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In this study, we employed platinum-assisted surface-assisted laser desorption/ionization mass spectrometry 
imaging (MSI) (Pt-SALDI-MSI) to detect and visualize the spatial distribution of antioxidant additives and 
organic dyes in polystyrene films undergoing photodegradation. In traditional matrix-assisted laser desorp-
tion/ionization mass spectrometry (MALDI-MS), matrix-derived ion peaks often obscure signals from 
low-molecular-weight analytes. Pt-SALDI-MSI, which utilizes inorganic nanoparticles instead of an organic 
matrix, enables the interference-free analysis of low-molecular-weight compounds, thereby addressing the lim-
itation of traditional MALDI-MS. Using Pt-SALDI-MSI, we observed the degradation and distribution of 
Irganox 1098 (an antioxidant) and crystal violet (an organic dye) following ultraviolet irradiation. This method 
effectively captures the photodegradation process, providing valuable insights into the environmental break-
down of plastics and the formation of microplastics.
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1. INTRODUCTION
Matrix-assisted laser desorption/ionization mass spec-

trometry (MALDI-MS) is a widely used technique in mass 
spectrometry. One notable advantage of this technique is that 
the matrix absorbs most of the laser energy, preventing sam-
ple decomposition and enabling high-sensitivity detection of 
high-molecular-weight compounds such as peptides and pro-
teins.1) However, a significant limitation remains: the matrix 
desorbs and ionizes along with the sample, producing strong 
interfering ion peaks in the low-molecular-weight region of 
the mass spectrum. This interference makes it challenging to 
analyze low-molecular-weight compounds accurately.2)

To address this issue, surface-assisted laser desorption/ 
ionization mass spectrometry (SALDI-MS) was developed as a 
matrix-free ionization technique. SALDI-MS employs inorganic 
nanoparticles as ionization-assisting agents, thereby avoiding 
matrix-derived ion peaks and facilitating the interference- 
free analysis of low-molecular-weight compounds.3–5) Among 

the various inorganic nanoparticles, platinum (Pt) has shown 
particular efficacy as an ionization-assisting agent in SAL-
DI-MS owing to its favorable properties, including ultraviolet 
(UV) light absorption, high melting point, good electrical 
conductivity, and low thermal conductivity.6–10)

Mass spectrometry imaging (MSI) has been applied to 
biological samples using MALDI-MS. MSI performs mass 
spectrometry on entire tissue sections, producing images that 
show the spatial distribution of specific ion peaks.11) Although 
MSI is typically conducted with MALDI-MS, it has certain 
limitations, such as uneven matrix distribution (“sweet spots”) 
and positional inaccuracies caused by solvent effects.12) To 
overcome these limitations in MALDI-MSI, SALDI-based 
MSI has been developed recently.13,14) Our group has devel-
oped a Pt-deposited SALDI-MS (Pt-SALDI-MSI) for MSI 
applications.15–18) Pt-SALDI-MSI provides a more uniform 
coating of samples via Pt deposition, reduces sample mis-
alignment due to its dry deposition process, and is suitable for 
analyzing non-conductive samples.
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Synthetic polymer chemistry has advanced significantly 
over the past century, leading to diverse macromolecules 
with complex structures. Mass spectrometry has become a 
key tool in analyzing these polymers, especially in address-
ing challenges like desorption, ionization, and structural 
analysis of large molecules while reducing spectral com-
plexity.19–21) Analyzing the additives in polymers and plastic 
materials is essential for understanding the distribution of 
these substances in polymer-based products. Additives are 
incorporated into polymers to enhance their durability, UV 
protection, and color stability, among other characteristics. 
The types and proportions of these additives vary depending 
on the processing method, application, and manufacturer, 
making their analysis crucial for quality control and perfor-
mance optimization. Traditional extraction-based methods 
for polymer additive analysis, such as gas chromatography 
and high-performance liquid chromatography, are commonly 
used to separate and quantify volatile and nonvolatile organic 
additives.22–24) Although effective for identifying and quan-
tifying these components, these methods are limited in 
their ability to visualize the spatial distribution of additives 
within the material and their changes over time. There-
fore, complementary analytical methods such as Fourier- 
transform infrared spectroscopy (FT-IR) and X-ray photo-
electron spectroscopy (XPS) are often employed. However, 
FT-IR and XPS primarily provide information on functional 
groups and molecular structures rather than a detailed spatial 
distribution.

The SALDI-MSI allows for the analysis of non-conductive  
samples and is particularly effective in detecting low- 
molecular-weight compounds. This technique shows prom-
ise as a direct method for identifying and mapping the 
distribution of additives within polymer matrices. Despite 
its potential, studies on the application of SALDI-MSI for 
additive analysis in polymers remain scarce.25) In this study, 
we used Pt-SALDI-MSI to detect and investigate the spatial 
distribution of additives, particularly antioxidant additives 
and organic dyes, in polystyrene films. Understanding the 
degradation behavior of antioxidants under UV irradiation 
is essential to elucidate their protective role in polymer films 
and assess their effectiveness in preventing degradation. 
UV degradation is one of the primary mechanisms whereby 
plastics decompose in the environment.26–28) Plastics con-
taining additives deteriorate progressively under UV expo-
sure, generating small fragments and fine particles. These 
microplastic fragments accumulate in the environment, 
raising concerns about their entry into rivers and oceans. 
Therefore, we examined the transformation of the additives 
into polystyrene films subjected to UV irradiation using 
Pt-SALDI-MSI.

2. EXPERIMENTAL
2.1 Reagents

Sodium trifluoroacetate (NaTFA),  angiotensin II (Ang II), 
dimethyl[4-[bis[4-(dimethylamino)phenyl]methylene]-2, 
5- cyclohexadiene-1-ylidene]aminium chloride (crystal violet; 
CV), and tetrahydrofuran (THF) were purchased from Wako 
Pure Chemical Industries, Ltd. (Osaka, Japan) Polystyrene 
and α-cyano-4-hydroxycinnamic acid (CHCA) were obtained 
from Sigma-Aldrich (Burlington, MA, USA). Ethyl 3,5-di-tert- 
butyl-4-hydroxybenzylphosphonic acid (Irganox 1098) and 

tris(2,4-di-tert-butylphenyl)phosphite (Irgafos 168) was sourced 
from Ciba Specialty Chemicals Co., Ltd. (Basel, Switzerland).

2.2 Pt-SALDI-MS measurement of additives in 
polystyrene film

2.2.1 Polystyrene film with Irganox 1098 and 
Irgafos 168

The polystyrene films containing additives were prepared 
by dissolving polystyrene in THF with 1% (w/w) Irganox 
1098 and 1% (w/w) Irgafos 168. This solution was then 
spin-coated onto a substrate to form uniform films, using 
300 µL of the solution at a rotation speed of 300 rpm for  
30 s, and the film was deposited onto a glass substrate. Pt 
was deposited on the polymer film to a thickness of 10 nm, 
and SALDI-MS measurements were conducted. In addition, 
one of the films was exposed to UV light for 20 min using a 
high-pressure mercury lamp.

2.2.2 Polystyrene film with CV
A solution of polystyrene in THF was mixed with 0.5 wt% 

CV. This solution was spin-coated to form uniform films by 
applying 300 µL at 300 rpm for 30 s, and the polymer film 
was deposited onto a glass substrate. Hereafter, the polymer 
films were exposed to UV light for 10, 20, or 30 min using 
a high-pressure mercury lamp. Pt was deposited on all the 
films, including one that was not exposed to UV light, at a 
thickness of 10 nm. Subsequently, Pt-SALDI-MS measure-
ments were performed.

2.2.3 Instrumentation
SALDI-MS was performed in the positive-ion mode 

using an AXIMA-CFR mass spectrometer (Shimadzu Cor-
poration, Kyoto, Japan). Calibration was conducted with 
CHCA and Ang II H+ adducts, detected at m/z 190.05 and 
m/z 1046.54, respectively. SALDI-MSI measurements were 
performed using an Autoflex Speed instrument (Bruker 
Daltonics, Bremen, Germany). UV exposure was applied 
using a high-pressure mercury lamp (HLR100T-2, Mizuka 
Planning Co., Ltd., Tokyo, Japan) with a UV intensity of 
170 W/cm². Pt was deposited using an MSP-1S magnetron 
sputtering device (Vacuum Device Inc., Ibaraki, Japan) and 
a JFC-1600 sputter coater (JEOL Ltd., Tokyo, Japan). The 
NaTFA cationizing agent solution (0.5 mg/mL) was sprayed 
using a Mr. Linear Compressor L5 (GSI Creos Corporation, 
Tokyo, Japan), and the spin coating was performed using 
an Opticoat MS-A100 spin coater (Mikasa Co. Ltd., Tokyo, 
Japan).

3. RESULTS AND DISCUSSION
3.1 Antioxidants in polystyrene film

Irganox 1098 is a hindered phenol antioxidant that acts as 
a radical scavenger, while Irgafos 165 is a phosphite-based 
stabilizer that decomposes hydroperoxides, preventing oxi-
dative degradation of polymers. Both are widely used to 
enhance the stability of polymers by addressing different 
aspects of degradation pathways.

Figure 1 shows the Pt-SALDI-MS mass spectra of polysty-
rene films containing various concentrations of Irganox 1098 
(0.1, 1, and 5 wt%). In the film with 5 wt% Irganox 1098, 
peaks corresponding to Na+ and K+ adducts were observed, 
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with the Na+ adduct peak showing greater intensity (Fig. 
1A). When NaTFA cationizing agent solution is sprayed 
during analysis, the sodium ions detected as adducts are 
likely derived from this solution. Conversely, the detection 
of Irganox as potassium adduct ions indicates that K+ likely 
originated either from the original sample or as a result of 
environmental contamination during the analysis. As the 
concentration of Irganox 1098 decreased, the Na+ adduct 
peak intensity diminished, becoming less prominent at  
1 wt% (Fig. 1B) and undetectable at 0.1 wt% (Fig. 1C). In the 
Pt-SALDI-MS spectrum of the polystyrene film containing 

1 wt% Irgafos 168, a peak corresponding to the protonated 
molecule was detected (Fig. S1).

3.2 Photodegradation of antioxidants in 
polystyrene film

Figure 2 shows the Pt-SALDI-MS spectra of a polystyrene 
film containing 1 wt% each of Irganox 1098 and Irgafos 
168 recorded before and after UV irradiation for 20 min. 
Prior to irradiation, only the Na+ and K+ adduct peaks of 
Irganox 1098 were detected and no peaks for Irgafos 168 
were observed (Fig. 2A). This suggests an ion-suppression 
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Fig. 1.  Pt-SALDI-MS mass spectra of polystyrene films containing various concentrations of Irganox 1098 with (A) 5 wt%, (B) 1 wt%, and (C) 0.1 wt%. 

Pt-SALDI-MS, platinum-deposited surface-assisted laser desorption/ionization mass spectrometry. 
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effect of Irgafos 168, which led to the preferential detection 
of Irganox 1098. After the UV exposure, the Irganox 1098 
peak disappeared, indicating that Irganox 1098 underwent 
photodegradation (Fig. 2B). Figure 2C displays ion images 
of the polystyrene film containing 1 wt% Irganox 1098 and  
1 wt% Irgafos 168, both before and after UV irradiation, 
using Pt-SALDI-MSI (Na+ adduct at m/z 660 ± 3.3, laser 
interval: 100 µm). In this study, the laser interval of 100 µm 
represents the spacing between measurement points during 
laser scanning performed within the sample.

The spotty signal intensities observed in the  non-irradiated 
regions, as shown in Fig. 2C, could indeed be due to the 
uneven distribution of additives in the polymer film. 
After irradiation, the Irganox 1098 peaks were no longer 
detectable in the UV-irradiated region, demonstrating that 
 Pt-SALDI-MSI can effectively monitor the photodegradation 
of Irganox 1098 in polystyrene films. Although the reduction 
of Irganox 1098 was clearly visualized, structural identifi-
cation and imaging of its decomposition products were not 
achieved in this study.

3.3 Photodegradation of CV dye
CV dye was selected as a representative dye due to its ease 

of detection via mass spectrometry, enabling us to monitor 
the additive’s distribution effectively. In addition, CV is com-
monly used to alter the optical properties of polymer films. 
CV dye was detected using LDI-MS without a Pt coating 
(Fig. S2a). However, with Pt-SALDI-MS, the peak intensity 
increased approximately 150-fold, with a prominent peak 
for CV [M+] at m/z 372 (Fig. S2b), indicating that the Pt 
coating significantly enhanced the CV peak intensity. Figure 
3 presents the Pt-SALDI-MS spectra of a polystyrene film 
containing 0.5 wt% CV before and after 10, 20, and 30 min 
of UV exposure. Following UV irradiation, peaks for the CV 
degradation products appeared, with low-molecular-weight 
fragments observed as the exposure time increased. These 

degradation products were detected at m/z 358, 344, 330, 
and 316, along with a molecular ion at m/z 372. The chemical 
structures of the degradation products are shown in Fig. S3. 
After 30 min of irradiation, the original peak at m/z 372 was 
no longer detectable.

Figures 4 and 5 show ion images obtained by 
 Pt-SALDI-MSI (laser interval: 300 µm) of the polystyrene 
film containing 0.5 wt% CV before and after 10 and 20 min 
of UV irradiation. In this study, the laser interval of 300 µm 
represents the spacing between measurement points during 
laser scanning performed within the sample. The integrated 
Pt-SALDI-MS mass spectra of Pt-SALDI-MSI are shown in 
Fig. S4. An optical photograph of the film post-UV expo-
sure, with UV light applied through a custom slit and a 
high-pressure mercury lamp, shows faded coloration in the 
irradiated area (Fig. 4A). The ion images in Fig. 4 depict (B) 
the molecular ion of CV at m/z 372 ± 0.9 and degradation 
products at (C) m/z 358 ± 0.9, (D) m/z 344 ± 0.9, (E) m/z 
330 ± 0.8, and (F) m/z 316 ± 0.8. After 20 min of UV expo-
sure, the intensity of the CV molecular ion peak (m/z 372) 
decreased, whereas the peak at m/z 358 became indistinct, as 
shown in Fig. 5. The peaks at m/z 344, 330, and 316 became 
more pronounced, enabling visualization of the spatial 
distribution of the photodegraded CV products in the ion 
images. After 30 min of UV exposure, further degradation 
occurred and almost no detectable signal was observed in 
the UV-irradiated region (Fig. S5).

In this study, no polymer degradation products were 
detected; however, the detection and analysis of such prod-
ucts remain essential for achieving a deeper understanding 
of polymer degradation mechanisms. In addition, mass 
spectrometry imaging of photodegradation compounds 
derived from additives, such as antioxidants, is pivotal in 
exploring how these compounds affect the formation of 
polymer degradation products. This underscores the intri-
cate relationship between additive photodegradation and 
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Fig. 4.  Ion images obtained by Pt-SALDI-MSI (laser interval: 300 µm) for the polystyrene film containing 0.5 wt% CV after UV irradiation for 10 min 
(B)–(F). (B) m/z 372 ± 0.9, (C) m/z 358 ± 0.9, (D) m/z 344 ± 0.9, (E) m/z 330 ± 0.8, and (F) m/z 316 ± 0.8. The photograph of polystyrene film  
is also shown in (A). The contrast of the image inside the frame in (A) differs from that outside the frame because the image within the frame is  
a photograph of the sample, adjusted to enhance its visibility. The width of the slit is 2.0 mm. The scale bar is 4 mm. CV, crystal violet; 
 Pt-SALDI-MSI,  platinum-deposited surface-assisted laser desorption/ionization imaging mass spectrometry; UV, ultraviolet. 
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polymer stability, highlighting an important area for future 
research aimed at further elucidating the degradation path-
ways of polymers.

4. CONCLUSION
The Pt-SALDI-MSI technique demonstrated in this study 

proved effective for analyzing additives and their degradation 
in polystyrene films. The photodegradation of the antioxidant 
Irganox 1098 and the spatial distribution of the degradation 
products of CV dye were successfully visualized, confirm-
ing that Pt-SALDI-MSI enables the matrix-free analysis of 
low-molecular-weight compounds. This approach shows 
great potential for advancing our understanding of polymer 
degradation mechanisms and the environmental decomposi-
tion of plastics.
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