of the grid cells of LINE and ENTERPRISE
were calculated by subtraction from period 1 to period 2, etc., for all periods. The changes in value
were standardized and thus a correlation coefficient between the change of variable and the change
of fire density was obtained (Figure 14). As indicated in Figure 14, although ENTERPRISE is the
most important variable in the GTWR model, the variable which influences the change in fire density
temporally is varying. ENTERPRISE influences the change in fire density more than LINE prior to
period 2, close to the year of 2005. LINE plays a more important role than ENTERPRISE after period 3,
which can be probably explained by the expansion of the urban region and the changes in the shape of
the city. An increasing number of buildings and infrastructure have been constructed in the newly
built area, called the city sub-center, and a dense road network and related supporting facilities have
been developed. The improvement in access by the population will indirectly contribute to the growth
of fire occurrence. On the other hand, by implementing technology to control fire risk in enterprises,
the frequency of fire is less than before. Moreover, with the increase in land costs in urban areas, an
increasing number of enterprises have moved to the suburbs and as the population will also increase
in these areas, more sub-centers of fire risk will develop.

Int. J. Environ. Res. Public Health 2017, 14, 396  18 of 22 

 

northern and eastern regions. The results show that the heterogeneity mainly exists in rural areas 

where human-related facilities or road construction are only clustered in the sub-centers. GTWR can 

detect imperceptible changes and this finding illustrates the advantage of GTWR when compared to 

GWR and LM. 

3.6. Spatiotemporal Changes in Fire Density 

We studied the causes of the spatiotemporal changes in fire occurrence at the city scale. The 

seven predictors chosen by the models were not constant all the time and LINE and ENTERPRISE 

were the most important variables. Therefore, the changes in value of the grid cells of LINE and 

ENTERPRISE were calculated by subtraction from period 1 to period 2, etc., for all periods. The 

changes in value were standardized and thus a correlation coefficient between the change of 

variable and the change of fire density was obtained (Figure 14). As indicated in Figure 14, although 

ENTERPRISE is the most important variable in the GTWR model, the variable which influences the 

change in fire density temporally is varying. ENTERPRISE influences the change in fire density 

more than LINE prior to period 2, close to the year of 2005. LINE plays a more important role than 

ENTERPRISE after period 3, which can be probably explained by the expansion of the urban region 

and the changes in the shape of the city. An increasing number of buildings and infrastructure have 

been constructed in the newly built area, called the city sub-center, and a dense road network and 

related supporting facilities have been developed. The improvement in access by the population will 

indirectly contribute to the growth of fire occurrence. On the other hand, by implementing 

technology to control fire risk in enterprises, the frequency of fire is less than before. Moreover, with 

the increase in land costs in urban areas, an increasing number of enterprises have moved to the 

suburbs and as the population will also increase in these areas, more sub-centers of fire risk will 

develop.  

 

Figure 14. Histogram plot of the correlation between the change of predictors and the change of fire 

density. 

4. Conclusions 

In this study, we first performed a spatial cross validation for a linear regression model and 

compared its results with a stochastic cross validation. The contribution to fire risk by variables 

varied in different sub training sets and we infer that this kind of nonstationary situation also 

existed across space and that SCV could reduce the prediction error. The results also showed that 

the variables LINE and ENTERPRISE were the most important variables for modeling fire risk, 

although their effects on fire risk were opposite to each other. Further, the results indicated that 

road density and the population distribution had the most positive influence on fire risk, which 

implies that we should pay more attention to locations where roads and people are densely 

Figure 14. Histogram plot of the correlation between the change of predictors and the change of
fire density.

4. Conclusions

In this study, we first performed a spatial cross validation for a linear regression model and
compared its results with a stochastic cross validation. The contribution to fire risk by variables varied
in different sub training sets and we infer that this kind of nonstationary situation also existed across
space and that SCV could reduce the prediction error. The results also showed that the variables
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LINE and ENTERPRISE were the most important variables for modeling fire risk, although their
effects on fire risk were opposite to each other. Further, the results indicated that road density
and the population distribution had the most positive influence on fire risk, which implies that we
should pay more attention to locations where roads and people are densely clustered. The results
also showed that areas with a large number of enterprises had fewer fire ignition records, probably
because of strict fire management and prevention measures. Infrastructure fire risk was commonly
clustered in areas with dense population and increased human activities, which was in line with the
common-sense knowledge.

The study compared LM, GWR, and GTWR by using the variables with a high mean importance
value, which were used in the modeling process for fire risk at the city scale. LINE, ENTERPRISE,
DEM, SLOPE, LAND2030, and TEMAVE which were all significant were employed in the LM first.
The results showed that constant coefficient models like LM did not predict fire risk accurately and
could not reveal the spatiotemporal heterogeneity. The statistical results highlighted the weakness of
the LM considering the low R-squared value.

With regard to GWR-based methods, the statistical performance improved when compared
to OLS and the GTWR was the best model. The R-squared values were 0.2385, 0.2837, and 0.8705
for OLS, GWR and GTWR respectively as shown in Table 5. More details on the distribution and
varying significance of the coefficients for GTWR across space-time were illustrated and the varying
distribution of the coefficients together with the correspondent t-test values (at the significance level of
0.01 and 0.05) changed to some extent for the different periods.

With regard to the spatial distribution of the residuals, the semivariograms indicated spatial
autocorrelation for GWR and LM up to a 12-km lag, with a relatively steady semivariance up to 100 km,
beyond which it increased again to some extent. This is good proof that the various spatial clustering
patterns changed at different spatial scales. The GTWR model showed lower values of semivariance
than the GWR and the LM, as well as a flat semivariance line for the entire distance. The results
showed the strong ability of GTWR to explain the spatial structure.

For the validation process, GTWR proved more robust because the model had the lowest RSS
value, which indicates that for our dataset, the GTWR is the best of the fitted regression models.
In addition, a deeper exploration of the GWR revealed the heterogeneity to some extent, although
the gap between GWR and GTWR was significant. The results indicate that all seven selected
variables are significant in the center areas which have the densest population while the number
of significant variables changed hierarchically in some northern and eastern regions. The results show
that the heterogeneity mainly exists in suburban and rural areas where human-related facilities or
road construction are only clustered in some sub-centers of a city. GTWR can capture small changes
while GWR cannot. This finding further illustrated the advantage of GTWR when compared to GWR
and LM.

In addition, an in-depth analysis of the relationship between the change in predictors and the
change in fire density was conducted. The results show that the variable that influences the change
in fire density temporally is varying. This can be probably explained by the expansion of the urban
region and the changes in the shape of the city. In addition, an increasing number of buildings and
infrastructures have been constructed in the newly built area and the improvement in access by
the population will indirectly contribute to the growth of fire occurrence. On the other hand, by
implementing technology to control the fire risk in enterprises, the frequency of fire is less than before.
Moreover, more sub-centers of fire risk will develop.

The findings in this paper reveal the advantages of using GTWR for explaining fire risk
spatiotemporally. This approach, which integrates space and time, enables us to understand the
dynamic change in fire risk. Further, we can also make accurate predictions by using the variables that
have a high correlation with fire risk in city areas. Therefore, we can determine the areas with different
significance levels, allowing us to make dynamic decisions to prevent fire occurrence. An additional
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finding of this study was that the calculation of the bandwidth used in GTWR will also influence the
results and this aspect should be studied further in the future.
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