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Abstract
Picture fuzzy set is an efficient tool for dealing with uncertainty and vagueness, particularly in situations that require

assimilation of more dimensions of linguistic assessment such as human voting, feature selection, etc. The correlation

coefficient of picture fuzzy sets is a tool to determine the association of two picture fuzzy sets. It has several applications in

various disciplines like science, engineering, and management. The prominent applications include decision-making,

pattern recognition, clustering analysis, medical diagnosis, etc. In this paper, we introduce a new correlation coefficient for

picture fuzzy sets with the justification of its advantages. This correlation coefficient is better than the existing correlation

coefficients and other such measures in the picture fuzzy theory because it considers the picture fuzzy set as a whole and

also expresses the nature (positive or negative) as well as the extent of association between two PFSs. By performing some

comparative analysis based on the computation of correlation degree and linguistic hedges, we establish the effectiveness

of the suggested correlation measure over some available correlation measures in a picture fuzzy environment. Further, in

the context of pattern recognition, we examine the performance of the proposed correlation measure over some existing

picture fuzzy correlation measures. Finally, we apply the suggested picture fuzzy correlation coefficient to a decision-

making problem involving the selection of an appropriate COVID-19 mask.
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1 Introduction

Zadeh (1965) introduced the fuzzy set (FS) theory. After

that, many authors Chen et al. (1995), Chen (1996), Chen

and Jong (1997), Manoj et al. (1998), Chen and Huang

(2003), Singh et al. (2019, 2020) have paid keen attention

to FSs and their applications. In the FS theory, only the

membership degree of an element is considered and the

non-membership degree is automatically considered as

one-minus membership degree. Therefore, one can cer-

tainly find out the non-membership degree of an element

by knowing the membership degree of the same element.

However, in real-life situations, an experimenter may not

be so certain about the non-membership degree due to the

knowledge of membership degree (Deschrijver and

Kerre 2003). In such a situation, an independent non-

membership function along with a membership function is

desirable. Atanassov (1986) introduced the concept of

intuitionistic fuzzy sets (IFSs) using membership and a

non-membership function. For dealing with ambiguity and

uncertainty, IFSs are more concrete and flexible than

Zadeh’s (1965) FSs in various circumstances. The concept

of interval-valued IFSs (IVIFSs) was introduced by Ata-

nassov and Gargov (1989) which is a generalization of IFSs

in which the membership and non-membership degrees of

an element are intervals. Some prominent applications of

IFSs/IVIFSs can be found in clustering (Chen and Tan

1994; Huang 2012; Yue et al. 2013), decision-making

(Chen and Tan 1994, Hong and Choi 2000; Chen and

Chiou 2014; Chen and Huang 2017; Wang and Chen 2017;

Zeng et al. 2019; Liu et al. 2020; Zeng et al. 2020; Zeng

et al. 2020), medical diagnosis (De et al. 2001; Szmidt and
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Kacprzyk 2004; Zhang et al. 2012; Chen and Randyanto

2013), and pattern recognition (Zhang et al. 2012; Chen

and Randyanto 2013; Chu et al. 2014). Although, IFSs

have found a lot of applications in many areas still there are

some situations in our day-to-day life that could not be

handled by IFSs. For example, voting, medical diagnosis,

feature selection, personal selection, etc. Therefore, to deal

with such situations Cuong and Kreinovich (2013) intro-

duced the notion of picture fuzzy set (PFS), which is a

direct generalization of Zadeh’s (1965) FSs, and Ata-

nassov’s (1986) IFSs. In a PFS, each element is assigned a

membership degree, a non-membership degree, and a

neutrality degree. Cuong (2014) defined some operations

on PFSs, distance measure of PFSs, convex combination of

PFSs, interval-valued PFSs (IVPFSs), PF relation, picture

fuzzy soft set (PFSS), and applications of PFSs to a simple

decision-making problem. Wei (2016) introduced PF cross-

entropy and applied it to multi-attribute decision-making

(MADM). Wei (2017) introduced some PF cosine similarity

measures and demonstrated their application in strategic

decision-making. PF dice similarity measures with their

application in building material recognition were introduced

byWei andGao (2018).Wei (2018) introduced PF similarity

measures and some PF weighted similarity measures and

applied them to minerals field recognition and building

material recognition. Some bi-parametric distance and sim-

ilarity measures for PFSs with their application in medical

diagnosis were introduced by Khan et al. (2020a). A new

decision-makingmethod in a generalized PFSS environment

was proposed by Khan et al. (2020b). The present study is

about the correlation coefficient for PFSs.

The main contributions of this study are described

below:

• We suggest a new PF correlation measure that identifies

both the type and degree of correlation between two

PFSs.

• We demonstrate its use in pattern recognition and use

‘‘Degree of Confidence’’ to measure its performance.

• We use real data related to the Iris plant to test the

proposed PF correlation measure. https://archive.ics.

uci.edu/ml/datasets/Iris.

• We demonstrate its utility in MADM.

The remainder of the paper is structured as follows: In

Sect. 2, we discuss the existing work related to the present

study. Some basic definitions related to fuzzy/non-standard

fuzzy theory together with the existing PF correlation

measures are given in Sect. 3. Section 4 is devoted to the

introduction of the novel PF correlation measure along

with its properties. The comparative analysis of the pro-

posed PF correlation measure with the existing PF corre-

lation measures is also given in this section. The

application of the proposed PF correlation measure in

pattern recognition and also on the real data pertaining to

the Iris plant (https://archive.ics.uci.edu/ml/datasets/Iris) is

shown in Sect. 5. A novel application of the proposed PF

correlation measure in MADM is also shown in this sec-

tion. The conclusion and future scope of the present study

are given in Sect. 6.

2 Related work

The correlation coefficient is a commonly used statistical

tool and is an essential measure in decision-making, pattern

recognition, classification, data analysis, and so on

Bonizzoni et al. (2008), Cheung and Li (2012), Riegel et al.

(2008), Kumar et al. (2011), Park et al. (2009), Wei et al.

(2011). A correlation coefficient for Atanassov’s (1986),

Atanassov and Gargov (1989) IFSs was introduced by

Gerstenkorn and Manko (1991). In probability spaces,

Hong and Hwang (1995) introduced the notion of the

correlation coefficient. By considering Atanassov’s IFSs

(1986) as a group of Zadeh’s FSs (1965), Mitchell (2004)

presented the correlation coefficient for Atanassov’s (1986)

IFSs. A method for calculating the correlation coefficient

of Atanassov’s (1986) IFSs with the help of the centroid

method was developed by Hung and Wu (2002). Due to

potential applications, Atanassov’s (1986) IFSs correlation

coefficient was extended to IVIFSs by Hong (1998) and

Bustince and Burillo (1995). For hesitant fuzzy elements

(HFEs), some correlation coefficients with their application

in pattern recognition were introduced by Xu and Xia

(2011). Later on, the notion of correlation coefficient was

extended to interval-valued hesitant fuzzy sets (IVHFSs)

by Chen et al. (2013) and introduced clustering algorithms

by considering HFSs and IVHFSs. Recently, Singh and

Lalotra (2019) introduced one and two parametric gener-

alizations of the correlation coefficients introduced by Xu

and Xia (2011) in the hesitant fuzzy environment and

demonstrated their efficiency in clustering analysis. Singh

and Lalotra (2018) and, Singh and Sharma (2019) inves-

tigated a generalization of correlation coefficients for fuzzy

soft sets (FSSs) and hesitant fuzzy soft sets (HFSSs). In the

PF environment, Singh (2015) introduced some correlation

coefficients and demonstrated their effectiveness in bidi-

rectional approximate reasoning besides presenting the PF

clustering algorithm. Jin et al. (2019) introduced Pearson’s

picture fuzzy correlation coefficient with its application to

decision-making. Recently, Ganie et al. (2020) introduced

some new correlation coefficients in the PF environment

and demonstrated their application in pattern recognition,

medical diagnosis, and clustering. However, all these PF

correlation coefficients neglect the integrity of PFSs. So,

there is a need to construct a PF correlation coefficient that

should consider the PFS as a whole and reflects the
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correlation more practically. Also, the existing PF corre-

lation measures are not satisfactory from the viewpoint of

the structured linguistic variables. Furthermore, all of the

current PF correlation coefficients have some drawbacks,

which are mentioned below.

• The PF correlation coefficients due to Singh (2015)

only show the degree of correlation between two PFSs

and reveal nothing about the type of correlation

(positive or negative).

• The PF correlation coefficients proposed by Ganie et al.

(2020) express both the type and extent of correlation

between two PFSs, but they do not take into account the

degree of refusal, leading to counter-intuitive results in

most cases (Examples 1–5).

• Though the PF correlation coefficient introduced by Jin

et al. (2019) takes into account all four membership

degrees (membership, non-membership, neutrality, and

refusal), it often produces erroneous results or fails to

measure the correlation of the two PFSs (Examples 1–

5).

• The Hung (2001) type PF correlation coefficient

proposed by Ganie et al. (2020) fails to compute the

correlation coefficient of two PFSs where each ele-

ment’s membership, non-membership, or neutrality

degree is zero (Example 6).

• The PF correlation coefficient introduced by Jin et al.

(2019) fails to quantify the correlation coefficient of the

two PFSs in which each element’s degree of refusal is

zero (Examples 2, 5, and 7).

To address the above-mentioned limitations of the

existing PF correlation measures, we in this paper intro-

duce a novel PF correlation measure together with some

properties.

3 Preliminaries

In this section, we give some basic definitions concerning

the present study. Throughout this paper, let Y ¼
y1; y2; . . .; ynf g be the universal set and PFS Yð Þ be the

family of all PFSs on Y .

Definition 1 (Zadeh 1965) A fuzzy subset R of the uni-

versal set Y is defined as R ¼ yi; hR yið Þð Þjyi 2 Yf g, where
hR : Y ! 0; 1½ � represents a membership function. The

value hR yið Þ describes the extent of the presence of yi 2 Y

in R.

Definition 2 (Atanassov 1986) An IFS R in Y is defined as

R ¼ yi; hR yið Þ; sR yið Þð Þjyi 2 Yf g, where hR yið Þ and sR yið Þ
represent the membership and non-membership degrees

respectively of the element yi 2 Y to the set R with the

conditions 0� hR yið Þ; sR yið Þ� 1 and

0� hR yið Þ þ sR yið Þ� 1.

Definition 3 (Atanassov 1986) Let the family of all IFSs

over the universe of discourse Y be IFS Yð Þ. For any

R; S 2 IFS Yð Þ, some operations are defined as

• R � S if and only if hR yið Þ� hS yið Þ and sR yið Þ� sS yið Þ;
• R ¼ S if and only if R � S and R � S;

• Rc ¼ yi; sR yið Þ; hR yið Þð Þjyi 2 Yf g, where c denotes the

complement;

• R [ S ¼ yi; hR yið Þ _ hS yið Þ; sR yið Þ^ðf sS yið ÞÞjyi 2 Yg,
where ‘‘_’’ denotes maximum and ‘‘^’’ denotes

minimum;

• R \ S ¼ yi; hR yið Þ ^ hS yið Þ; sR yið Þ_ðf sS yið ÞÞjyi 2 Yg,
where ‘‘_’’ denotes maximum and ‘‘^’’ denotes

minimum.

Definition 4 (Cuong and Kreinovich 2013) A PFS R in Y

is defined as R ¼ yi; hR yið Þ; dR yið Þ; sR yið Þð Þjyi 2 Yf g,
where hR yið Þ, dR yið Þ, and sR yið Þ represent the membership,

the neutrality, and the non-membership degrees respec-

tively of the element yi 2 Y to set R with the conditions

0� hR yið Þ; dR yið Þ; sR yið Þ� 1 and

0� hR yið Þ þ dR yið Þ þ sR yið Þ� 1.

Definition 5 (Cuong 2014): For any R; S 2 PFS Yð Þ, some

operations are given below.

• R � S if and only if hR yið Þ� hS yið Þ, dR yið Þ� dS yið Þ, and
sR yið Þ� sS yið Þ;

• R ¼ S if and only if R � S and R � S;

• Rc ¼ yi; sR yið Þ; dR yið Þ; hR yið Þð Þjyi 2 Yf g, where c

denotes the complement;

• R [ S ¼ yi; hR yið Þ _ hS yið Þ; dR yið Þ ^ dS yið Þ; sR yið Þðf
^sS yið ÞÞjyi 2 Yg, where ‘‘_’’ denotes maximum and

‘‘^’’ denotes minimum;

• R \ S ¼ yi; hR yið Þ ^ hS yið Þ; dR yið Þ ^ dS yið Þ; sR yið Þðf
_sS yið ÞÞjyi 2 Yg, where ‘‘_’’ denotes maximum an ‘‘^’’
denotes minimum.

In the next section, we review the existing PF correla-

tion measures.

3.1 The existing PF correlation measures

In this section, we revise the existing PF correlation mea-

sures available in the literature and also discuss their

limitations.

Let R; S 2 PFS Yð Þ.
PF correlation measures due to Singh (2015):
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where c yið Þ ¼ 1� h yið Þ þ d yið Þ þ s yið Þð Þ is the degree of

refusal, and

The PF correlation coefficients CS1 and CS2 due to Singh

(2015) give the degree of correlation between two PFSs but

they fail to determine the nature of correlation.

PF correlation measure due to Jin et al. (2019):

CJWSZLP R; Sð Þ ¼ 1

4
W1 R; Sð Þ þW2 R; Sð Þ þW3 R; Sð Þ þW4 R; Sð Þð Þ; ð3Þ

where,

The PF correlation coefficient CJWSZLP due to Jin et al.

(2019) often gives the same correlation degree between

different PFSs and also fails to compute the degree of

correlation between those PFSs in which the refusal degree

of each element is zero.

PF correlation measures due to Ganie et al. (2020):

where hR; hS; dR; dS; sR; sS; cR; cS are the same as in Eq. (3)

and,

CS1 R; Sð Þ ¼

Pn

i¼1

hR yið ÞhS yið Þ þ dR yið ÞdS yið Þ þ sR yið ÞsS yið Þ þ cR yið ÞcS yið Þf g

Pn

i¼1

hR yið Þð Þ2þ dR yið Þð Þ2þ sR yið Þð Þ2þ cR yið Þð Þ2
n o

	
Pn

i¼1

hS yið Þð Þ2þ dS yið Þð Þ2þ sS yið Þð Þ2þ cS yið Þð Þ2
n o

s ; ð1Þ

CS2 R; Sð Þ ¼

Pn

i¼1

hR yið ÞhS yið Þ þ dR yið ÞdS yið Þ þ sR yið ÞsS yið Þ þ cR yið ÞcS yið Þf g

max
Pn

i¼1

hR yið Þð Þ2þ dR yið Þð Þ2þ sR yið Þð Þ2þ cR yið Þð Þ2
n o

;
Pn

i¼1

hS yið Þð Þ2þ dS yið Þð Þ2þ sS yið Þð Þ2þ cS yið Þð Þ2
n o� � : ð2Þ

W1 R; Sð Þ ¼
Pn

i¼1 hR yið Þ � hR
� �

hS yið Þ � hS
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 hR yið Þ � hR
� �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 hS yið Þ � hS
� �2

q ; W2 R; Sð Þ ¼
Pn

i¼1 dR yið Þ � dR
� �

dS yið Þ � dS
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 dR yið Þ � dR
� �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 dS yið Þ � dS
� �2

q ;

W3 R; Sð Þ ¼
Pn

i¼1 sR yið Þ � sRð Þ sS yið Þ � sSð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 sR yið Þ � sRð Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 sS yið Þ � sSð Þ2
q ; W4 R; Sð Þ ¼

Pn
i¼1 cR yið Þ � cRð Þ cS yið Þ � cSð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 cR yið Þ � cRð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 cS yið Þ � cSð Þ2

q ;

hR ¼ 1

n

Xn

i¼1

hR yið Þ; dR ¼ 1

n

Xn

i¼1

dR yið Þ; sR ¼ 1

n

Xn

i¼1

sR yið Þ; cR ¼ 1

n

Xn

i¼1

cR yið Þ; hS ¼
1

n

Xn

i¼1

hS yið Þ;

dS ¼
1

n

Xn

i¼1

dS yið Þ; sS ¼
1

n

Xn

i¼1

sS yið Þ; and cS ¼
1

n

Xn

i¼1

cS yið Þ:
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qi Rð Þ ¼ hR yið Þ � hR
� �

� dR yið Þ � dR
� �

� sR yið Þ � sRð Þ;
qi Sð Þ ¼ hS yið Þ � hS

� �
� dS yið Þ � dS
� �

� sS yið Þ � sSð Þ
8i ¼ 1; 2; . . .; n:

CGSB2 R; Sð Þ ¼ 1

3
W1 R; Sð Þ þW2 R; Sð Þ þW3 R; Sð Þð Þ;

ð5Þ

where, Wi R; Sð Þ; i ¼ 1; 2; 3 are the same as in Eq. (3).

The PF correlation coefficients CGSB1 and CGSB2 due to

Ganie et al. (2020) often gives same correlation degree

between different PFSs and also the correlation coefficient

CGSB2 fails to compute the degree of correlation between

those PFSs in which either the membership or non-mem-

bership or neutrality degree of each element is zero.

In the next section, we introduce a new correlation

coefficient for PFSs.

4 A novel correlation coefficient of PFSs

In this section, we propose a novel correlation coefficient

for PFSs which overcomes the limitations of the existing

PF correlation coefficients.

Definition 6 Let R; S 2 PFS Yð Þ, then the correlation

coefficient between R and S is given by.

where hR ¼ 1
n

Pn

i¼1

hR yið Þ, dR ¼ 1
n

Pn

i¼1

dR yið Þ, sR ¼ 1
n

Pn

i¼1

sR yið Þ,

hS ¼ 1
n

Pn

i¼1

hS yið Þ, dS ¼ 1
n

Pn

i¼1

dS yið Þ, and sS ¼ 1
n

Pn

i¼1

sS yið Þ.

The following Theorem 1 establishes some properties of

the PF correlation coefficient CGS R; Sð Þ.

Theorem 1 Let R; S 2 PFS Yð Þ, then.

ðaÞ CGS R; Sð Þ ¼ CGS S;Rð Þ;
ðbÞ CGS R; Sð Þ ¼ 1 if R ¼ S;

ðcÞ CGS R; Sð Þj j � 1;

(d) If R ¼ aS, then CGS R; Sð Þ ¼ 1 for a[ 0 and

CGS R; Sð Þ ¼ �1 for a\0.

Proof (a) We have

CGSB1 R; Sð Þ ¼

1
n�1

Pn

i¼1

hR yið Þ � hR
� �

hS yið Þ � hS
� �

þ dR yið Þ � dR
� �

dS yið Þ � dS
� �

þ sR yið Þ � sRð Þ sS yið Þ � sSð Þ þ qi Rð Þqi Sð Þ

( )



1
n�1

Pn

i¼1

hR yið Þ � hR
� �2þ dR yið Þ � dR

� �2þ sR yið Þ � sRð Þ2þq2i Rð Þ
n o

	 1
n�1

Pn

i¼1

hS yið Þ � hS
� �2þ dS yið Þ � dS

� �2þ sS yið Þ � sSð Þ2þq2i Sð Þ
n o

s ;

ð4Þ

CGS R; Sð Þ ¼

Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �

	 hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �2	

Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2

s ;

ð6Þ
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CGS R; Sð Þ ¼

Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �

	 hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �� �


Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �2	

Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2

s ;

¼

Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �

	 hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2	

Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �2

s ;

¼ CGS S;Rð Þ:

(b) Let R ¼ S, i.e., hR yið Þ ¼ hS yið Þ; dR yið Þ ¼ dS yið Þ;
and sR yið Þ ¼ sS yið Þ, 8i ¼ 1; 2; . . .; n: Then

CGS R; Sð Þ ¼

Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �

	 hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �� �


Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �2	

Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2

s ;

¼

Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2

	 
2
s ¼ 1:

(c) Using Cauchy–Schwarz inequality, we have

CGS R; Sð Þð Þ2 ¼

Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �

	 hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �� �


Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �2	

Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2

s

0

B
B
B
B
@

1

C
C
C
C
A

2

�

Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �2	

Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2


Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �2	

Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2

s !2
¼ 1;

or CGS R; Sð Þj j � 1.

(d) Let R ¼ aS, then we have
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4.1 Comparative analysis

In this section, we perform some comparative analysis of

the proposed PF correlation coefficient with some existing

PF correlation coefficients through many aspects such as

computation of correlation between different PFSs and

linguistic hedges. First, we perform the comparative anal-

ysis based on correlation degree computation.

4.1.1 Computation of correlation between different PFSs

We solve some examples related to the calculation of

correlation between different PFSs with the help of various

PF correlation coefficients.

Example 1 Let R; S; T 2 PFS Yð Þ be given as R ¼
y1; 0:64; 0:112; 0:13ð Þ; y2; 0:4; 0:5; 0:1ð Þf g, S ¼ y1; 0:5;ðf

0:29; 0:056Þ; y2; 0:41; 0:2; 0:2ð Þg and T ¼ y1; 0:1; 0:3;ðf
0:5Þ; y2; 0:6; 0:2; 0:1ð Þg. Clearly, R 6¼ S but we have

CGSB1 R; Tð Þ ¼ CGSB1 S; Tð Þ ¼ �0:8303;

CGSB2 R; Tð Þ ¼ CGSB2 S; Tð Þ ¼ �0:3333;

CJWSZLP R; Tð Þ ¼ CJWSZLP S; Tð Þ ¼ Null;

CGS R; Tð Þ ¼ 0;CGS S; Tð Þ ¼ 0:1542:

Thus, only our proposed PF correlation measure dif-

ferentiates between R and S.

Example 2 Let R; S; T 2 PFS Yð Þ be given as

R ¼ y1; 0:5; 0:5; 0:0ð Þ; y2; 0:4; 0:6; 0:0ð Þf g, S ¼ y1;ðf
1:0; 0:0; 0:0Þ; y2; 0:7; 0:3; 0:0ð Þg and T ¼ y1; 0:8;ðf
0:1; 0:1Þ; y2; 0:9; 0:1; 0:0ð Þg. Clearly, R 6¼ S but we have

CGSB1 R; Tð Þ ¼ CGSB1 S; Tð Þ ¼ �0:8333;

CGSB2 R; Tð Þ ¼ CGSB2 S; Tð Þ ¼ Null;

CJWSZLP R; Tð Þ ¼ CJWSZLP S; Tð Þ ¼ Null;

CGS R; Tð Þ ¼ 0:9701;CGS S; Tð Þ ¼ 0:2425:

Here, we observe that the degree of refusal of each

element in the PFSs R; S; and T is zero and also R 6¼ S. The

PF correlation coefficients CGSB2 and CJWSZLP fails to

calculate the degree of correlation, and also the PF corre-

lation coefficient CGSB1 gives the same degree of correla-

tion of the two different PFSs R and S with the PFS T . Our

proposed PF correlation coefficient CGS gives quite good

results.

Example 3 Let R; S; T 2 PFS Yð Þ be given as

R ¼ y1; 0:2; 0:2; 0:2ð Þ; y2; 0:1; 0:1; 0:1ð Þf g, S ¼ y1; 0:3;ðf
0:3; 0:3Þ; y2; 0:2; 0:2; 0:2ð Þg and T ¼ y1; 0:4; 0:3;ðf
0:2Þ; y2; 0:5; 0:0; 0:4ð Þg. Clearly, R 6¼ S but we have

CGSB1 R; Tð Þ ¼ CGSB1 S; Tð Þ ¼ 0:2357;

CGSB2 R; Tð Þ ¼ CGSB2 S; Tð Þ ¼ �0:3333;

CJWSZLP R; Tð Þ ¼ CJWSZLP S; Tð Þ ¼ �0:5000;

CGS R; Tð Þ ¼ 0:2776;CGS S; Tð Þ ¼ 0:0000:

Here, we also observe that only our proposed correlation

measure gives satisfactory results.

Example 4 Let R; S; T 2 PFS Yð Þ be given as

R ¼ y1; 0:0; 0:7; 0:3ð Þ; y2; 0:5; 0:11; 0:16ð Þf g, S ¼ y1;ðf
0:4; 0:3; 0:3Þ; y2; 0:7; 0:1; 0:2ð Þg and T ¼ y1; 0:8;ðf
0:1; 0:1Þ; y2; 0:2; 0:6; 0:2ð Þg. Here, R 6¼ S but we have

CGS R; Sð Þ ¼

Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �

	 hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �� �


Pn

i¼1

hR yið Þ � hR
� �

þ dR yið Þ � dR
� �

þ sR yið Þ � sRð Þ
� �2	

Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2

s ;

¼

Pn

i¼1

ahS yið Þ � ahS
� �

þ adS yið Þ � adS
� �

þ asS yið Þ � asSð Þ
� �

	 hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �� �


Pn

i¼1

ahS yið Þ � ahS
� �

þ adS yið Þ � adS
� �

þ asS yið Þ � asSð Þ
� �2	

Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2

s ;

¼
a
Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
Pn

i¼1

hS yið Þ � hS
� �

þ dS yið Þ � dS
� �

þ sS yið Þ � sSð Þ
� �2

	 
2
s ¼

�1; ifa\0

1; ifa[ 0

�

:
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CGSB1 R; Tð Þ ¼ CGSB1 S; Tð Þ ¼ �0:9952;

CGSB2 R; Tð Þ ¼ CGSB2 S; Tð Þ ¼ �1:0000;

CJWSZLP R; Tð Þ ¼ CJWSZLP S; Tð Þ ¼ Null;

CGS R; Tð Þ ¼ 0:7071;CGS S; Tð Þ ¼ �0:5547:

Thus, the performance of our proposed correlation

measure CGS is more reasonable than the existing PF cor-

relation measures.

Example 5 Let R; S; T 2 PFS Yð Þ be given as

R ¼ y1; 0:9; 0:0; 0:1ð Þ; y2; 0:6; 0:2; 0:2ð Þf g, S ¼ y1; 0:5;ðf
0:2; 0:3Þ; y2; 0:2; 0:4; 0:4ð Þg and T ¼ y1; 0:5; 0:1;ðf
0:4Þ; y2; 0:3; 0:3; 0:4ð Þg. Clearly, R 6¼ S but we have

CGSB1 R; Tð Þ ¼ CGSB1 S; Tð Þ ¼ 0:9815;

CGSB2 R; Tð Þ ¼ CGSB2 S; Tð Þ ¼ Null;

CJWSZLP R; Tð Þ ¼ CJWSZLP S; Tð Þ ¼ Null;

CGS R; Tð Þ ¼ 0:8944;CGS S; Tð Þ ¼ �0:8944:

Here, our proposed PF correlation measure CGS gives

reasonable results, and the existing PF correlation measures

CGSB1;CGSB2, and CJWSZLP give unreasonable results.

Thus, from Examples 1–5, we observe that the degree of

correlation of a PFS T with two different PFSs R and

S comes out to be the same by all of the existing PF cor-

relation measures. This indicates that the existing PF cor-

relation coefficients fail to distinguish the two different

PFSs R and S and considers them to be identical, which is

not reasonable. Also, in Examples 1, 2, 4, and 5, we see

that the PF correlation coefficients CGSB2 and CJWSZLP fail

to compute the correlation degree of the PFS T with the

two PFSs R and S. However, in all these Examples, our

proposed PF correlation coefficient CGS performs very well

without any unreasonable results. This implies that the

proposed PF correlation coefficient CGS is very effective

than the existing PF correlation coefficients in computing

correlation degrees between different PFSs.

Next in Examples 6 and 7, we show that the PF corre-

lation coefficients CGSB2 (Ganie et al. 2020) and CJWSZLP

(Jin et al. 2019) fail to compute the correlation degree of

those PFSs in which either of the membership grades is

zero.

Example 6 Let R; S; T 2 PFS Yð Þ be such that the mem-

bership or non-membership or the neutrality degree of each

element is zero. We show that the PF correlation measure

CGSB2 given in Eq. (5) is unable to calculate the correlation

between them.

Case I When the degree of membership of each element

in each of the PFSs R; S and T is zero i.e.,

hR yið Þ ¼ hS yið Þ ¼ hT yið Þ ¼ 0 8 i ¼ 1; 2; . . .; n, then the

value of the factor W1 in the expression of CGSB2 cannot be

calculated and therefore CGSB2 fails to calculate the degree

of correlation between the PFSs R; S; and T .

Case II When the degree of neutrality of each element

in each of the PFSs R; S and T is zero i.e.,

dR yið Þ ¼ dS yið Þ ¼ dT yið Þ ¼ 0 8 i ¼ 1; 2; . . .; n, then the

value of the factor W2 in the expression of CGSB2 cannot be

calculated and therefore CGSB2 fails to calculate the degree

of correlation between the PFSs R; S; and T .

Table 1 Computed correlation values regarding Example 8

M.L.L. L. V.L. V.V.L. N.V.L.

CS1

M.L.L. 1.0000 0.8700 0.6102 0.4430 0.5887

L. 0.8700 1.0000 0.9060 0.7596 0.7505

V.L. 0.6102 0.9060 1.0000 0.9494 0.6625

V.V.L. 0.4430 0.7596 0.9494 1.0000 0.5192

N.V.L. 0.5887 0.7505 0.6625 0.5192 1.0000

CS2

M.L.L. 1.0000 0.8371 0.5423 0.3318 0.5233

L. 0.8371 1.0000 0.7748 0.5475 0.6418

V.L. 0.5423 0.7748 1.0000 0.8001 0.6625

V.V.L. 0.3318 0.5475 0.8001 1.0000 0.4375

N.V.L. 0.5233 0.6418 0.6625 0.4375 1.0000

CJWSZLP

M.L.L. 1.0000 0.9705 0.8842 0.8003 0.4143

L. 0.9705 1.0000 0.9679 0.9080 0.3463

V.L. 0.8842 0.9679 1.0000 0.9794 0.2998

V.V.L. 0.8003 0.9080 0.9794 1.0000 0.2899

N.V.L. 0.4143 0.3463 0.2998 0.2899 1.0000

CGSB1

M.L.L. 1.0000 0.8879 0.5872 0.4597 -0.0764

L. 0.8879 1.0000 0.8930 0.8106 -0.4469

V.L. 0.5872 0.8930 1.0000 0.9836 -0.7011

V.V.L. 0.4597 0.8106 0.9836 1.0000 -0.7337

N.V.L. -0.0764 -0.4469 -0.7011 -0.7337 1.0000

CGSB2

M.L.L. 1.0000 0.9633 0.8640 0.7899 0.2374

L. 0.9633 1.0000 0.9644 0.9129 0.1356

V.L. 0.8640 0.9644 1.0000 0.9838 0.0664

V.V.L. 0.7899 0.9129 0.9838 1.0000 0.0645

N.V.L. 0.2374 0.1356 0.0664 0.0645 1.0000

CGS

M.L.L. 1.0000 0.9922 0.9450 0.8313 0.9450

L. 0.9922 1.0000 0.9784 0.8933 0.9784

V.L. 0.9450 0.9784 1.0000 0.9663 1.0000

V.V.L. 0.8313 0.8933 0.9663 1.0000 0.9663

N.V.L. 0.9450 0.9784 1.0000 0.9663 1.0000
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Case III When the degree of non-membership of each

element in each of the PFSs R; S, and T is zero i.e.,

sR yið Þ ¼ sS yið Þ ¼ sT yið Þ ¼ 0 8 i ¼ 1; 2; . . .; n, then the

value of the factor W3 in the expression of CGSB2 can not be

calculated and therefore CGSB2 fails to calculate the degree

of correlation between the PFSs R; S; and T .

Example 7 Let R; S; T 2 PFS Yð Þ be such that the refusal

degree of each element is zero, then the value of the factor

W4 in the expression of CJWSZLP cannot be calculated and

therefore CJWSZLP fails to calculate the degree of correla-

tion between the PFSs R; S; and T .

4.1.2 Linguistic hedges

The structured linguistic investigation of all ambigu-

ity/vagueness measures in standard and non-standard ver-

sions offers clear theoretical proof of a measure’s

applicability in realistic situations. Zadeh (1972) was the

first to propose the idea of standardized linguistic variables

or linguistic hedges in the context of FSs. De et al. (2000)

later expanded the definition to IFSs. The modifier Ra of a

Table 2 Calculated values of

various PF-correlation measures

regarding Example 9

V1; Wð Þ V2; Wð Þ V3; Wð Þ Result DoC

CS1(Singh 2015) 0.9120 0.9150 0.4800 V2 0.4380

CS2(Singh 2015) 0.8723 0.8571 0.3476 V1 0.5400

CJWSZLP(Jin et al. 2019) Null Null Null Not Classified Null

CGSB1(Ganie et al. 2020) - 0.6325 - 0.4564 - 0.3450 V3 0.3989

CGSB2(Ganie et al. 2020) Null Null Null Not Classified Null

CGS(Proposed) 1.0000 - 0.8660 - 1.0000 V1 3.8660

’’Null’’ means cannot be calculated

Table 3 Calculated values of

various PF-correlation measures

regarding Example 10

V1; Wð Þ V2; Wð Þ V3; Wð Þ Result DoC

CS1(Singh 2015) 0.6885 0.7069 0.7341 V3 0.0728

CS2(Singh 2015) 0.5926 0.6235 0.6049 V2 0.0494

CJWSZLP(Jin et al. 2019) - 0.3432 - 0.0968 - 0.1934 V2 0.3429

CGSB1(Ganie et al. 2020) 0.2400 - 0.1096 0.1702 V1 0.4194

CGSB2(Ganie et al. 2020) - 0.1689 - 0.2958 - 0.0911 V3 0.2824

CGS(Proposed) - 0.8660 0.5000 - 0.5000 V2 2.3660

Fig. 1 Correlation coefficient of the unknown pattern with the known

patterns

Fig. 2 Degree of Confidence of various PF correlation coefficients

Granular Computing (2022) 7:353–367 361

123



PFS R, where a is a positive real number was given by

Wang et al. (2017) and is defined as:

Ra ¼ yi; hR yið Þ þ dR yið Þð Þa� dR yið Þð Þa; dR yið Þð Þa;
�

1� 1� sR yið Þð Þajyi 2 Yg:
ð7Þ

With the help of Eq. (7), Singh and Ganie (2021)

defined various linguistic hedges such as LARGE (L.), very

LARGE (V.L.), very very LARGE (V.V.L.), not very

LARGE (N.V.L.), and more or less LARGE (M.L.L.) in

the PF environment. We now apply various PF correlation

measures for computing the correlation between the lin-

guistic hedges L., V.L., V.V.L., N.V.L., and M.L.L. in the

example given below.

Example 8 (Singh and Ganie 2021) Consider a PFS R in

the domain Y given as.

R ¼
ðy1; 0:20; 0:15; 0:40Þ; ðy2; 0:35; 0:11; 0:54Þ; ðy3; 0:32; 0:19; 0:12Þ;
ðy4; 0:49; 0:31; 0:20Þ; ðy5; 0:16; 0:36; 0:25Þ

� �

:

With the help of the modifier of a PFS R given in the

Eq. (7), the PFSs R
1
2;R2;R4; and R2ð Þc can be determined.

Due to the characterization of linguistic hedges, we regard

R as ‘LARGE’, R
1
2 as ‘more or less LARGE’, R2 as ‘very

LARGE’, R4 as ‘very very LARGE’, and R2ð Þc as ‘not very
LARGE’. To characterize linguistic hedges, a PF correla-

tion measure C must meet the following conditions.

C M.L.L.,L.ð Þ[C M.L.L., V.L:ð Þ[C M.L.L., V.V.L:ð Þ
ð8Þ

C V.V.L,V.L:ð Þ[C V.V.L., L:ð Þ[C V.V.L., M.L.L:ð Þ
ð9Þ

C L.,M.L.L.ð Þ[C L., V.L.ð Þ[C L., V.V.L:ð Þ ð10Þ
C V.L.,L:ð Þ[C V.L., V.V.L:ð Þ[C V.L., M.L.L:ð Þ; ð11Þ

The computed values of the correlation between the

linguistic hedges L., V.L., V.V.L., N.V.L., and M.L.L.

using various PF correlation measures are given in Table 1.

From Table 1, we see that the existing PF correlation

measures given in Eqs. (1)–(5) fail to satisfy one or more

requirements given in Eqs. (8)–(11), whereas the suggested

Table 4 Calculated values of

various PF-correlation measures

regarding Example 11

V1; Wð Þ V2; Wð Þ V3; Wð Þ Result DoC

CS1(Singh 2015) 0.9846 0.9846 0.9749 Not Classified Null

CS2(Singh 2015) 0.9745 0.9745 0.9505 Not Classified Null

CJWSZLP(Jin et al. 2019) Null Null Null Not Classified Null

CGSB1(Ganie et al. 2020) 0.8896 0.9511 0.9785 V3 0.0528

CGSB2(Ganie et al. 2020) Null Null Null Not Classified Null

CGS(Proposed) 0.8000 0.9467 0.3162 V2 0.7772

Bold values indicate unreasonable results. ‘‘Null’’ means cannot be calculated

Table 5 Calculated values of

various PF correlation measures

regarding Example 12

(Setosa, Virginica) (Versicolor, Virginica)

CS1(Singh 2015) 0.7488 0.6761

CS2(Singh 2015) 0.6800 0.6201

CJWSZLP(Jin et al. 2019) 0.1337 -0.1034

CGSB1(Ganie et al. 2020) 0.1087 -0.1405

CGSB2(Ganie et al. 2020) 0.0911 -0.1434

CGS(Proposed) 0.1334 0.0333

Bold values indicate maximum correlation

Fig. 3 Correlation between different classes of Iris plant
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PF correlation coefficient CGS given in Eq. (6) satisfy all

the conditions given in Eqs. (8)–(11). This indicates that

the proposed correlation coefficient CGS is more effective

than the existing PF correlation coefficients in handling the

linguistic hedges.

In the next section, we establish the rationality of our

proposed correlation coefficient by showing its application

in pattern recognition and decision-making.

5 Applications

In this section, we demonstrate the application of our

proposed PF correlation measures in pattern recognition

and decision-making and compare the results with some

existing PF compatibility measures.

5.1 Pattern recognition

The main goal of pattern recognition is to determine how

closely an unknown pattern resembles any previously

recognized patterns. We use current PF correlation mea-

sures, as well as our own proposed PF correlation measure,

to accomplish this. We begin by posing the pattern

recognition problem in a PF context.

Scenario We are given some known patterns

V1;V2; . . .;Vk and an unknown pattern W expressed in the

form of PFSs in Y as.

Vj ¼ yi; hVj
yið Þ; dVj

yið Þ; sVj
yið Þ

� �
jyi 2 Y

� �
; j ¼ 1; 2; . . .; k and

W ¼ yi; hW yið Þ; dW yið Þ; sW yið Þð Þjyi 2 Yf g:

Aim To classify the unknown pattern W into one of the

known patterns Vj j ¼ 1; 2; . . .; kð Þ.
Recognition principle The unknown pattern W can be

assigned to the known pattern Vj; j ¼ 1; 2; . . .; k with which

it has a maximum correlation.

After determining the known pattern to which the

unknown pattern belongs, we calculate the ‘‘Degree of

Confidence (DoC)’’ (Hatzimichailidis et al. 2012) of each

PF-correlation measure, and this performance index mea-

sures the confidence of each PF-correlation measure in

recognizing a specific sample that belongs to pattern ið Þ.
The DoC is calculated as

DoC ið Þ ¼
Xk

j¼1;j 6¼i

K Vj;W
� �

� K Vi;Wð Þ
�
�

�
�;

where K is any PF-correlation measure. The greater the

DoC ið Þ, the more confident the measure is. Now, we solve

some pattern recognition problems involving PF informa-

tion with the help of our proposed PF-correlation measure

given in the Eq. (6) and compare the results with the

existing PF-correlation measures given in the Eqs. (1)–(5).

Example 9 (Luo and Zhang 2020) Consider three known

patterns V1;V2; and V3 and an unknown pattern W in the

form of PFSs as.

V1 ¼ y1; 0:5; 0:1; 0:1ð Þ; y2; 0:3; 0:1; 0:3ð Þ; y3; 0:3; 0:1; 0:4ð Þf g;
V2 ¼ y1; 0:4; 0:3; 0:2ð Þ; y2; 0:3; 0:2; 0:5ð Þ; y3; 0:4; 0:1; 0:3ð Þf g;
V3 ¼ y1; 0:2; 0:4; 0:3ð Þ; y2; 0:1; 0:4; 0:4ð Þ; y3; 0:0; 0:0; 0:0ð Þf g and

W ¼ y1; 0:3; 0:2; 0:3ð Þ; y2; 0:4; 0:1; 0:3ð Þ; y3; 0:4; 0:2; 0:3ð Þf g:

The calculated values of PF-correlation measures

between the known patterns Vj; j ¼ 1; 2; 3, and the

unknown pattern W are summarized in Table 2.

From Table 2, we see that except the correlation mea-

sures CJWSZLP and CGSB1 all other PF correlation coeffi-

cients classify the unknown pattern W into one of the

known patterns Vj; j ¼ 1; 2; 3. The result of our proposed

PF correlation coefficient CGS is the same as that of CGSB1

(Ganie et al. 2020). But the DoC of our proposed measure

is very high than all the existing PF correlation measures

and therefore is more effective. This indicates that the

suggested PF correlation coefficient CGS is more confident

than all the existing PF correlation coefficients in assigning

the unknown pattern W to the known pattern V1.

Table 6 PF representation of

different masks
Type of mask A1 A2 A3 A4

P1 0:01; 0:69; 0:06ð Þ 0:10; 0:29; 0:07ð Þ 0:18; 0:12; 0:13ð Þ 0:36; 0:25; 0:36ð Þ
P2 0:28; 0:05; 0:08ð Þ 0:20; 0:35; 0:43ð Þ 0:53; 0:21; 0:19ð Þ 0:36; 0:28; 0:39ð Þ
P3 0:15; 0:36; 0:40ð Þ 0:11; 0:38; 0:18ð Þ 0:20; 0:11; 0:09ð Þ 0:05; 0:24; 0:37ð Þ
P4 0:29; 0:24; 0:24ð Þ 0:19; 0:41; 0:31ð Þ 0:37; 0:21; 0:29ð Þ 0:53; 0:07; 0:17ð Þ
P5 0:08; 0:15; 0:37ð Þ 0:29; 0:34; 0:39ð Þ 0:07; 0:46; 0:46ð Þ 0:09; 0:10; 0:39ð Þ
P6 0:53; 0:30; 0:08ð Þ 0:64; 0:33; 0:01ð Þ 0:07; 0:45; 0:13ð Þ 0:7; 0:24; 0:46ð Þ
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Example 10 (Luo and Zhang 2020) Consider three known

patterns V1;V2; and V3 and an unknown pattern W in the

form of PFSs as

V1 ¼ y1; 0:4; 0:5; 0:1ð Þ; y2; 0:7; 0:1; 0:1ð Þ; y3; 0:3; 0:3; 0:2ð Þf g;
V2 ¼ y1; 0:5; 0:4; 0:0ð Þ; y2; 0:7; 0:2; 0:1ð Þ; y3; 0:4; 0:3; 0:2ð Þf g;
V3 ¼ y1; 0:4; 0:4; 0:1ð Þ; y2; 0:6; 0:1; 0:1ð Þ; y3; 0:4; 0:1; 0:4ð Þf g and

W ¼ y1; 0:1; 0:1; 0:6ð Þ; y2; 0:7; 0:1; 0:2ð Þ; y3; 0:8; 0:1; 0:1ð Þf g:

The calculated values of PF-correlation measures

between the known patterns Vj; j ¼ 1; 2; 3, and the

unknown pattern W are summarized in Table 3 and also

shown in Fig. 1.

From Table 3, it is clear that all the PF correlation

measures assign the unknown pattern W to one of the

known patterns Vj; j ¼ 1; 2; 3. The result of our proposed

PF correlation coefficient CGS is the same as that of CS1

(Singh 2015) and CJWSZLP (Jin et al. 2019). However, the

DoC of our proposed PF correlation coefficient CGS is quite

high than all the existing PF correlation measures as shown

in Fig. 2. This indicates that the suggested PF correlation

coefficient CGS is more confident than all the existing PF

correlation coefficients in assigning the unknown patternW

to the known pattern V2.

Example 11 Consider three known patterns V1;V2; andV3

and an unknown pattern W in the form of PFSs as.

V1 ¼ y1; 0:5; 0:0; 0:3ð Þ; y2; 0:7; 0:0; 0:0ð Þ;f
y3; 0:4; 0:0; 0:5ð Þ; y4; 0:7; 0:0; 0:3ð Þg;

V2 ¼ y1; 0:5; 0:0; 0:2ð Þ; y2; 0:6; 0:0; 0:1ð Þ;f
y3; 0:2; 0:0; 0:7ð Þ; y4; 0:7; 0:0; 0:3ð Þg;

V3 ¼ y1; 0:5; 0:0; 0:4ð Þ; y2; 0:7; 0:0; 0:1ð Þ;f
y3; 0:4; 0:0; 0:6ð Þ; y4; 0:7; 0:0; 0:2ð Þg and

W ¼ y1; 0:4; 0:0; 0:3ð Þ; y2; 0:7; 0:0; 0:1ð Þ;f
y3; 0:3; 0:0; 0:6ð Þ; y4; 0:7; 0:0; 0:3ð Þg:

The calculated values of PF-correlation measures

between the known patterns Vj; j ¼ 1; 2; 3, and the

unknown pattern W are summarized in Table 4.

From Table 4, we see that only the PF correlation

measures CGSB1 and CGS classify the unknown patternW to

one of the known patterns Vi; i ¼ 1; 2; 3, and all other PF

correlation measures fail to give satisfactory results. Also,

the DoC of our proposed PF correlation coefficient CGS is

quite high and therefore is more confident than all of the

existing PF correlation coefficients in assigning the

unknown pattern W to the known pattern V2.

Thus, from Examples 8 to 10, we conclude that our

proposed PF correlation coefficient is consistent with the

existing PF correlation coefficients (Example 9) and in

many cases (Examples 8 and 10) outperforms all of the

existing PF correlation measures. Also, the DoC of the

proposed PF correlation coefficient CGS is very high than

Table 7 Correlation of each

mask with positive ideal PFS

and negative ideal PFS

P1 P2 P3 P4 P5 P6

CGS Pi;P
þð Þ - 0.3893 0.7009 – 0.2597 0.7377 0.6164 0.4021

CGS Pi;P
�ð Þ - 0.4508 0.5035 -0.3302 0.6442 0.5880 0.1738

Table 8 Index of correlation
Correlation coefficient P1 P2 P3 P4 P5 P6

CS1(Singh 2015) 0.4909 0.5113 0.4676 0.5160 0.4523 0.5323

CS2(Singh 2015) 0.4940 0.5067 0.4652 0.5105 0.4493 0.5314

CJWSZLP(Jin et al. 2019) 0.5457 0.4523 0.5581 0.4321 0.4807 0.5509

CGSB1(Ganie et al. 2020) 0.4423 0.6199 0.5191 0.4760 0.5675 0.5886

CGSB2(Ganie et al. 2020) 0.5400 0.4301 0.5540 0.4023 0.4845 0.5572

CGS(Proposed) 0.5265 0.5308 0.5250 0.5138 0.5044 0.5443

Table 9 Ranking order of masks

Correlation Coefficient Ranking

CS1(Singh 2015) P6 [P4 [P2 [P1 [P3 [P5

CS2(Singh 2015) P6 [P4 [P2 [P1 [P3 [P5

CJWSZLP(Jin et al. 2019) P3 [P6 [P1 [P5 [P2 [P4

CGSB1(Ganie et al. 2020) P2 [P6 [P5 [P3 [P4 [P1

CGSB2(Ganie et al. 2020) P6 [P3 [P1 [P5 [P2 [P4

CGS(Proposed) P6 [P2 [P1 [P3 [P4 [P5
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all of the existing PF correlation coefficients and therefore

is more reasonable and effective.

Further, we apply our proposed PF correlation measure

on the real data related to the Iris plant that has been

obtained from the UCI Machine Learning Repository

(https://archive.ics.uci.edu/ml/datasets/Iris).

Example 12 (Singh and Ganie 2021; Ganie and Singh

2021) The Iris plant database has 150 samples which are

categorized into 3 classes ‘‘Setosa’’, ‘‘Versicolor’’, and

‘‘Virginica’’. Each sample has four features Petal Width

(PW), Petal Length (PL), Sepal Width (SW), Sepal Length

(SL). We compute the correlation between ‘‘Setosa’’ and

‘‘Virginica’’ and between ‘‘Versicolor’’ and ‘‘Virginica’’

using the suggested correlation coefficient for PFSs and

contrast the performance with the existing correlation

coefficient for PFSs. As the data in the Iris database is in

the crisp form, so recently Singh and Ganie (2021) intro-

duced a method for converting the data in the crisp form to

the data in picture fuzzy form. The values of correlation

between ‘‘Setosa’’ and ‘‘Virginica’’ and between ‘‘Versi-

color’’ and ‘‘Virginica’’ are given in Table 5 and also the

graphical representation is shown in Fig. 3.

From Table 5, we see that ‘‘Virginica’’ has maximum

resemblance with ‘‘Setosa’’ as indicated by all the existing

PF correlation measures. Our proposed PF correlation

coefficient CGS also shows that Virginica has maximum

resemblance with Setosa.

Now, we discuss the application of the proposed PF

correlation measure in MADM.

5.2 MADM

In this section, we establish that our proposed PF correla-

tion measure can be used in solving a MADM problem

related to the selection of the best COVID-19 mask out of

the available masks in the market. In a MADM problem,

we are given a set of alternatives, a set of attributes and we

want to find the best alternative. Here we solve a MADM

problem concerning the selection of most suitable COVID-

19 mask.

Coronavirus Disease (COVID-19) has now become a

global pandemic. This virus has affected the whole world

and numerous people have lost their lives due to this deadly

virus. Coronavirus is derived from the Latin word ‘‘coro-

na’’ meaning a ‘‘crown, nimbus or circle of light’’. This

virus immediately affects the lungs of a person. Cough,

shortness of breath, and fever are its common symptoms.

Spreading of this virus occurs through close contact and by

the respiratory droplets from sneezes and coughs. The virus

was first detected in the Wuhan City of China and later on,

it engulfed the whole world. Many authors Chen et al.

(2020), Lin et al. (2020), Zhao et al. (2020) have studied

this virus from a mathematical point of view. Here, we try

to find an appropriate COVID-19 mask out of some

available masks.

Example 13 Gas masks P1ð Þ, medical protective masks

P2ð Þ, ordinary nonmedical masks P3ð Þ, particulate respi-

rators N95ð Þ P4ð Þ, medical-surgical masks P5ð Þ, and dis-

posable medical masks P6ð Þ are the six types of masks

commonly available in the market. A customer would like

to choose a suitable mask from the aforementioned masks

based on four characteristics: A1ð Þ filtration capability,

A2ð Þ quality of raw material, A3ð Þ reusability, A4ð Þ leakage
rate. PFSs are used to represent people’s opinions on the

attributes related to each mask, as shown in Table 6. The

positive ideal PFS Pþð Þ and the negative ideal PFS P�ð Þ
are calculated as:

Pþ ¼ hPþ yið Þ; dPþ yið Þ; sPþ yið Þð Þjyi 2 Yf g; P�

¼ hP� yið Þ; dP� yið Þ; sP� yið Þð Þjyi 2 Yf g;

where, hPþ yið Þ ¼ max
j

hAj
yið Þ

� �
, dPþ yið Þ ¼ min

j
dAj

yið Þ
� �

,

sPþ yið Þ ¼ min
j

sAj
yið Þ

� �
, hP� yið Þ ¼ min

j
hAj

yið Þ
� �

, dP�

yið Þ ¼ min
j

dAj
yið Þ

� �
, and sP� yið Þ ¼ max

j
sAj

yið Þ
� �

.

From Table 6, we obtain the values of Pþ and P� as.

Pþ ¼ 0:53; 0:05; 0:06ð Þ; 0:64; 0:29; 0:01ð Þ;f
0:53; 0:11; 0:09ð Þ; 0:53; 0:07; 0:17ð Þg;

P� ¼ 0:01; 0:15; 0:40ð Þ; 0:10; 0:29; 0:43ð Þ;f
0:53; 0:11; 0:09ð Þ; 0:53; 0:07; 0:17ð Þg:

Next, we calculate the correlation of each Pi; i ¼
1; 2; 3; 4; 5; 6 with Pþ and P� using our proposed PF cor-

relation coefficient. The results are listed in Table 7. To

obtain the appropriate mask, we rank them in the

descending order of the index of correlation ni given as

ni ¼
1þ CGS Pi;P

þð Þ
2þ CGS Pi;Pþð Þ þ CGS Pi;P�ð Þ ; i ¼ 1; 2; 3; 4; 5; 6:

Table 8 shows the index of correlation for various

masks. The ranking of masks is given in Table 9. Also, the

ranking of alternatives by utilizing some existing PF cor-

relation coefficients is given in the same Table 9.

From Table 9, we see that P6ð Þ, i.e., the disposable

medical mask is the most appropriate mask as indicated by

most of the PF correlation measures. Also, we see that the

ranking pattern by different PF correlation coefficients is

different. Our proposed PF correlation coefficient CGS also

shows that P6ð Þ, i.e., the disposable medical mask is the

most appropriate mask.
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6 Conclusion

Although most correlation coefficients in fuzzy/non-stan-

dard fuzzy theory obtain their values in [0,1], the proposed

picture fuzzy correlation coefficient can compute both the

degree of association and the nature of correlation (positive

or negative). As a result, our correlation coefficient is

similar to the traditional correlation coefficients used in

statistics. With the help of linguistic hedges and compu-

tation of correlation degree, we have established the

rationality of the suggested PF correlation coefficient. We

have also demonstrated the use of our proposed correlation

coefficient in pattern recognition with the aid of illustrative

examples. A novel index called ‘‘Degree of Confidence’’

was also used to evaluate the efficiency of the proposed

correlation coefficient. The proposed correlation coefficient

has outperformed current correlation measures in terms of

‘‘Degree of Confidence.’’ With a real data set related to the

Iris plant (https://archive.ics.uci.edu/ml/datasets/Iris), the

proposed PF correlation measure produced reliable results

in a pattern classification problem. The MADM problem of

selecting an appropriate COVID-19 mask has also been

addressed using our proposed PF correlation measure. In

the future, we shall derive some parametric generalizations

of the PF correlation coefficients considered in this study

along with their interdisciplinary applications. Moreover,

the fusion of such correlation coefficients in the nature-

inspired algorithms also appears to provide fruitful solu-

tions in optimization problems. We will also apply the

proposed PF correlation coefficient to the real data con-

cerning COVID-19.
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