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Abstract

Background—Hereditary predisposition is rarely suspected for childhood acute lymphoblastic 

leukemia (ALL). Recent studies identified germline ETV6 variations associated with marked 

familial clustering of hematologic malignancies, pointing to this gene as a potentially important 

genetic determinant for ALL susceptibility. The aims of the current study are to comprehensively 

identify ALL predisposition variants in ETV6 and to determine the extent to which they contribute 

to the overall risk of childhood ALL.

Methods—Whole-exome sequencing of an index family with multiple cases of ALL was 

performed to identify causal variants for ALL predisposition. Targeted sequencing of ETV6 was 

done in 4,405 children from the Children's Oncology Group (COG) and St. Jude Children's 

Research Hospital frontline ALL trials. Patients were included in this study on the basis of their 

enrollment in these clinical trials and the availability of germline DNA. ETV6 variant genotypes 

were compared with non-ALL controls to define ALL-related germline risk variants. ETV6 variant 

function was characterized bioinformatically and correlated with clinical and demographic 

features in 2,021 children with ALL.

Findings—We identified a novel nonsense ETV6 variant (p.R359X) with a high penetrance of 

familial ALL. Subsequent targeted sequencing of ETV6 in 4,405 childhood ALL cases discovered 

31 exonic variants (4 nonsense, 21 missense, 1 splice site, and 5 frame shift variants) that are 
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potentially related to ALL risk in 35 cases (0.79%). Fifteen (48%) of the 31 ALL-related ETV6 

variants clustered in the ETS domain and predicted to be highly deleterious. Children with ALL-

related ETV6 variants were significantly older at leukemia diagnosis than others (10.2 years [IQR 

5.3-13.8] vs 4.7 years [IQR 3.0-8.7], P=0.017). The hyperdiploid leukemia karyotype was 

strikingly overrepresented in ALL cases harboring germline ETV6 risk variants compared to the 

wildtype group (9 of 14 cases [64.3%] vs 538 of 2,007 cases [26.8%]; P=0.0050).

Interpretation—Our findings indicated germline ETV6 variations as the basis of a novel genetic 

syndrome associated with predisposition to childhood ALL.

Funding—This study was supported by the National Institutes of Health and by the American 

Lebanese Syrian Associated Charities.

Research in context

Evidence before this study

As the most common cancer in children, acute lymphoblastic leukemia (ALL) is generally 

considered as driven by acquired genomic abnormalities and hereditary predisposition is 

rarely considered in clinical practice. Recent studies identified ETV6 germline variants 

associated with rare hereditary thrombocytopenia and a plausible increased susceptibility to 

hematologic malignancies, including ALL.

Added value of this study

Combining whole-exome discovery in familial ALLs and targeted sequencing in a large 

frontline national clinical trials (N=4,405), we comprehensively identified a panel of 31 

ETV6 germline variants that were likely associated with ALL risk. Children with ALL-relate 

ETV6 variants had distinct clinical features, suggesting unique leukemia etiology. The 

substantial proportion of childhood ALL cases carrying ETV6 germline variants of potential 

pathologic significance highlights the importance of ETV6 as a leukemia predisposition gene 

and also indicate that inherited susceptibility to ALL may be much more substantial than 

currently believed.

Implications of all the available evidence

Germline ETV6 variations are the basis for a novel genetic syndrome associated with strong 

predisposition to hematologic malignancies (particularly ALL), implying potential benefit of 

clinical identification and subsequent surveillance of the at risk individuals.

Introduction

Acute lymphoblastic leukemia (ALL) is the most common cancer in children and a 

prototype of cancer that can be cured by chemotherapy alone with risk-adapted 

chemotherapeutic regimens.1-4 However, the etiology of this aggressive cancer remains 

largely unknown. The contribution of environmental factors to the development of ALL is 

debated, although there is growing evidence in support of the influence of exposure to 

infectious agents early in life.5-7 In a Swedish-Finnish population-based study of ∼4,000 

patients with childhood ALL, children with affected siblings had a 2- to 4-time increased 

risk to develop ALL and this risk increased up to 163-time for monozygotic twins,8, 9 
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pointing to a potential genetic basis of susceptibility to ALL. In fact, common germline 

genetic polymorphisms affecting genes involved in lymphoid development and tumor 

suppression (e.g., ARID5B,10, 11 IKZF1,10, 11 CEBPE,10 GATA3,12, 13 CDKN2A,14, 15 BMI1-

PIP4K2A,16 TP6317) have been associated with the risk of developing ALL, although with 

mostly modest effects. Only a small fraction of ALL cases are thought to be related to 

congenital genetic disorders (e.g., Down syndrome18, 19, Robertsonian translocation20), and 

hereditary predisposition is rarely considered in clinical practice. Recent studies of familial 

ALL have identified rare germline mutations in PAX5 and SH2B3 with high 

penetrance.21, 22 More strikingly, germline TP53 mutations were found in ∼50% of children 

with low-hypodiploid ALL, suggesting that this subtype of ALL may be a manifestation of 

Li Fraumeni syndrome.23 Together, these data raise the possibility that the proportion of 

ALL cases attributable to inherited genetic mutations may be much higher than currently 

proposed.

ETV6 is a transcriptional repressor that belongs to the ETS family and is essential for 

hematopoiesis, particularly thrombopoiesis.24, 25 Somatic ETV6 mutations have been 

associated with myelodysplastic syndromes and T-cell leukemias.26, 27 In childhood ALL, 

the ETV6-RUNX1 fusion is the most common somatic genetic aberration and is associated 

with a good outcome with modern therapy.28 Germline ETV6 variations have recently been 

reported in rare families with hereditary thrombocytopenia and susceptibility to hematologic 

malignancies (particularly ALL).29-31 These highly damaging variants result in loss of 

functional ETV6 protein in a dominant negative fashion,29-31 although the exact biological 

mechanism of excessive ALL risk in these subjects remains unclear. These recent 

observations raise the questions as to whether additional ALL predisposition variants in 

ETV6 exist and to what extent they contribute to ALL risk in general.

In the present study, we identified a novel damaging ETV6 germline variant driving 

predisposition to familial ALL, described a population-based screen of ETV6 germline 

variation in 4,405 children with ALL, and evaluated the potential functions of ALL-related 

ETV6 variants and their association with clinical features of ALL.

Methods

Subjects and samples

A family of European ancestry with multiple ALL cases was identified at St. Jude Children's 

Research Hospital, Memphis USA (Fig. 1). ALL cases were treated on the St. Jude frontline 

ALL protocols Total Therapy XIIIA32, XIIIB33 and XV.34

The ETV6 targeted-sequencing cohort comprised 4,405 children with newly-diagnosed ALL 

(3,807 with B-ALL and 93 with T-ALL) who were treated on the Children's Oncology 

Group (COG) AALL0232, P9904, P9905, P9906 protocols35, 36 and St. Jude Total Therapy 

XIIIA, XIIIB and XV studies. Individuals in the NHLBI GO Exome Sequencing Project 

cohort37 (ESP, http://evs.gs.washington.edu/EVS/) served as the primary non-ALL control 

cohort because the prevalence of childhood ALL is extremely low in the general population. 

In addition, we utilized the Broad Institute Exome Aggregation Consortium cohort [ExAc, 
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http://exac.broadinstitute.org/] as a secondary non-ALL cohort, as it has a considerably 

larger sample size with greater diversity in ancestry.

Germline DNA was extracted from bone marrow samples or peripheral blood of children 

with ALL obtained during remission. Most of the ALL cases had been previously genotyped 

with genome-wide SNP arrays and genetic ancestry (European, African, Native American, 

and Asian) was estimated using STRUCTURE38 on the basis of genotypes at 30,000 

randomly selected SNPs.12, 39, 40 This study was approved by the appropriate institutional 

review boards and informed consent was obtained from parents, guardians, or patients, as 

appropriate.

Exome sequencing and analyses of the pedigree with familial ALL

Germline genomic DNA was subjected to exome capture (62 Mb) with the Illumina TruSeq 

kit. Exome sequencing (pair-end 101 bp) was performed on the Illumina HiSeq 2500 

platform with a coverage of 10× for > 84% ∼ 94% of target regions. Sequencing reads were 

mapped using the Burrow-Wheller Aligner and variant calls in the gene coding regions were 

made by bambino41 (with parameters: -min-quality 20, -min-flanking-quality 20, -min-alt-

allele-count 3, -min-minor-frequency 0, -broad-min-quality 10, -mmf-max-hq-mismatches 4, 

-mmf-max-hq-mismatches-xt-u 10, -mmf-min-quality 15, -mmf-max-any-mismatches 6, -

unique-filter-coverage 2). Sequencing results were also analyzed using the GATK pipeline 

(version 3.1)42 for calling single nucleotide variants and insertions and deletions. All 

germline variants were subjected to rigorous quality control including checking for paralogs, 

repeats, and low variant allele frequency. Using an in-house integrated variant prioritization 

algorithm, variants were classified into multiple tiers of differing importance on the basis of 

allele function prediction (e.g., polyphen2, SIFT, mutation assessor, protein truncating, etc), 

gene function (e.g., known cancer genes in COSMIC43, ACMG disease predisposition 

genes44), prior biological evidence for pathologic effects (e.g., HGMD45, ClinVar46), etc. 

Variants were evaluated for co-segregation with ALL based on an autosomal dominant 

mode of inheritance: we hypothesized that the risk variant should be present in subjects with 

ALL (I-2, II-2, and II-3) and absent in I-1; Because it is not uncommon for ALL to be 

diagnosed in older children and adolescents, we reason that there is a distinct possibility that 

II-1 would eventually develop ALL. As a result, we did not require risk variant to be absent 

in II-1 (appendix p 7). Variants were then filtered based on frequency in non-ALL controls 

and known gene function in cancer and/or hematopoiesis to identify the final candidates 

related to cancer risk (appendix p 2, 7).

Targeted ETV6 sequencing and function prediction

Illumina dual-indexed libraries were created from the germline DNA of 4,405 children with 

ALL, and pooled in sets of 96 prior to hybridization with customized Roche NimbleGene 

SeqCap EZ probes to capture the ETV6 genomic region. Quantitative PCR was used to 

determine the appropriate capture product titer necessary to efficiently populate an Illumina 

HiSeq 2000 flowcell for paired-end 2×101 bp sequencing. A coverage of >20× depth was 

achieved across >90% of the targeted regions for nearly all samples. Sequence reads in 

FASTQ format were mapped and aligned using the Burrow-Wheller Aligner, and genetic 

variants were called using the GATK pipeline (version 3.1), as previously described.14, 42
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Potential damaging effects of ETV6 variants were predicted using the combined annotation 

dependent depletion (CADD, v1.0)47 and each variant was assigned a CADD phred-like 

score. A CADD phred-like score of 10, 20, or 30 represents the top 10%, 1%, and 0.1% of 

the most deleterious variants, respectively.

Each ETV6 variant identified in the ALL cohort was curated manually and classified as 

“ALL-related” or “common” to indicate its potential role in predisposition to ALL, on the 

basis of variant frequency in ancestry-matched ALL vs. non-ALL cohorts (appendix p 8). 

For example, variants that were observed only in the ALL cohort were most likely to be 

related to ALL risk, whereas variants common in non-ALL cohorts were less likely to confer 

predisposition to this cancer.

Statistical analyses

The St. Jude Total Therapy protocols and the COG P9900 studies (P9904, P9905, and P9906 

protocols) are frontline clinical trials for newly-diagnosed ALL across diverse risk groups 

and demographics.32-35 As such, they were used in population-based analyses of the 

association of ETV6 genotype with ALL clinical features. Patients were first classified as 

“with ALL-related ETV6 variants” or “without”. The association of germline ETV6 status 

with categorical clinical features (tumor translocation [ETV6-RUNX1, E2A-PBX1, BCR-

ABL1, MLL rearrangements], hyperdiploidy [DNA index ≥1.16], and leukocyte count [< or 

≥ 50×109/l]) was determined by using Fisher's exact test. Age at diagnosis (as a continuous 

variable) was compared between two ETV6 groups by using the non-parametric Wilcoxon 

rank sum test because of age did not follow normal distribution. Association of ETV6 status 

and genetic ancestry was tested using a multivariate Firth logistic regression model with 

European, African, and Asian ancestry as covariates. Relapse was treated as a time-

dependent variable and its relationship with the status of germline ETV6 risk variant was 

evaluated by using the Fine and Gray hazard regression model48. Early treatment response 

was measured as minimal residual disease at the end of remission induction therapy and 

positivity was defined as ≥ 0.01%33-35, and its association with germline ETV6 status was 

evaluated by using the Fisher's exact test. Over-representation of ALL-related ETV6 variants 

in the ETS domain was evaluated by comparing the observed frequency with what would be 

expected if variants were randomly distributed in this gene, and the statistical significance 

was determined by using Fisher's exact test. R (version 3.1) was used for all statistical 

analyses unless otherwise indicated.

Role of the funding source

The funding source was not directly involved in the design of the study, the collection, 

analysis, and interpretation of the data, the writing of the manuscript, or the decision to 

submit the manuscript. TM, GW, MQ, WY, CC, XC, SR, SW, ME, HW, EM, RF, CM, JZ, 

MVR, JJY had access to the raw data. The corresponding author had full access to all of the 

data and the final responsibility to submit for publication.
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Results

We identified a family of European descent with an unusual clustering of childhood ALL at 

St. Jude Children's Research Hospital in the United States (Fig. 1): the mother (I-2) and 2 of 

her 3 daughters (II-2 and II-3) developed ALL at the ages of 9, 3, and 2, respectively. All 3 

ALL cases were of B-lineage, although with different leukemia molecular subtypes. Mild 

thrombocytopenia was noted for I-2 and II-3 (appendix p 3), II-2 was diagnosed with Turner 

syndrome and mild intellectual disability, and II-3 was diagnosed with a learning disability 

(Table 1). The family history did not reveal other hematologic malignancies within the 

extended kindred.

We hypothesized that predisposition to ALL in this family was driven by a rare but highly 

penetrant germline genetic variation. Whole exome sequencing of all 5 family members was 

performed and variants were first prioritized on the basis of bioinformatic function 

annotation (e.g., damaging effects, gene function). We postulated that the causal variant 

should follow an autosomal dominant mode of inheritance and thus would be recurrent in 

ALL cases but absent in the unaffected father. We identified a total of 9 nonsilent variants 

that followed this pattern of segregation with ALL and were also rare in non-ALL controls 

(minor allele frequency [MAF] <0.01%), of which ETV6 was the most likely candidate 

because of its known involvement in ALL pathogenesis (appendix p 2, 7). This nonsense 

variant in ETV6 (c.1075C>T, p.R359X) was predicted to create a stop codon within the ETS 

domain and result in a truncated protein without DNA-binding function and was shared by 

all 3 ALL cases. Interestingly, it was also present in the healthy daughter (II-1), suggesting 

incomplete penetrance. However, it is formally possible that she was still at risk of ALL 

given her young age of 11. All carriers in the index family were heterozygous for this ETV6 

variant. Consistent with recent reports of recurring germline ETV6 mutations associated with 

familial thrombocytopenia and overrepresentation of hematologic malignancies,29-31 this 

p.R359X variant in ETV6 is likely to be responsible for the ALL predisposition in this 

family.

To determine the overall prevalence of ETV6-related predisposition to childhood ALL, we 

performed targeted sequencing of ETV6 in germline DNA from 4,405 children enrolled on 

St. Jude and the COG frontline clinical trials for newly diagnosed ALL. In this unselected 

cohort, we identified 43 exonic ETV6 variants (Fig. 2A and appendix p 4-6). Of these, 12 

ETV6 variants were recurrent (e.g., MAF≥0.01%) in ancestry-matched non-ALL populations 

(the NHLBI GO Exome Sequencing Project cohort [ESP, N=6,503] and/or in the Exome 

Aggregation Consortium cohort [ExAC, N=60,706]) and thus less likely to be related to 

ALL risk. In contrast, 31 ETV6 variants were observed only in children with ALL or were 

exceedingly rare in non-ALL populations (MAF<0.01%) and thus were considered as 

“ALL-related”. All but 5 ALL-related ETV6 variants were singletons. In total, 35 (0.79%) of 

4,405 children in this cohort had rare ETV6 variants that were potentially related to ALL 

predisposition, including 4 nonsense, 21 missense, 1 splice, and 5 frameshift variants.

Fifteen of the 31 ALL-related ETV6 variants (48.4%) were clustered within the ETS DNA-

binding domain (Fig. 2B), while only 6 were expected if mutations were randomly 

distributed in ETV6 (P=3.4×10-4). These 15 included all 4 nonsense variants (p.W342X, 
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p.R359X, p.E364X, and p.R378X), 10 missense variants (p.R353Q, p.W360R, p.F368L, 

p.R369W, p.R369Q, p.M389I, p.T390A, p.L398P, p.R399C, and p.K403R), and 1 splice 

variant (F419_E8splice). Using the combined annotation dependent depletion (CADD) 

algorithm, we predicted 18 of the ALL-related ETV6 variants to be highly deleterious 

(CADD phred-like score> 20). The p.D337fs variant had the highest CADD phred-like score 

(99), followed by 4 nonsense variants (score 40 for p.W342X, p. R359X, and p.E364X, and 

39 for p.R378X). Compared with CADD phred-like scores of exonic ETV6 variants 

observed in the non-ALL controls (i.e., the ExAC cohort), the ALL-related ETV6 variants 

were significantly more likely to be damaging (mean CADD phred-like score of 25.6 vs 

15.2; p<0.0001. appendix p 9). Interestingly, of the 18 most deleterious ETV6 variants, 10 

resided in the ETS domain but none were located in the helix that directly interacts with 

target DNA.49 Instead, 7 of the 10 variants in the ETS domain were between the first and 

second helices (Fig. 2B).

We next analyzed the relationship between germline risk variants in ETV6 and clinical 

features of ALL, in a subset of 2,021 cases that were comprehensively characterized for 

clinical features and representative of the US childhood ALL population across risk and 

demographic groups (Table 2). Children with ALL-related ETV6 variants were significantly 

older at the time of diagnosis than those without these variants (10.2 years [IQR 5.3-13.8] vs 

4.7 years [IQR 3.0-8.7], P=0.017). The hyperdiploid leukemia karyotype was strikingly 

overrepresented in ALL cases harboring germline risk variants in ETV6 compared to the 

wildtype group (9 [64.3%] of 14 cases vs 538 [26.8%] of 2,007 cases), P=0.0050). In 

contrast, the frequency of somatic ETV6-RUNX1 fusion was only 7.1% (1 of 14) in cases 

with germline ETV6 risk variants, compared to 22.7% (455 or 2,007) in cases with wildtype 

ETV6 in the host genome. Of note, there was also a trend towards overrepresentation of 

females in carriers of ALL-related ETV6 variants (71.4% [10 of 14] vs 45.7% [918 of 

2,007], respectively), although it did not reach statistical significance. These germline ETV6 

risk variants were not associated with genetic ancestry, early treatment response (minimal 

residual disease at the end of remission induction therapy, P=0.29), or the risk of relapse 

(P=0.36).

Discussion

In this study, we systematically identified germline variants in the ETV6 gene that are 

associated with increased risk to childhood ALL, and comprehensively described clinical 

characteristics unique in children with ALL carrying these risk alleles. Inherited genetic 

predisposition to ALL refers to an increased likelihood of developing this cancer that is 

attributable to germline (constitutional) genetic variations. The contribution of germline 

genetic variants to ALL risk is now well established, particularly through genome-wide 

association studies.10-16 However, the susceptibility conferred by these common variants is 

usually modest (1.5-2-time increase in ALL risk for each copy of the variant allele).50 In 

contrast, a smattering of congenital genetic disorders have been linked to ALL 

predisposition (e.g., PAX5,21 SH2B322 and TP5323 germline mutations), resulting in a 

dramatic increase in disease risk. However, these risk variants often have incomplete 

penetrance and the accompanying non-malignant symptoms can be mild.17 Therefore, it is 

conceivable that a familial cause will not be routinely suspected and it is challenging to 
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accurately determine the extent to which sporadic ALL is attributable to rare germline 

predisposition variants. This is exemplified by the wide spectrum of ALL risk alleles 

identified in ETV6 in our current study: close to 1% of unselected sporadic ALL cases carry 

likely damaging and potentially highly penetrant germline risk variants in a single gene 

ETV6. Our findings challenge the current paradigm that ALL is primarily driven by somatic 

genetic alterations and imply that the inherited genetic predisposition to this cancer may be 

much greater than previously believed. Thus, these data from us and others29-31 provide a 

strong rationale for including family history examination as part of the standard approach to 

the diagnosis and work up of pediatric ALL. For example, the family history should 

determine the presence of leukemia, the types of leukemia, the ages at leukemia diagnosis, 

and other hematological abnormalities (e.g., antecedent thrombocytopenia). However, future 

studies to comprehensively characterize the clinical features and natural course of ALL with 

inherited predisposition are needed to define clear guidelines for clinical actions appropriate 

for at-risk patients.

The unusual clustering of ALL-related ETV6 variants within the critical ETS domain 

suggests that the loss or alteration of DNA-binding function of ETV6 may be critical to the 

promotion of leukemogenesis. Experimental characterization of other ETV6 variants in the 

ETS domain indicates that they may function in a dominate-negative manner in that the loss-

of-function variant protein still oligomerizes with wildtype ETV6, thus altering subcellular 

localization and dramatically abrogating transcriptional repression29, 30. We hypothesize that 

this may be also true for ALL-related ETV6 variants identified in the current study 

(especially those in the ETS domain), and thus predict a dominant transmission of disease 

phenotype in individuals carrying these risk alleles. In contrast, the function of ETV6 

variants outside of the ETS domain is much less understood and it is possible that they alter 

gene function in an additive manner with dosage effects on ALL predisposition. 

Interestingly, the ETS domain is also truncated in the ETV6-RUNX1 fusion protein as a 

result of the somatic t(12;21) translocation and the remaining copy of wildtype ETV6 is 

often subsequently deleted in overt leukemia51. In fact, we analyzed 15 ALL cases carrying 

germline ETV6 risk variants with materials available and identified 2 with acquired copy 

number loss of ETV6 in ALL blasts (not shown). Although common in childhood ALL in 

general,28, 52 the ETV6-RUNX1 fusion is underrepresented in children who carry the ETV6 

germline risk alleles (Table 2), and this mutual exclusivity might imply possible overlap in 

the molecular mechanisms by which somatic and germline ETV6 variations influence ALL 

leukemogenesis. For example, ETV6-RUNX1 fusion arises in utero prenatally as one of the 

first acquired genomic abnormalities during the development of ALL53, and thus the 

constitutional germline ETV6 variation may also play a role at the very early stage of 

leukemogenesis. Because both types of genetic changes negatively impact ETV6 function, it 

is conceivable that they render vulnerability to subsequent oncogenic events affecting 

common signaling pathways.

However, it should be noted that a critical function of ETV6-RUNX1 is to disrupt RUNX1-

mediated transcription regulation54 which may be distinct from the effects of ETV6 germline 

variants. ETV6 is indispensable for the survival of adult hematopoietic stem cells but with 

little effect on their progeny.24, 55 Selective inactivation of ETV6 in lineage committed 
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progenitor cells showed profound defects in terminally differentiated megakaryocytes 

(reduction of platelet counts),55 consistent with the thrombocytopenia observed in patients 

with loss-of-function ETV6 germline variants (Table 1).29-31 In contrast, B cell development 

is unaffected by lineage-specific ETV6 deletion in mice55 and a distinct mechanism may 

exist to explain the increased risk in B-ALL conferred by germline defects in ETV6.

The possible incomplete penetrance of ETV6 variants in the index family strongly argues 

that secondary mutations (most likely somatic) are needed for overt leukemogenesis, 

consistent with the relatively late disease onset in individuals who carry the ETV6 risk 

variants (Table 2). Paradoxically, the frequency of hyperdiploid ALL (usually more 

common in young children) was significantly greater in this group despite their older age. 

One can hypothesize that somatic lesions characteristic of the hyperdiploid karyotype (e.g., 

mutations in the RAS pathway) may act synergistically with ETV6 germline variants during 

leukemogenesis, which should be tested experimentally in future studies. Also of interest, 

there were 8 additional germline variants identified from whole exome seq of the index 

family (CEP95, CEP250, GUSB, SNTG1, AGBL1, RAB7A, RSPRY1, and PRR23C, appendix 

p 2) that also co-segregated with ALL and were rare (MAF<0.01%) in non-ALL controls. 

While there is no obvious link of these genes with leukemogenesis, their functions have 

been sparsely characterized and it remains unknown whether they also contributed to ALL 

risk in this family (especially for the few variants predicted to be deleterious by CADD).

In conclusion, we identify germline mutations in the gene encoding the critical 

hematopoietic transcription factor ETV6 that co-segregate with ALL and thrombocytopenia 

in a rare leukemia-prone kindred. This observation, as well as similar recent findings29-31 

suggests the presence of a novel genetic syndrome characterized by a predisposition to ALL 

and thrombocytopenia with a common underlying genetic cause (i.e., ETV6 germline 

variants). We also comprehensively analyzed a large cohort of unselected pediatric ALL 

patients and identified that close to 1% of patients harbor potential predisposing germline 

ETV6 variants in ETV6. Future longitudinal family studies are needed to better define the 

penetrance, age specific leukemia incidence and clinical features characterizing this 

syndrome. Similarly, experimental characterization is warranted to define the exact function 

of the potential ALL-related ETV6 variants and to elucidate the molecular pathways by 

which they influence leukemia formation. These clinical and mechanistic studies are 

absolutely critical for the development of recommendations for clinical interventions in the 

future for individuals harboring ALL-related ETV6 variants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A novel nonsense germline variant in ETV6 (p.R359X) associated with familial ALL
Filled symbols represented individuals with ALL. “WT” and “p.R359X” indicate the 

wildtype and heterozygous genotype at this ETV6 variant, respectively.
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Figure 2. ETV6 variants identified by targeted sequencing in 4,405 unselected ALL cases
(A) ETV6 was sequenced using Illumina HiSeq platform following capture-based 

enrichment of this genomic region in 4,405 unselected ALL cases. Variants in non-ALL 

controls were based on publicly available data from the NHLBI Exome Sequencing Project 

cohort (N=6,503). Exnoic variants are classified as frameshift, nonsense, missense, and 

splicing (green, blue, red, or orange solid circles, respectively) for ALL cases (green vertical 

lines) and non-ALL controls (gray vertical lines). Functional domains are indicated by color 

based on Pfam annotation. Each circle represents a unique individual carrying the indicated 

variant (heterozygous or homozygous) except variants recurring in more than 10 individuals 

for which the number in the circle indicates the exact frequency. (B) ALL-related ETV6 

variants are highly enriched in the ETS domain which consists of 3 helices (yellow boxes) 

and 4 β-sheets (yellow arrows). H3 is responsible for direct binding with DNA, which is 

negatively regulated by the CID domain (H4 and H5, orange boxes) at the C-terminal. 

Variant function is denoted by the color of each line.
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