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Robust prognostic gene signatures and therapeutic targets are
difficult to derive from expression profiling because of the signif-
icant heterogeneity within breast cancer (BC) subtypes. Here, we
performed forward genetic screening in mice using Sleeping Beauty
transposon mutagenesis to identify candidate BC driver genes in an
unbiased manner, using a stabilized N-terminal truncated β-catenin
gene as a sensitizer. We identified 134 mouse susceptibility genes
from 129 common insertion sites within 34 mammary tumors. Of
these, 126 genes were orthologous to protein-coding genes in the
human genome (hereafter, human BC susceptibility genes, hBCSGs),
70% of which are previously reported cancer-associated genes, and
∼16% are known BC suppressor genes. Network analysis revealed a
gene hub consisting of E1A binding protein P300 (EP300), CD44
molecule (CD44), neurofibromin (NF1) and phosphatase and tensin
homolog (PTEN), which are linked to a significant number of
mutated hBCSGs. From our survival prediction analysis of the ex-
pression of human BC genes in 2,333 BC cases, we isolated a six-
gene-pair classifier that stratifies BC patients with high confidence
into prognostically distinct low-, moderate-, and high-risk sub-
groups. Furthermore, we proposed prognostic classifiers identi-
fying three basal and three claudin-low tumor subgroups.
Intriguingly, our hBCSGs are mostly unrelated to cell cycle/mito-
sis genes and are distinct from the prognostic signatures cur-
rently used for stratifying BC patients. Our findings illustrate
the strength and validity of integrating functional mutagenesis
screens in mice with human cancer transcriptomic data to iden-
tify highly prognostic BC subtyping biomarkers.
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Breast cancer (BC) is the most prevalent cancer in women in
North America, representing nearly one in three cancers

diagnosed (1). BC is classified clinically into three basic groups,
based primarily on receptor expression, that are valuable from a
therapeutic perspective: (i) patients with estrogen receptor-
positive (ER+) cancer receive endocrine therapy, such as ta-
moxifen, which targets the ER; (ii) patients with amplified
human epidermal growth factor receptor 2 (HER2, also called
“ERBB2”) are treated with therapeutic agents against HER2,
such as trastuzumab; and (iii) patients with triple-negative cancer
[lacking the expression of ER, progesterone receptor (PGR),
and HER2] are treated with chemotherapy.
Gene-expression patterns classify human BC into six major

molecular subgroups: luminal A, luminal B, normal breast
tissue-like, basal-like, HER2 (2), and claudin-low; the last was

most recently discovered and is linked with poor prognosis (3).
However, recent molecular subtyping analyses of the integrated
copy number and transcriptomic datasets of 2,000 BC patients
have revealed even further complexity, with 10 distinct subgroups
that partially overlap with the previous subtypes (4). These clas-
sifications underscore the complexity of BC tumorigenesis, par-
ticularly the clinical heterogeneity within the intermediate and
high histological grades and triple-negative tumors, which are
generally associated with poor disease outcomes. The biological
behaviors of these molecular subtypes are driven by aberrant
(pro-oncogenic and tumor suppressor) signaling of regulatory
pathways, but how this dysregulation relates to prognosis and
treatment outcomes is still unclear (5). The systematic assessment
of prognostic gene signatures for BC shows the distinct influence
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of time and ER status (6). Although the genetic aspects of BC
have been studied for decades, BRCA1 (7) and BRCA2 (8) were
identified only in the early 1990s as BC susceptibility genes
(BCSGs) derived from mutations. Since then, several other BC
driver genes have been identified, including TP53 (9), CHEK2
(10), PIK3CA (11–14), PTEN (15), CASP8, FGFR2, and MAP3K1
(16). Extensive mutational profiling by exome sequencing of 100
tumors recently highlighted more than 40 BCSGs, including nine
that were previously unrecognized (17). Each BC can carry, on
average, one mutation per megabase (11), and a normal human
cell can acquire 7–15 somatic mutations before malignant trans-
formation (18–21). Thus, most mutations in BC are likely to be
passenger mutations that do not contribute to tumorigenesis or
tumor progression. Functional screens that can identify the driver
mutations in BC thus are distinctly warranted. Sleeping Beauty
(SB) transposon-based insertional mutagenesis screening in mice
has emerged as a powerful, functional approach for the identifi-
cation of BCSGs. SB overcomes the limitations of previous tools
(such as retroviral insertional mutagenesis) and has been applied
successfully to a number of solid tumor types, including colorectal
cancers (22), intestinal cancers (19, 23), hepatocellular cancers
(24, 25), pancreatic adenocarcinoma (26), and peripheral nerve
sheet tumors (27). The method harnesses the use of DNA cut-
and-paste transposons that are engineered to elicit either loss- or
gain-of-function mutations in somatic tissues to accelerate the
formation of specific tumors in mice. Such transposon insertions
can cause multiple dysfunctions in tumor-suppressor genes and
proto-oncogenes: Tumor suppressors may be inactivated by loss-
of-function mutations, or, in some cases, the mutation could
change the function or interaction network of the genes and cause
pro-oncogenic functions. Gain-of-function mutations in proto-
oncogenes could lead to the activation of oncogenic pathways.
As such, mapping the SB insertion sites will unveil the relevant
BCSG(s).
In this study, we performed SB transposon-based forward

genetic screening in mice to identify functionally relevant BC
driver genes. We used a K5-Cre transgene that was expressed in
both luminal and basal cells to induce transposition and drive the
formation of different mammary tumor subtypes. We also used
the K5-N57β-cat transgenic mouse line to introduce a stabilized
N-terminally truncated β-catenin gene as a sensitizing mutation;
the expression of activated β-catenin from the K5 promoter
promotes basal-like mammary tumor formation in vivo (28).
Through this approach, we identified 134 mouse BC suscepti-
bility genes (mBCSGs) from 129 common integration loci. Of
these, 126 human orthologs were identified as human BC sus-
ceptibility genes (hBCSGs). Through integrated data analyses we
found that most of these hBCSGs are mutated in human BC and
more commonly are tumor-suppressor genes. We identified a six-
gene-pair signature that could be used to prognose disease-free
and overall survival (OS) and to stratify all BC subtypes into three
different risk groups. Within the basal-like and claudin-low tumor
subtypes, we further defined two prognostic gene signatures
(21-hBCSGs and 16-hBCSGs, respectively) that could be used to
stratify patients with each tumor subtype reliably into groups at
relatively low, medium, and high risk of disease development.

Results
SB Transposon Mutagenesis Promotes Mammary Tumor Formation
and Induces a Broad Spectrum of Mammary Tumor Types. To iden-
tify BCSGs, we performed SB transposon-mediated mutagenesis
screening in a K5-ΔN57-β-catenin (N57β-cat) mouse model to-
gether with a K5-Cre line to activate Cre-inducible transposon
mutagenesis in the mammary epithelium. The K5 promoter in
the N57β-cat model drives the expression of stabilized N-termi-
nally truncated β-catenin in the basal cell layer of the mammary
epithelium (28), resulting in basal-like mammary tumors. For
activation of the SB transposase, we used a K5-Cre transgene

(29) that expresses Cre in both the luminal and basal epithelia
from 18 d of gestation to the early postnatal period (Fig. S1). To
generate the experimental cohorts, we first generated a K5-Cre+/−;
N57β-cat+/− sensitizer line that was bred to compound homozy-
gous SB mice carrying the Rosa26 Cre-inducible SB transposase
(LSL-SB) and a high copy mutagenic transposon array (T2Onc2)
(Fig. S2): (i) N57β-cat+/−, K5-Cre+/−, SB+/−, T2Onc2+/− mice
expressing the N-terminally truncated β-catenin and activated SB
transposase; (ii) K5-Cre+/−; SB+/−; T2Onc2+/−mice expressing the
activated SB transposase; and (iii) N57β-cat+/−; SB+/−;
T2Onc2+/− mice expressing only the N-terminally truncated
β-catenin. From the experimental crosses, we aged 46 quadruple
N57β-cat/SB transgenic mice (N57β-cat+/−; K5-Cre+/−; SB+/−;
T2Onc2+/−), 43 triple SB transgenic mice (K5-Cre+/-; SB+/−;
T2Onc2+/−), and 20 triple transgenic N57β-cat mice (N57β-
cat+/−; SB+/−; T2Onc2+/−) and monitored them for mammary
tumor formation over 24 mo. SB induced by the K5-Cre transgene
was activated in the quadruple transgenic mice and triple SB mice
(Fig. 1A). We observed that, on average, the time for tumor de-
velopment did not differ significantly (log-rank P > 0.05) among the
three cohorts (quadruple N57β-cat/SB mice: 14.2 mo; triple SB
mice: 15.5 mo; triple N57β-cat mice: 13 mo). However, the in-
cidence of mammary tumors was significantly higher in the qua-
druple N57β-cat/SB transgenic mice (61%, n = 28/46) than in the
triple SB mice (33%, n = 14/43) or triple N57β-cat mice (30%, n =
6/20) (Fig. 1B). Thus, SB transposon mutagenesis is sufficient
to initiate mammary tumor formation and can cooperate with
N-terminally truncated N57β-catenin to promote a higher incidence
of mammary tumorigenesis.
Next, we examined the histological subtypes of the mammary

tumors induced in the different transgenic mice groups (n = 34;
25 from quadruple N57β-cat/SB mice; nine from triple SB mice)
(Dataset S1). Consistent with previous studies, mammary tumors
from triple N57β-cat mice were exclusively squamous carcinoma.
In contrast, mammary tumors from quadruple N57β-cat/SB mice
and triple SB mice were a mixture of squamous carcinoma (50
and 38%, respectively), adenocarcinoma (23 and 38%, re-
spectively), and adenosquamous carcinoma (32 and 25%, re-
spectively) (Fig. S3 and Dataset S1), indicating that SB
transposon mutagenesis may disrupt/overexpress driver genes
that are involved in the differentiation of a broad spectrum of
mammary tumor subtypes. To verify this hypothesis, we per-
formed unsupervised clustering of expression profiles from the
β-catenin– and SB-induced mammary tumors and compared
them with published expression datasets of different mouse
mammary tumors (Materials and Methods and Fig. 1C). Tumors
induced by β-catenin expression from the K5 promoter were
exclusively of the mesenchymal subtype. In contrast, SB-induced
tumors showed a wider spectrum of subtypes [mesenchymal, human
epidermal growth factor receptor 2 (Neu), ductal, and glandular]
(Fig. 1C). These findings indicate that transposon mutagenesis
promoted the development of different mammary tumor subtypes.

Identification of mBCSGs by Deep Sequencing of Tumors and Analysis
of Transposon Integration Sites. To identify candidate driver genes,
we performed linker-mediated PCR and deep sequencing of
tumors to map the transposon insertion sites. Among 41 se-
quenced samples only 34 mammary tumors with histology were
used for analysis of common insertion site (CIS) genes. After
filtering for mapped sequences that contain the transposon se-
quence–genome junctions at TA-motif sites in the mouse ge-
nome, we identified 11,664 transposon insertions, of which
11,457 (98.2%) were unique. Next, we used the Gaussian kernel
convolution (GKC) algorithm (30) to identify CIS that were
statistically overrepresented in the samples, signifying likely
driver genes. To maximize statistical power to detect CIS genes,
the insertions from both quadruple and triple SB transgenic mice
were pooled for analysis using a range of 15- to 250-kB scales in
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the GKC algorithm to identify insertion peaks for both small and
large genes. As an additional step to reduce false-positive calls of
CIS peaks, we excluded insertions that mapped to chromosome 1
where the high-copy transposon array donor site is located and
where higher insertion frequencies are observed because of local
hopping induced by SB-mediated transposition (22, 30, 31).
From the GKC analysis, we identified 129 CIS peaks; 128 were

located in or near 133 coding genes, and one was located near a
microRNA cluster (Dataset S2). To identify the putative effect
of these insertions, we mapped integration sites and CIS peaks
onto gene loci to visualize the pattern of integrations (Fig. 2A).
For example, we identified Nf1 as the CIS-associated gene with
the highest number of transposon insertion sites in mammary
tumors induced by SB transposon mutagenesis (Fig. 2A and

Dataset S2). Inspection of the integration sites showed that the
insertions occurred in both directions, suggesting a loss-of-
function disruption in the Nf1 gene. This finding is consistent
with previous studies showing Nf1 loss-of-function mutations in
mouse mammary tumors and NF1 loss-of-function mutations in
human BCs (32). In further support of this association, the NF1
gene is deleted or mutated in 27.7% of all breast carcinomas
(33), and women with neurofibromatosis type I disease (caused
by NF1 loss-of-function mutations) have an increased risk of BC
(34). Examination of the other CIS genes with frequent inte-
grations (Pten, Tnks, Rere, Lpp, and Fbxw7) (Fig. 2A) showed
random integrations along each of the gene loci similar to Nf1,
indicating possible loss-of-function disruptions in these genes.
Consistent with these observations, FBXW7 and PTEN are
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Fig. 1. SB mutagenesis drives mammary tumorigenesis in the mouse. (A) SB was activated in both the luminal and basal cell layers of the mouse mammary
gland. (B) Tumor incidence rates among three different groups of mice across time. (C) Heatmap of mouse mammary tumor subtypes and mRNA expression
for our genes of interest across mouse (green indicates low expression; red indicates high expression). Genes and samples are represented along the rows and
columns, respectively. Mouse tumors and genes are aligned based on consensus clustering results. The positions of mouse mammary tumors from different
mouse models are indicated by the black bars on top. The color bar on top of the heatmap indicates the subtypes of mouse mammary tumors: red, mes-
enchymal (Mes); blue, HER2/Neu; green, ductal; yellow, glandular; gray, unclassified). Bcat, β-catenin; mmT, mouse mammary tumor.

A
Nf1

Pten

Tnks

Rere

Lpp

Fbxw7

B

Fig. 2. Analysis of CIS of SB mutagenesis-induced BC. (A) Representation of insertions of the mutagenic transposon and CIS on six genes, including Nf1, Pten,
Tnks, Rere, Lpp, and Fbxw7. The transposon insertion sites and CIS gene are represented in red and black, respectively. (B) Comparison of CIS-associated gene
sets for different cancer types: BCSG, CRC, OST, and MPNST.
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frequently mutated or deleted in BC (35). There is limited in-
formation for RERE, but NF1 (36), PTEN (37), TNKS (38),
LPP (39) and FBXW7 (40) are each associated with tumor-
suppression functions in human BCs. Taken together, the iden-
tification of genes with known tumor-suppressor function within
or near CIS genes suggests the efficiency of our transposon-
based screens.

Comparison of SB Mutagenesis mBCSGs with Other SB Transposon
Cancer Screens. To understand the similarities and differences
in CIS genes identified in the SB transposon screens, we com-
pared the mBCSGs with previous SB transposon screens for
other cancer types (22, 25, 27, 41). We examined the 127
mBCSGs (Dataset S2) together with CIS-associated suscepti-
bility genes previously identified in SB studies of colorectal
cancer (CRC) (77 genes) (22), osteosarcoma (OST) (65 genes)
(41), and malignant peripheral nerve sheath tumors (MPNST)
(87 genes) (27).
We observed that 22 of the 127 CIS-associated mBCSGs have

been reported previously as CIS-associated genes in CRC,
OST, MPNST, or hepatocellular carcinoma. The remaining 105
mBCSGs could be considered BC CIS-associated genes identi-
fied via SB mutagenesis screening (Fig. 2B). We found that Pten
is the most common in four CIS-associated datasets (BC, OST,
CRC, and MPNST), and Nf1 and Was were common in three
datasets (BC, OST, and MPNST and BrCa, OST, and CRC),
respectively). These observations suggest that Pten, Nf1, and Was
have important common roles as the most frequent targets of the
SB mutagenesis across different tissues.
Interestingly, among the 22 CIS-associated mBCSGs, 54%

(12/22) were common to those of CRC, and 10 these 12 CIS
genes (Fbxw7, Matr3, Tnks, Sfi1, Myst3, Pum1, Bmpr1a, Tcf12,
Pik3r1, and Ppp1r12a) are observed only in BC and CRC. These
observations suggest that common driver genes and their asso-
ciated oncogenic pathways may play similar roles in malignancy
occurrence and progression in humans, especially in BC and
CRC, and that these cancers may be targetable with similar
therapeutics strategies.

Correlation of mBCSG-Orthologous hBCSGs with Somatic Mutations in
Human BC. To examine the correlation of candidate driver genes
from the transposon screen to somatic mutations in human BC,
we first identified human orthologs of mBCSGs. Of 134
mBCSGs, we found 126 human protein-coding genes, defined by
National Center for Biotechnology Information (NCBI) Entrez
annotation (hereafter referred to as hBCSGs) (Dataset S3). We
next evaluated the overlap between hBCSGs and candidate
BCSGs identified in previous studies of human BC mutations
(17, 33, 35, 42, 43). We observed that ∼64% (81/126) of hBCSGs
are mutated in human BC (Fig. 3A and Dataset S4). Of note,
PTEN, a CIS gene with frequent transposon integrations, was
mutated in all datasets; other hBCSGs were mutated at varying
frequencies (in one to four of five datasets). The high concor-
dance of hBCSGs (∼64%) with existing somatic mutations sug-
gests that we could identify relevant candidate driver mutations
in human BC from our transposon screen.

Signaling Pathways and Gene Networks Regulated by hBCSGs. To
gain insight into the possible biological pathways regulated by
hBCSGs, we performed gene ontology (GO) analysis of the 126
hBCSGs using the PANTHER (Protein ANalysis THrough
Evolutionary Relationships) classification (44) and DAVID
(Database for Annotation, Visualization and Integrated Dis-
covery) (45) GO tools. Using the PANTHER tool, we identified
five potential signaling pathways: the epidermal growth factor
receptor (EGFR) signaling pathway, the PDGF signaling path-
way, the PI3K pathway, the IL signaling pathway, and angio-
genesis ( Fig. 3B and Dataset S5). Using the DAVID tool, we
identified potential regulation by hBCSGs through the actin
cytoskeletal and MAPK signaling pathways (Fig. 3C and Dataset
S5). The concordance of EGFR and MAPK signaling pathways
identified using both approaches is consistent with the known
roles of EGFR/MAPK signaling in human BC progression, in-
dicating that functionally relevant genes were uncovered in
the screen.
Next, we examined the potential gene networks within the

hBCSG gene set using the MetaCore analysis package (https://
portal.genego.com/). We found an interaction network involving
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Fig. 3. Mutations and pathways of hBCSGs. (A) Somatic mutations in 81 of the 126 BCSGs have been previously reported for human BC tissues and cell lines
(red color indicates the presence of a gene in the publications shown in Dataset S4). (B) PANTHER pathway enrichment analysis of 123 hBCSGs (multivariate-
corrected P value cutoff <0.05 by Bonferroni). (C) Pathway enrichment analysis of 126 hBCSGs by DAVID Bioinformatics tools (multivariate-corrected P value
cutoff <0.05 by Benjamini). (See also Dataset S5.)
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31 of the 126 hBCSGs (∼25%) with EP300 as a hub (Fig. 4).
Most notably, 20 genes in the network are mutated in human BC
(Fig. 3A and Dataset S4), and eight (FGFR2, GNAQ, NRAS,
NCOA3, NF1, PIK3R1, PTEN, and EP300) among these 20 have
been considered as cancer-driver genes (46). The identification
of EP300 as a gene-network hub suggests a potential point of
intersection in the signaling networks involved in the human BC
oncogenic pathway driving cancer progression.

hBCSGs Can Classify Human BC Subtypes. To determine whether
hBCSGs could be used to distinguish the different molecular
subtypes in BC, we performed unsupervised hierarchical clus-
tering of both the mouse (n = 394) and human (n = 1345) ex-
pression datasets using BCSGs (Fig. S4 A and B and Dataset S6
B and C). To facilitate comparison, we clustered the human BC
using hBCSGs into four subtypes corresponding to the mouse
subtypes (Fig. S4B). Subsequently, we assessed the association of
the four mouse subtypes with the human subtypes using a two-
tailed Fisher’s exact test (Fig. S4C). The basal-like and claudin-
low subtypes in human tumors appeared most similar to the
mesenchymal subtype in mouse tumors (P = 5.65E-44). To a
lesser extent, we observed common transcriptional patterns be-
tween the mouse ductal subtype and the human luminal-A sub-
type (P = 1.02E-18) and between the mouse glandular subtype
and the human luminal-B subtype (P = 1.16E-17). The associa-
tion of the ERBB2+ and normal-like subtypes with the corre-
sponding mouse subtypes is unclear. These results indicate that
mBCSGs and hBCSGs are differentially expressed in the dif-
ferent molecular subtypes of mouse and human BCs, re-
spectively. These results support the notion that the hBCSGs
identified in our mouse forward genetic screen are highly rele-
vant in human BC.

Identification of High-Confidence Gene Signatures for Prediction of
Risk Groups in BC Disease-Free Survival. To determine if the 126
hBCSGs could be used to stratify risk groups of BC patients, we
used a data-driven selection method (47, 48) to analyze the

expression datasets of 2,333 BC samples together with their
survival outcomes (Dataset S6 D and E). Table S1 shows com-
mon clinical characteristics available for the studied datasets.
Fig. S5 shows a workflow of our pipeline, which selects the most
significant prognostic variables, converts these variables into
discrete variables according to their prognostic pattern, and
combines these variables as prognostic vectors to construct our
combine prognostic model. In our workflow (Fig. S5), to study
whether the hBCSGs could be used to define gene signatures
that determine the prognosis of human BC patients in terms of
disease-free survival (DFS), the 126 hBCSGs were individually
analyzed using our 1D data-driven grouping (1D-DDg) method
(47, 48). This method allows the identification of the prognostic
variables (e.g., gene-expression values or microarray hybridiza-
tion signal intensity values) that stratify patients into different
risk groups (SI Materials and Methods and Fig. S5). We found 70
significant survival genes (log-rank test, P < 0.01) in hBCSGs
whose expression levels were characterized by their transcripts
(detected by Affymetrix probe sets) (Dataset S7A). About two-
thirds of these genes showed tumor-suppressive–like behavior,
and higher expression levels were associated with better prog-
nosis (Dataset S7B). Functionally, these genes may be consid-
ered as tumor suppressors. When we increased the stringency
to log-rank P < 1.54 × 10−5, we observed 21 high-confidence
survival-prognostic hBCSGs. Among these 21 genes, 14 (CD44,
FGFR2, FLNB, KAT6A, MPHOSPH8, NCOA1, NF1, PCBP2,
PIK3R1, RERE, STAT5B, TNKS, WASF2, and ZMYND11) were
proposed to act in BC as tumor suppressors, and seven (ADORA2B,
BCR, CNOT1, MAPRE1, NRAS, PARD3, and PDS5A) were pro-
posed to act as pro-oncogenes (Dataset S7 A and B).
Next, we evaluated the prognostic value of these 1D-DDg–

selected BCSGs as part of a multigene prognostic signature using
the 2D-DDg method (48). The 2D-DDg method is a way to
identify the most survival significant and synergistic pairs of the
1D-DDg predictors that are able to predict patients’ DFS as low-
or high-risk subgroups. The most significant 2D-DDg predic-
tors were subjected to a statistically weighted voting grouping

Cancer driver mutated genes 

Breast cancer mutated genes 

Tumor suppressor-like 

Oncogene-like 

Fig. 4. Thirty-one of 126 hBCSGs code for proteins involved in a tumor-suppression network with EP300 as the hub. The boxes below the gene names in-
dicate the annotation of those genes: blue boxes denote BC-mutated genes (see Dataset S4), red boxes denote cancer-driver mutated genes (47), green boxes
denote tumor-suppressor–like genes, and yellow boxes denote oncogene-like genes.
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(SWVg) method, which combines the results of the survival
stratification prediction of the patients based on the 2D-DDg var-
iables to build a more integrative, robust, and discriminative survival
prediction model (SI Materials and Methods and Fig. S5) (48, 49).
Thus, from the 70 survival-significant genes at P < 0.01, we

identified a prognostic classifier comprising six gene pairs (TNKS–
WASF2, FLNB–NRAS, NCOA1–RERE, MAPRE1–STAT5B,
PARD3–ZMYND11, and ADORA2B–FGFR2) (Fig. 5A, Fig. S6,
and Dataset S7C) that stratified our combined metadata cohort
of 2,333 BC patients (Dataset S6 D and E) into three prognostic
groups with high confidence (P = 5.6 × 10−33) (Fig. 5A).
We then performed SWVg analysis for the 12 individual genes

that had formed the six pairs in our prognostic risk classifier. Our
results revealed that, discretely, these 12 genes were unable to
stratify the high- and intermediate-risk group patients, and the
discrimination ability of 12 individual genes [defined by –log
(P value)] was essentially smaller than that of the original six-
gene-pair prognostic classifier [P = 8.22E−22 (Fig. S7) vs., P =
5.6 × 10−33 (Fig. 5A)]. Thus, the six-gene-pair prognostic classi-
fier provides a significant synergistic/interaction effect from the
specific combinations of the gene pairs selected by SWVg,
leading to high-confidence partitioning of BC patients into three
distinct risk subgroups. The details of the genes from the six-
gene-pair prognostic classifier are presented in Dataset S7 C, 3.
To assess the robustness of the six-gene-pair BC prognostic

classifier and its parameters, we applied our methods to five ran-
domly derived and mutually independent patient subgroups with
the same sample size. For each set, the six-gene-pair prognostic
classifier stratified patients into three distinct risk subsets (Fig. S8)
with statistical significance in all analyses (P ≤ 9E-08). The pa-
rameters of 1D-DDg and 2D-DDg (e.g., the expression cutoff

values discriminating patients into the different risk subgroups)
were relatively robust across the randomly sampled subsets.

Robustness of the Six-Gene-Pair Classifier in Clinicopathological BC
Subgroups. We applied the six-gene-pair prognostic model sig-
nature separately to the patients with ER+ and ER− tumor status
and to patients with tumors of different histologic grades. Using
the original parameters (cutoff gene expression value, survival
patterns), of the six-gene-pair BC prognostic classifier derived by
SWVg using the BC patient metadata, we found low-, moderate-,
and high-risk subgroups within ER+ patients (Fig. 5B) and even
in ER− patients (Fig. 5C) in the BC metadataset. Similarly, using
histologic grading classification, we found low- and moderate-
risk subgroups among patients with histological grade 1 (HG1)
(Fig. 5D) and low-, moderate-, and high-risk subgroups among
patients with histological grade 2 (HG2) (Fig. 5E) and histo-
logical grade 3 (HG3) (Fig. 5F) BC.
Thus, our prognostic model discriminates the patients in the

risk groups within each of these clinical categories without the
need for retraining or additional optimization. These findings
support our basic strategy of identifying the causal genes and their
expression patterns that drive cancer initiation and progression.

Reproducibility of the Six-Gene-Pair Prognostic Classifier. To assess
the reproducibility of the six-gene-pair BC prognostic classifier,
we analyzed gene expression and clinical data of BC patients
from the Cancer Gene Atlas (TCGA) database. Using the Agi-
lent microarray data and OS data of these patients, we applied
the prognostic workflow model used for the 2,333 patients of
metadata cohort (Fig. S5). The 1D-DDg, 2D-DDg, and SWVg
analyses all resulted in high-confidence prognostication of the BC
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Fig. 5. Survival stratification based on SWVg analysis. (A) The six-gene-pair BC prognostic classifier found three BC subclasses in the 2,333 patients of the
metadataset. The classifier was specified for the prediction of disease-free survival (DFS) time-to-event prediction. (B and C) Risk subgroups within ER+

(n = 1218) (B) and ER− (n = 476) (C) BC patients. (D–F) Risk subgroups within histological grade 1 (HG1; n = 270), histological grade 2 (HG2; n = 730), and
histologic grade 3 (HG3; n = 710) patients, respectively. (G) Validation of the six-gene-pair BC prognostic classifier. SWVg found three BC (mostly invasive
ductal carcinoma) subclasses in 226 TCGA BC patients who received systemic therapy (hormone therapy, chemotherapy, and combine therapy). OS data was
available and used in this analysis. (H) The 21-gene prognostic signature found three distinct basal-like BC subtypes in the 306 patients of the metadataset.
(I) The 16-gene prognostic signature found three distinct claudin-low BC subtypes in 56 patients of the metadataset.
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patients using this six-gene-pair classifier (see Fig. S15 and see
Dataset S9 C and E). SWVg specified three high-confidence
prognostic groups (Fig. 5G).

Identification of Gene Signatures to Stratify Prognosis in Basal-Like
and Claudin-Low BC Tumor Subtypes. To determine whether these
hBCSGs could further stratify patients within a specific BC subtype,
we analyzed the expression profiles of 306 basal-like and 56 claudin-
low tumor samples (Dataset S7D) with 1D-DDg analysis to define
the prognostically significant hBCSGs in each cohort (Fig. S5 and
Dataset S7 E and F). Then we used SWVg (49), as described in
Fig. S5, to define the optimal number of 1D-DDg–defined hBCSGs
(Dataset S7 E and F) in new prognostic signatures (SWVg predic-
tors) that would categorize patients with basal-like (Fig. S9 and
Dataset S7G) and claudin-low BC subtypes (Fig. S10 and Dataset
S7H) into three risk subgroups. Both the 21-gene and 16-gene BC
prognostic signatures identified three distinct subtypes in the 306
patients with basal-like BC (Fig. 5H) and in the 56 patients with
claudin-low BC (Fig. 5I) in the metadataset, allowing us to define
prognostic signatures for both subtypes (Dataset S7 G and H). Figs.
S11 and S12 show the basic statistical characteristics of the indi-
vidual genes of the prognostic signatures, across three risk groups of
patients with the basal-like and claudin-low BC subtypes, respectively.
The trends of the mean value across prognostic subgroups specify
pro-oncogenic or tumor-suppressor–like expression patterns, defined
by the 1D-DDg method for the prognostically significant genes.
We noted that there were six common genes (RERE,

CLPTM1, WNK1, CD44, TCF12, and PTEN) between the basal-
like and claudin-low BC prognostic signatures (Dataset S7I).
However, only two (WNK1 and TCF12) exhibited similar
1D-DDg–defined (pro-oncogenic) functional patterns, possibly
indicating common driver genes. Comparative analysis of the
expression data of these genes among the three subgroups pre-
dicted by SWVg agreed with the results of the 1D-DDg analysis
(Figs. S11 and S12). In contrast, CLPTM1, RERE, PTEN, and
CD44 had different functional prognostic patterns (Figs. S11 and
S12). Fifteen genes (NEDD4, GRLF1, RASA1, ST5, STAG1,
PDS5A, GAB1, NCOA3, CGGBP1, MYLK, MAU2, RNF111,
LUZP1, FLNB, and WAC) were present only in the basal-like
tumor subtype prognostic signature, and 10 genes (PARD3,
TAOK1, STAT5B, FGFR2, FNDC3A, NCOA1, STAU1, MBTPS1,
TRIM33, and PUM1) were present only in the claudin-low tumor
subtype prognostic signature (Fig. S13).
Using the SurvExpress tool (50), we confirmed the re-

producibility and robustness of both gene signatures with high-
confidence stratification of the TCGA BC cohort (502 patients)
into three risk groups (Fig. S14 A and B). Note that TCGA data
were derived using an Agilent microarray and data for OS time
as an endpoint of disease outcome. These findings support the
technical reproducibility, biological importance, and clinical
significance of these hBCSG-defined predictors.

Univariate and Multivariate Analyses. To confirm the validity of our
six-gene-pair prognostic classifier, we carried out univariate and
multivariate analysis of the SWVg-derived prognostic classifiers
using clinical prognostic variables (ER, PGR, and lymph node
status; tumor mass; and stage) (Dataset S8). Using clinical and
microarray data of the 2333 BC patient and also results of our
six-gene-pair patient’s stratification (Dataset S8A), the univari-
ate and multivariate analyses shown strong statistical significance
and highest confidence values for our signature compared with
other prognostic factors (Dataset S8 B and C). The multivariate
regression of our 21-gene prognostic signature for basal-like BC
was similarly significant, even after adjusting for commonly used
clinical indicators (Dataset S8D). However, the results for our
16-gene prognostic classifier for claudin-low BC were not in-
formative because of the small number of samples with data for
calculating the SWVg categories.

Finally, we validated our six-gene-pair prognostic classifiers
using an independent dataset of 226 BC patients from the TCGA
database, which includes microarray expression, several clinical
prediction factors, and systemic therapy information (SI Mate-
rials and Methods and Dataset S9A). Results of the 1D-DDg,
2D-DDg, and SWVg based classifiers (Dataset S8 C–E) were
used as the input data sets for univariate and multivariate
analyses. The significance was confirmed with the univariate and
multivariate analyses, which showed the high significance and
prevalence of the SWVg-derived six-gene-pair prognostic
classifier, independent of most of the clinical factors and systemic
treatment methods (Fig. S15 and Dataset S9 B, F, and G).

The hBCSG Subset as a Source of BC Prognostic Genes. Overall, we
identified 70 prognostic genes from our hBCSG list; with the
exception of GLI3, none of these genes on our list hBCSGs
appears on the commercial prognostic signatures (Fig. 6A and
Dataset S7J) (51–53). Furthermore, these 70 hBCSGs are mostly
unrelated to cell cycle/mitosis or genes in the oncogenic pathway
(Fig. 6B and Dataset S7J) (12, 14) and are not common among
other highly prognostic signatures for the stratification of basal-
like and claudin-low BC subtypes (Fig. 6C and Dataset S7J)
(3, 54, 55). We propose that our hBCSG-defined predictors contain
highly prognostic and significant BC subtyping biomarkers.

Discussion
SB transposon mutagenesis is an unbiased approach for identi-
fying candidate BC driver genes. We successfully induced
mammary tumors in mice using the K5 promoter driving SB
alone or together with stabilized N-terminally truncated β-cat-
enin targeted to the basal layer of the mammary gland (28).
Because the K5-Cre promoter is activated in both the luminal
and basal cell layers of the mammary gland, transposition also
occurs in both layers and not solely in the basal cell layer, as
initially observed with the transgenic line expressing the trun-
cated β-catenin. Not surprisingly, mammary tumors induced by
our SB system represented all BC histological subtypes, consis-
tent with the premise that the cell of origin for BC derives from
either the luminal or basal layers of mammary glands (56, 57).
The SB mouse model provides a unique experimental basis for

the identification of BC-associated susceptible genes relevant to
the tumor subtypes. To understand the molecular subtypes of
tumors induced in our transposon screen, we performed non-
supervised clustering of the expression profiles of tumors to-
gether and in combination with a collection of 394 murine
expression profiles of other transgenic models of mammary tu-
mors. Mouse mammary tumors could be regrouped into four
clusters corresponding to human molecular subtypes: (i) a duc-
tal cluster similar to the human luminal A subtype; (ii) a glandular
cluster similar to the human luminal B subtype; (iii) a mesen-
chymal cluster analogous to the human basal-like and claudin-low
subtypes; and (iv) a Neu cluster bearing closest similarity to the
human HER2 subtype. Our transposon-driven tumor samples

Fig. 6. The 70 prognostic hBCSGs are (A) mostly unique (69/70) in hBCSGs
compared with known commercial prognostic signatures; (B) mostly un-
related to cell cycle/mitosis and genetic grading oncogenic pathway; and
(C) not common, with high-prognostic signatures for stratification of basal-
like and claudin-low BC subtypes.
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were distributed into all four clusters, indicating that mutagenesis
drove the initiation and progression of mammary tumors from the
different lineages. In contrast, β-catenin–driven tumor samples
were restricted to the mesenchymal cluster, as expected from a
previous study (28). Other tumor models, such as Myc- and Etv6-
NTRK3–driven tumors, also induce all tumor molecular subtypes,
whereas other tumor models produce a more limited set. For
instance, Neu-driven tumors are uniquely restricted to the Neu
cluster, and Brca1 conditional knockout and p53+/− transgenic
mice do not form tumors of the glandular molecular subtype.
From these and similar comparisons, it is evident that our trans-
poson screen is sufficient to drive the initiation and progression of
tumors within the four major molecular subtypes.
We identified 129 CIS genes in our screen and found 126

orthologous human genes that represented possible hBCSGs.
Functional annotation of their characteristics was undertaken by
translating the observations from the mouse to human BCs. The
highest number of insertions was found in NF1, a well-known
tumor suppressor reported by the TCGA consortium to be de-
leted or mutated in ∼30% of human BCs. Similarly, Pten, of
which the human ortholog is a known BC gene, was another CIS
gene with frequent insertions. The identification of these known
tumor suppressors supports the validity of our screen to uncover
driver genes in human BC progression. Further pathway analyses
(PANTHER and DAVID analyses) highlighted several enriched
pathways known to play key roles in the oncogenesis of BCs:
angiogenesis, cytoskeleton, and signaling, such as the PI3K (58),
EGFR (59, 60), IL (61), and MAPK (62) signaling pathways.
We constructed a protein interaction network of the 126

hBSCGs and identified a network of genes, including FGFR2,
GNAQ, NRAS, NCOA3, NF1, PIK3R1, and PTEN, that is orga-
nized around EP300. We propose that the complex crosstalk
among the hBCSGs may be critical for BC initiation and pro-
gression. Interestingly, we found several cell membrane-associ-
ated genes (BMPR1A, TGFBR1, FGFR2, PARD3, CD44, and
P2RY2) that may be organized into a pro-oncogenic network
around EP300. For example, BMPR1A, a member of the TGFB
receptor superfamily, has been implicated as a tumor suppressor
in ovarian tumor development (63), and an inactivating mutation
in BMPR1A has been reported to cause juvenile polyposis (64,
65). Another membrane-associated gene, CD44, interacts with
EP300 and contributes to the chemoresistance of BC cells (66);
furthermore, CD44 regulates the ERK, AKT, and Hippo path-
ways in cell-cycle progression and in the maintenance of tumor-
initiating cells (67). These different membrane-associated genes
could be organized in a pro-oncogenic network around EP300,
and the crosstalk among them may provide clues for the devel-
opment of combinatorial targeted therapies (Dataset S10). The
interconnectedness of the hBCSGs whose mutational profiles and
expression patterns are significant for survival suggests an attrac-
tive paradigm to guide the design of stratified cancer development
and outcome prognosis and of precise therapeutic strategies.
Gene-expression signatures are used to select patients likely to

respond to adjuvant systemic therapy. For instance, MammaPrint and
OncotypeDX are two commercially available prognostic platforms for
BC, based on the 70-gene Amsterdam signature (68) and a 21-gene
signature (52), respectively. Other signatures, such as the Rotterdam
60- and 76-gene signatures, also have been developed for prognosti-
cation (69). However, the predictive abilities of these signatures are
limited to specific BC patient groups, which are predominantly
ER+/PR+ and lymph node-negative, with a prognostic time extrap-
olation of less than 5 y after diagnosis. In contrast, our prognostic
classification model is based on the initiation of explicit malignancy
genes, includes hBCSGs, and can be tested, refuted, or confirmed.
According to our paradigm, multiple BC susceptibilities, re-

lated to the development of different tumor subtypes, can be
involved in the initiation of pro-oncogenic or possible tumor-sup-
pression pathways in normal breast epithelium cells. To specify

such multigene subsets, our feature selection and prognostic
pipeline, including the 1D-DDg, 2D-DDg, and SWVg methods,
selects the most significant prognostic variables (expressed genes)
and their critical cutoff values, optimizes the number of genes or
gene pairs, and differentiates their expression patterns with sig-
nificance, robustness, and synergistic disease-outcome prognostic
ability. Intriguingly, of the 12 genes, three—MAPRE1 (3, 70, 71),
NRAS (3, 72, 73), and STAT5B (14)—are found in other multigene
signatures, characterizing certain BC subclasses and the gene ex-
pression patterns associated with BC treatment response.
The six-gene-pair classifier is also significant in univariate and

multivariate analyses in very heterogeneous datasets and can
prognose independent TCGA cohorts that use a different RNA
expression platform (Agilent Microarray Technology) and a more
stringent disease-outcome event (OS time). Indeed, these univar-
iate and multivariate analyses—including clinical, prognostic, and
predictive factors—revealed the independent and reproducible
prognostic value of our molecular classifier in stratifying TCGA
BC patients receiving systemic postsurgical therapy. Our six-gene-
pair classifier also provided highly confident and reproducible
stratification of patients into three risk groups within histological
grades 1–3 of clinically defined cancer aggressiveness and into
subgroups by treatment-predictive status (ER+ or ER−). Thus, the
predictive ability of our signature is scalable within current clinical
classifications and treatment groups. These findings can provide
actionable insights for prognosis and treatment of BCs.
The identification of prognostic gene pairs suggests a func-

tional and structural interconnectedness among BCSGs that
perhaps modifies the biological behavior of the tumor or creates
an “interaction effect” that influences prognosis. This hypothesis
was supported by our network and statistical analyses. In the
FLNB–NRAS gene pair, high FLNB expression and low NRAS
expression is linked with a good prognosis, indicating a tumor-
suppressive function of FLNB and an oncogenic function of
NRAS in BC. The role of FLNB in breast tumorigenesis is largely
unknown. FLNB, which functions as an F-actin cross-linking
protein, undergoes a high frequency of skipping exon events in
luminal cell lines compared with basal-like cells (74). Others
have shown that FLNB suppresses tumor growth and metastasis
by regulating the activity of matrix metalloproteinase 9 (MMP-9)
and the secretion of VEGF-A, which is mediated by the RAS/
ERK pathway. Specifically, Flnb deficiency in mouse embryonic
fibroblasts results in increased proteolytic activity of MMP-9 and
cell invasion through RAS/ERK signaling. Similarly, silencing
FLNB in multiple human cancer cells increases the proteolytic
activity of MMP-9 and tumor cell invasion (75).
In the NCOA1–RERE pair, high expression of both genes is

associated with a favorable prognosis, indicating the tumor-
suppressive functions of both genes in BC development.
Consistently, patients with breast tumors with high NCOA1
expression have significantly longer OS and disease-free in-
tervals (76). Although the function of RERE in BC is unclear,
its overexpression enhances apoptosis and activates cell death
(77), indicating a putative tumor-suppressor function.
Regarding MAPRE1–STAT5B, a good prognosis is linked with

high STAT5B expression and low MAPRE1 expression, suggest-
ing that STAT5B has a tumor-suppressive function and that
MAPRE1 has an oncogenic function. MAPRE1 can act as a
potential oncogene via activation of the β-catenin/TCF pathway
to promote cellular growth and inhibit apoptosis (78). The role
of STAT5 is less clear, because the loss of Nuc-pYStat5 is as-
sociated with poor prognosis in node-negative BC (79), but the
inhibition of STAT5B also can block tumor growth (80). In other
cancer types, such as gastric cancer, both STAT5B and MAPRE1
are characterized as oncogenic proteins (81, 82). Thus, the effect
of STAT5B in cancers is likely to be contextual and dependent on
the tumor (sub)type and perhaps on other gene alterations
within the network.
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In the PARD3–ZMYND11 pair, high ZMYND11 expression
along with low PARD3 expression favors a good prognosis,
supporting a tumor-suppressive function of ZMYND11 in such
expression pattern combinations. PARD3 and ZMYND11 are
also found in our designed tumorigenic gene network. ZMYND11
acts as a repressor of a transcriptional program that is essential for
tumor cell growth (83) and is mutated in human cancers; its low
expression in BC is correlated with worse prognosis. ZMYND11
overexpression inhibits the growth of different cancer cell types
in vitro and breast tumorigenesis in mice (83). PARD3, on the
other hand, controls cell polarity and contributes to cell mi-
gration and proliferation. Inhibiting PARD3 causes a loss of
cell polarity and induces breast tumorigenesis and metastasis
(84, 85). Others suggest that PARD3 activates YAP/TAZ to
promote cell growth (86) and may function as an oncogene
(87). Thus, PARD3 likely has dual cancer type-specific func-
tions. It encodes multiple protein isoforms with varying regu-
latory functions; however, their roles in BC prognosis are
poorly studied. According to our single-gene prognostic anal-
ysis, ZMYND11 and PARD3 provided strongly significant tu-
mor-suppressive and pro-oncogenic prognostic patterns (at P <
5 × 10−6), respectively. As a prognostic gene pair, PARD3–
ZMYND11 could categorize BC patients into two groups
[Kaplan–Meier (KM) functions at P = 8.3 × 10−12].
Finally, for ADORA2B–FGFR2, a good prognosis is found

with high FGFR2 expression and low ADORA2B expression.
These findings indicate the tumor-suppressive function of FGFR2
and the pro-oncogenic prognostic function of ADORA2B. FGFR2
is a known BCSG (86). Pharmacological blockade of ADORA2B
has been shown to inhibit the invasion of BC cells and reduce
tumor outgrowth in the lungs (88), suggesting the pro-oncogenic
prognostic potential of ADORA2B.
Overall, our six-gene-pair signature can stratify BC patients

into three different risk subgroups with high confidence and
reproducibility, and the gene pairs provide highly reliable pre-
dictive factors and clues to the interconnectedness between
genes driving BC progression.
Although most of the clinically used signatures are strong risk

predictors in the early follow-up intervals for low-grade,
ER+/PR+, or HER2+ tumors, there is an urgent need to improve
risk stratifications for long-term prognosis and for high-grade and
triple-negative BCs. Through an analysis of basal-like and claudin-
low tumor subtypes, we identified the most representative prog-
nostically significant genes from among the 126 hBCSGs that
could stratify patients into three distinct risk groups with high
confidence. Our 21-gene and 16-gene signatures could stratify
patients into three distinct risk subgroups for basal-like and
claudin-low BC subtypes, respectively. Interestingly, in the dif-
ferent patient groups, the prediction signatures of alternative
isoforms of a same gene could be included and play alternative
roles in the context of disease outcome prognosis. For instance,

according to 1D-DDg and SWVg, the RERE isoform defined by
the 200939_s_at probe sets demonstrated a tumor-suppressor–
like prognostic pattern in a metacohort (2,333 patients) with a
basal-like BC subtype; however, in patients with the claudin-low
BC subtype, another isoform of the RERE (defined by the
221643_s_at probe sets) was computationally selected and showed
a significant oncogenic-like expression pattern. Comparing our 21-
and 16-gene signature lists, we observed five additional common
genes (CLPTM1, WNK1, CD44, TCF12, and PTEN). However, of
these, only WNK1 and TCF12 showed common prognostic pat-
terns. This commonality suggests that these subtypes may share
similar genetic pro-oncogenic BCSG drivers, consistent with their
association with triple-negative BCs. This hypothesis needs further
study and validation.
In sum, unbiased forward genetic screens in mice can reveal

functionally important gene networks that do not critically de-
pend on highly variable and rapidly evolving genomic alteration
profiles and transiently actionable point mutations. This method
should complement strategies that rely on deep genomic se-
quencing and lead to therapeutic strategies that are more generic
than those that rely on a limited number of mutations. These
survival-significant BCSGs, their expression patterns identified
in the current study, and the gene-based networks with signatures
for stratifying BC risk groups could provide valuable information
for understanding the genetic basis of breast tumorigenesis and
tumor progression as well as for developing promising targeted
therapeutics for BC treatment.

Materials and Methods
We used the following alleles to generate a mouse mammary tumor model:
C57BL/6-K5-ΔN57-βcat (28), K5-Cre (29), T2Onc2 (6113) (89), and Rosa26-LSL-
SB11 (90). The mouse-breeding scheme is shown in Fig. S1. All animals were
genotyped and monitored monthly. The palpable mammary tumors were
collected, and the samples were snap-frozen or fixed in formaldehyde and
sent to the histopathology core facility of the Institute of Molecular and Cell
Biology for paraffin embedding. One veterinarian pathologist (J.M.W.) and the
senior principal investigator (J.P.T.) reviewed the H&E-stained sections for his-
totype annotation (Fig. S3). All procedures were carried out according to In-
stitutional Animal Care and Use Committee guidelines of Biological Resource
Centre at Agency for Science, Technology, and Research, Singapore. Approve
no. 070238.

Methods for identifying transposon insertion sites, transcriptomic analysis
of SB mammary tumors and data processing, subtyping of mouse mammary
tumors and human BCs, metadata for identifying and validating the survival-
significant genes, univariate and multivariate survival prediction, statistical
tests, and software are presented in SI Materials and Methods.
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