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Reward-related choices determine information
timing and flow across macaque lateral
prefrontal cortex
Hua Tang 1, Ramon Bartolo 1 & Bruno B. Averbeck 1✉

Prefrontal cortex is critical for cognition. Although much is known about the representation of

cognitive variables in the prefrontal cortex, much less is known about the spatio-temporal

neural dynamics that underlie cognitive operations. In the present study, we examined

information timing and flow across the lateral prefrontal cortex (LPFC), while monkeys

carried out a two-armed bandit reinforcement learning task in which they had to learn to

select rewarding actions or rewarding objects. When we analyzed signals independently

within subregions of the LPFC, we found a task-specific, caudo-rostral gradient in the strength

and timing of signals related to chosen objects and chosen actions. In addition, when we

characterized information flow among subregions, we found that information flow from

action to object representations was stronger from the dorsal to ventral LPFC, and infor-

mation flow from object to action representations was stronger from the ventral to dorsal

LPFC. The object to action effects were more pronounced in object blocks, and also reflected

learning specifically in these blocks. These results suggest anatomical segregation followed

by the rapid integration of information within the LPFC.

https://doi.org/10.1038/s41467-021-20943-9 OPEN

1 Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA. ✉email: averbeckbb@mail.nih.gov

NATURE COMMUNICATIONS |          (2021) 12:894 | https://doi.org/10.1038/s41467-021-20943-9 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-20943-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-20943-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-20943-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-20943-9&domain=pdf
http://orcid.org/0000-0001-6168-6737
http://orcid.org/0000-0001-6168-6737
http://orcid.org/0000-0001-6168-6737
http://orcid.org/0000-0001-6168-6737
http://orcid.org/0000-0001-6168-6737
http://orcid.org/0000-0003-2165-9747
http://orcid.org/0000-0003-2165-9747
http://orcid.org/0000-0003-2165-9747
http://orcid.org/0000-0003-2165-9747
http://orcid.org/0000-0003-2165-9747
http://orcid.org/0000-0002-3976-8565
http://orcid.org/0000-0002-3976-8565
http://orcid.org/0000-0002-3976-8565
http://orcid.org/0000-0002-3976-8565
http://orcid.org/0000-0002-3976-8565
mailto:averbeckbb@mail.nih.gov
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Prefrontal cortex, particularly the LPFC, supports multiple
cognitive operations that require flexible mappings between
stimuli and actions to obtain rewards or avoid

punishments1–3. Numerous studies have documented significant
representations of the stimuli, actions, rules, and rewards that are
important for these processes in LPFC population activity. In
addition, lesions of the LPFC lead to deficits in cognitive opera-
tions, including working memory, sequential planning, and rule
learning4.

Although LPFC is sometimes treated as a monolithic structure,
proposals have been put forward for specific functional domains
within the LPFC along both ventro-dorsal and caudo-rostral axes.
The pattern of anatomical connections5,6, neurophysiological,
and neuroimaging findings has suggested a “domain-specific”
organization along the ventro-dorsal axis of LPFC. Support7–10

for this proposal derives from studies that show that spatial sti-
muli recruit the caudal dorsolateral prefrontal cortex (cdlPFC)
and object or verbal stimuli recruit the ventrolateral prefrontal
cortex (vlPFC). Other studies, however, favor a model in which
individual neurons that integrate different types of information
are distributed throughout the LPFC. In this model, neuronal
responses are shaped by cognitive demands imposed by the task
rather than selectivity for specific domains1,11. Human imaging
studies have supported both proposals12. Some studies are con-
sistent with specialized processing in the dorsal and ventral
subdivisions13,14, whereas others support a generalized organi-
zation around cognitive operations rather than information
domains15.

Other groups have suggested that the frontal cortex, from the
premotor cortex to the frontal pole, is hierarchically organized
along a caudo-rostral axis. The specific proposals have suggested
that locations along this axis relate to the level of abstraction
involved in the behavioral process or the ability to temporally
organize and initiate sequential behavior16,17. Evidence for a
hierarchical organization of neural processing has been provided
by functional magnetic resonance imaging (fMRI) studies18–20

and is also supported by lesion studies21,22. Consistent with this,
the rostral dorsolateral prefrontal cortex (rdlPFC) exhibits the
largest receptive fields, longest response latencies, and the least
information about stimuli, which suggests highly abstracted
representations23,24. In contrast to the studies that suggest a
caudo-rostral organization, however, recent evidence suggests
that the apex of the prefrontal hierarchy resides in the middle
LPFC rather than the rdlPFC25–27. The extent to which the LPFC
is organized along a rostro-caudal axis hence constitutes a matter
of debate.

In the present study, we examined signal timing and infor-
mation flow, in caudo-rostral and ventro-dorsal axes in LPFC,
while monkeys carried out a two-armed bandit reinforcement
learning task. In the task, the animals had to either learn which of
two objects was more frequently rewarded, or which of two
actions was more frequently rewarded28,29. While the monkeys
carried out the task, we recorded activity from large populations
of single neurons, using eight Utah arrays. We found a substantial
caudo-rostral gradient in the strength and timing of signals,
relative to both chosen objects and actions. When we directly
examined information flow, we found both caudo-rostral and
dorso-ventral information flow that was task-specific, reflecting
the cognitive process of identifying the location of a valuable
object, and directing an eye movement to that location.

Results
Two rhesus monkeys learned to perform a two-armed bandit
reversal learning task with a stochastic reward schedule (Fig. 1a, b).
The task featured two types of learning blocks: object-based (What)

and location or action-based (Where). The monkeys were tested on
multiple, randomly interleaved blocks each session. Each block was
either a What block or a Where block. In addition, the options were
stochastically rewarded using a 70%/30% reward schedule. At the
beginning of each block, the monkeys were presented with two
novel objects as choice options. The monkeys selected one option
per trial by making a saccade and fixating on their choice. The
individual stimuli were randomly assigned to the left or right of
fixation on each trial. In What blocks, the higher-probability choice
was one of the two objects independent of the action needed to
select it. In Where blocks, the higher-probability choice was one of
the two actions independent of the object at the target location.
There were no explicit cues to indicate the block type before the
start of each trial. The monkeys determined the block type through
inference over choices and feedback. In each block, on a randomly
chosen trial between 30 and 50, the reward mappings were reversed,
making the previously less rewarded option the more rewarded
option and vice versa. The monkeys had to detect the reversal and
switch to choosing the other option. The block type never switched
across reversals. After the 80 trials had been completed, a new block
began, and two novel objects were introduced. The monkeys then
had to learn again via trial and error whether the reward mapping
was based on the chosen action (left or right saccade) or the chosen
object.

Choice behavior. Monkeys completed 24 blocks per session. We
visualized the monkeys’ choice behavior by aligning each block
around the reversal trial before averaging (Fig. 1c). Monkeys
learned to select the better option during the acquisition phase
and to switch their choice behavior when they detected the
contingency reversal. The fraction of correct choices reached
about 80% for both What and Where blocks after learning. We
analyzed the reaction times (RTs) in both What and Where
blocks. In What blocks, the average RT was 216.8 ms
(SD= 12.3 ms), and in Where blocks, the average RT was
205.2 ms (SD= 19.6 ms). These RTs differed by block type
(paired t test, t (7)= 4.08, p= 0.005).

Neural encoding of chosen action and object across arrays.
Neural activity was recorded from eight arrays implanted in each
animal, four in the left hemisphere and four in the right (768 total
electrodes), in the corresponding locations across hemispheres
and monkeys (Fig. 1d). These arrays were located in the rostral
dorsal (rdlPFC), middle dorsal (mdlPFC), caudal dorsal (cdlPFC),
and ventral LPFC (vlPFC). For each monkey, four sessions of
neurophysiology data were analyzed, in which we recorded the
activity of 3443 neurons (Supplementary Table 1) from monkey
V (877, 942, 1026, and 598 for each session) and 2689 neurons
from monkey W (680, 747, 677, and 585 for each session).

A large proportion of recorded neurons responded to the task.
Broad diversity of activity profiles was observed, including
differential responses to both chosen objects and locations
(Supplementary Fig. 1). The population firing rate of the neurons
that responded during the task decreased along the caudo-rostral
axis. Although the neural populations tended to show a stronger
response to contralateral stimuli, their overall responses to
different options (left vs. right, object A vs. object B) were
similar (Supplementary Fig. 2).

We began by characterizing single-cell encoding of the chosen
object and the action. This analysis was split out by block type and
anatomical location (Fig. 2; Supplementary Fig. 3). To be more
specific, this analysis was performed to test whether and when single
cells discriminated between chosen and nonchosen options. This
analysis does not specifically assess whether neurons encoded the
object identity or location, only differences between chosen and
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unchosen actions, or objects. We examined the encoding of task
variables during the initial hold period and after the object was
presented. Following object onset (Fig. 2g), there was a consistent
caudo-rostral gradient, such that more neurons were task-responsive
in the vlPFC and cdlPFC than in the mdlPFC and rdlPFC (Array;
F (3, 237)= 96.72, p < 0.001). The gradient was more pronounced for
object encoding than for action encoding (Array ×Domain;
F (3, 237)= 24.83, p < 0.001). We also carried out planned
comparisons between the vlPFC and cdlPFC to examine the
hypothesis that there was a ventro-dorsal gradient in object vs.
action representation in the caudal LPFC. When we examined the
representation of objects vs. actions between the cdlPFC and vlPFC,
we found a significant interaction (Array ×Domain; F (1,
28)= 10.08, p= 0.004). Post hoc comparisons showed that there
were more neurons encoding the chosen object in the vlPFC than
cdlPFC (t (7)= 6.2, p < 0.001) and a trend for significantly more cells
to encode chosen actions in the cdlPFC than the vlPFC (t (7)= 2.4,
p= 0.044).

Encoding during the hold period before the options were
presented also reflected learning. The best option in each block
was represented in the neural activity during the baseline hold
period. There was a stronger encoding of objects in What vs.
Where blocks relative to actions in Where vs. What blocks
(Fig. 2c, f; F (1, 237)= 89.13, p < 0.001). Thus, the neural activity
reflected planned choices, following learning, during the hold
period.

Next, we examined response latency. For both chosen actions
and objects across both block types, the response latency increased
from caudal to rostral (Supplementary Table 3; Fig. 2h, i; Array;
F (3, 232)= 117.25, p < 0.001). Latencies for chosen objects were
shorter than latencies for chosen actions (Domain; F (1,
232)= 50.8, p < 0.001). Latencies for chosen objects preceded
object onset in What blocks in the cdlPFC and vlPFC (Fig. 2i;
paired t test, t (7)= 11.3, p < 0.001 for the cdlPFC; t (7)= 19.0,
p < 0.001 for the vlPFC). (Note that ANOVAs were conducted
across the entire block, and animals likely explored both What and
Where strategies at the beginning of the block28, leading to the
encoding of objects in Where blocks prior to object onset). As
noted above, however, the encoding of objects was weaker in

Where blocks than What blocks during the hold period.
Responses also tended to be earlier for chosen objects in What
blocks than Where blocks (Block type; F (1, 96)= 234.54,
p < 0.001), but they were not, on average, shorter for chosen
actions in Where blocks than What blocks (Block type; F (1,
106)= 1.30, p= 0.256). The onset latency for the chosen action
was, however, shorter in the mdlPFC in Where blocks than What
blocks (paired t test, t (7)= 10.11, p < 0.001). Therefore, there was
a caudo-rostral gradient in response latencies, and the latencies
reflected the relevant choice domain in the corresponding blocks.

We also examined the encoding of the block type at a single-cell
level (Supplementary Fig. 4). The block type is an abstract rule that
defines the relevant choice dimension. When we examined block
type, we found that it was more strongly represented in caudal
areas (Following cue period, Array; F (3, 56)= 12.14, p < 0.001),
similar to the other factors. Therefore, we did not find an
enhanced representation of block type in more anterior parts
of LPFC.

We were also interested in whether the same group of neurons
tended to respond within the same domain (i.e., chosen action vs.
object across block type) or within the same task condition
(i.e., responses to action and object but confined to What or
Where blocks). Therefore, we also examined the co-occurrence of
encoding in several ways. First, we examined the co-occurrence of
action and object encoding within each block type (Supplemen-
tary Fig. 5a, b). Second, we examined the co-occurrence of action
(Supplementary Fig. 5e) and object encoding (Supplementary
Fig. 5f) in both What and Where blocks. Finally, we also
examined cross-domain encoding of action in What blocks and
object in Where blocks (Supplementary Fig. 5c) and object
encoding in What blocks and action encoding in Where blocks
(Supplementary Fig. 5d). Similar to the encoding of single
variables, the co-occurrence of multiple variables tended to be
stronger in the vlPFC and cdlPFC (Supplementary Fig. 5g; Array;
F (3, 371)= 133.69, p < 0.001). Interestingly, we found that
neurons tended to encode the same domain across task
conditions (Supplementary Fig. 5h; F (1, 371)= 25.37, p <
0.001). Specifically, there was a stronger co-occurrence (i.e.,
neurons significant in both conditions) of action encoding across

Fig. 1 Reversal learning task, behavior, and array maps. a Block structure of the task and single-trial behavior. In each trial, the animals first acquire the
central fixation. Two objects are then shown on the left and right sides of the fixation dot. The animals make an eye movement to acquire one of the
objects/locations and are then rewarded based on the block type and the reward probability assigned to that object/location. b Each block is either a What
block, where rewards are associated with objects or a Where block, where rewards are associated with locations. The block type is not indicated and it is
randomly interleaved. c Choice behavior for two monkeys. The fraction of times that the monkeys chose the initially higher rewarded visual stimulus option
in What and Where blocks. Solid lines show the means, and the shaded regions show the mean ± SEM, which were computed across all sessions. The
vertical dashed line shows the average reversal point. Data from two monkeys, n= 8 sessions. d Schematic of array locations. Four Utah arrays (indicated
by gray squares) were implanted in the LPFC of each hemisphere for each monkey. Array 1 was located in the rostral dorsal LPFC (rdlPFC), array 2 was
located in the middle dorsal LPFC (mdlPFC), array 3 was located in the caudal dorsal LPFC (cdlPFC), and array 4 was located in the ventral LPFC (vlPFC).
Monkey W had an unusual sulcal pattern in the right hemisphere. AS arcuate sulcus, PS principal sulcus. Source data are provided as a Source Data file.
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What and Where blocks (Supplementary Fig. 5e) and object across
What and Where blocks (Supplementary Fig. 5f), when compared
to action and object in What blocks (Supplementary Fig. 5a), or
action and object in Where blocks (Supplementary Fig. 5b). Cross-
domain cross-block encoding (Supplementary Fig. 5c, d), however,
was similar to cross-domain within block encoding (Supplemen-
tary Fig. 5a, b).

Taken together, these results suggest that there is an association
between the neuronal population location in the LPFC and the
response to the chosen action and object. In general, the neuronal
population in the caudal LPFC showed stronger encoding, and
co-occurrence rate, a shorter response latency, and a stronger
response to object vs. action information than the rostral LPFC
neuronal populations.

Decoding of chosen actions and objects from neural activity.
The encoding analysis addressed how individual neurons respond
to chosen objects and actions. To further understand how the
neural populations coded object and action information, we car-
ried out a decoding analysis, using all neurons simultaneously
recorded within each array to predict either the chosen action or
the object (Fig. 3; Supplementary Fig. 6). The results were gen-
erally consistent with the encoding analysis (Fig. 2), although there
were some differences. We again found increased decoding
performance in the cdlPFC and vlPFC (Fig. 3g; Array; F

(3, 237)= 44.07, p < 0.001), compared to the rdlPFC and mdlPFC.
However, the decoding analysis showed that there was more
information about chosen actions than chosen objects (Domain; F
(1, 237)= 100.6, p < 0.001), unlike what we found for encoding at
the single-cell level (Fig. 2g). This suggests that single neurons,
when aggregated into a population, contain more information
about chosen actions than objects, even though more neurons
encode objects than actions. We also examined decoding during
the hold period, before the options were presented, and found a
stronger representation of actions in Where vs. What blocks
(Fig. 3c) relative to objects in What vs. Where blocks (Fig. 3f;
Block type × Domain; F (1, 237)= 50.23, p < 0.001). Therefore,
when the animals learned the best choice in each block, the choice
was represented before the options were presented.

Similar to the encoding analysis, for both chosen actions and
objects across both block types, the information latency increased
from caudal to rostral (Fig. 3h, i; Array; F (3, 182)= 119.30,
p < 0.001). Latencies for chosen objects were also shorter than
latencies for chosen actions (Domain; F (1, 182)= 45.14,
p < 0.001). Latencies for chosen objects preceded object onset in
What blocks. Responses also tended to be earlier for chosen objects
in What blocks than Where blocks in the cdlPFC and vlPFC
(Fig. 3i, paired t test, t (7)= 16.71, p < 0.001 for the cdlPFC,
t (7)= 6.45, p < 0.001 for the vlPFC) and for chosen actions in
Where blocks than What blocks (Block type; F (1, 109)= 37.22,

Fig. 2 Population encoding of chosen action and object. a, b, d, e Percentage of task-related neurons in each region that encoded actions inWhat (a) orWhere
blocks (b), encoded object identity in What (d) or Where (e) blocks. c, f The average percentage of task-related neurons in each region during the initial hold
period, encoding action (c) or object information (f). Hold period: −0.5 to 0 s from cue onset. g The percentage of task-related neurons in each region by domain
type, averaged from 0 to 1.5 s from cue onset. h, i The response latency of the neuronal populations in each region for encoding action (h) and object identity (i),
split by block type. The solid circles represent the response latency of each session. Boxplot box indicates the first and third quartile, the center line of the box
indicates the median, and whisker lengths reflect the interquartile range multiplied by 1.5. Shaded zones and error bars represent mean ± SEM, n= 8 for each line,
bar, or box. A two-sided t test was used to compare two populations, *p <0.05, **p <0.01, ***p<0.001. The black * symbols at the top of each panel indicate a
significant difference among the four regions (one-way ANOVA, p <0.01). The colored * symbols indicate a significant difference (two‐sided paired t test, p<0.01)
of task-related neuron percentage between the corresponding region and its baseline. Source data are provided as a Source Data file.
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p < 0.001). Therefore, there was a caudo-rostral gradient in response
latencies, and the latencies reflected the relevant choice domain in
the corresponding blocks.

Decoding of reward from neural activity. We also decoded the
reward outcome (Supplementary Figs. 7 and 8) for comparison
with the choice variables. We found substantial information about
the outcome that differed across arrays (Supplementary Fig. 7c;
Array; F (3, 115)= 15.13, p < 0.001). The reward did not, however,
differ across block type (Block type; F (1, 115)= 0.03, p= 0.856).
The onset latencies were also consistent across arrays (Supple-
mentary Table 4, Supplementary Fig. 7d, Array; F (3, 10)= 1.12,
p= 0.386). Across arrays, the decoding accuracy of reward was
higher than the decoding accuracy averaged across action and
object identity (Fig. 3g and Supplementary Fig. 7c; Reward vs.
choice; F (1, 59)= 26.44, p < 0.001), especially for the rdlPFC and
mdlPFC.

Prediction of action and object identity. The analyses above
revealed that neuronal populations along the caudo-rostral axis of
LPFC encoded both chosen actions and objects. In addition, the
strength of the signal and the onset latency varied from caudal to
rostral. To characterize the flow of information along the caudo-

rostral axis, we next examined trial-by-trial directed information
flow among arrays (Fig. 4). Specifically, we asked whether the
signal in one array could be predicted by the signals in the other
arrays and whether this prediction would be directed (i.e., caudal
to rostral) and task-dependent.

To begin, we calculated the posterior probability, using the
decoding model, of the chosen action or object (Fig. 4a–c), given
the neural activity in 20-ms bins on each array (Fig. 4d, e). This
analysis resulted in a time series that represented the information
(i.e., the posterior probability given the neural activity) about each
choice, at each point in time, on each array (Fig. 4c; here we show
only 3 arrays for simplicity, but all arrays were used in the full
analysis). We sought to characterize the flow of this information
across arrays. We did this using a Granger Causal modeling
framework. Specifically, can the future information on an array be
predicted with the current and past information on other arrays,
after accounting for future predictions with the same array? We
worked with information, instead of spikes, because increases in
information can be represented as increases or decreases in firing
rates. Information is, of course, just a processed version of spikes
and working with information, therefore, maps the population
neural activity into the space relevant for behavior. After
computing posteriors on each array for each trial, we fit a
Granger model, which predicted the posterior on one array

Fig. 3 Decoding of chosen action and object. a, b, d, e The time course of decoding accuracy in each region that encoded action in What (a) or Where
blocks (b), or encoded object in What (d) or Where (e) blocks. c, f The average hold period decoding accuracy in each region, when decoding action (c) or
object information (f). Hold period: −0.5 to 0 s from cue onset. g The decoding accuracy in each region split by domain type, averaged from 0 to 1.5 s from
cue onset. h, i The response latency of decoding accuracy in each region for encoding action (h) and object (i), split by block type. The solid circles
represent the response latency of each session. Boxplot box indicates the first and third quartile, the centerline of the box indicates the median, and whisker
lengths reflect the interquartile range multiplied by 1.5. Shaded zones and error bars represent mean ± SEM, n= 8 for each line, bar, or box. A two-sided t
test was used to compare two populations, *p < 0.05, **p < 0.01, ***p < 0.001. The black * symbols at the top of each panel indicate a significant difference
among the four regions (1-way ANOVA, p < 0.01). The red, green, blue, yellow, cyan, and magenta * symbols indicate a significant difference (two‐sided
paired t test, p < 0.01) between the rdlPFC and mdlPFC, rdlPFC and dlPFC, rdlPFC and vlPFC, mdlPFC and cdlPFC, mdlPFC and vlPFC, and cdlPFC and vlPFC.
Source data are provided as a Source Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-20943-9 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:894 | https://doi.org/10.1038/s41467-021-20943-9 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(e.g., array L4, Fig. 4a) using the posteriors on the other seven
arrays, and lagged values of the posterior on the same array. We
refer to this as the Full model as it includes all predictors we
measured. The model resulted in a set of kernel coefficients
(Fig. 4b), which were convolved with the posteriors in the input
arrays (Fig. 4c) to generate a prediction of the posterior on the
output array (Fig. 4a). The kernel coefficients show the effect of
lagged information in one area on future information in another
area. This example shows that prediction tended to be the
strongest at short delays, and decays with time (Fig. 4b). Across
the caudo-rostral axis, we found that the posteriors in the output
arrays could be well predicted using the Full model (Fig. 5c–f).
Given the large amount of data, the full regressions were always
significant (p < 0.01). This was consistent across arrays, even
though the average posterior probabilities were higher for the
caudal arrays (Fig. 5e, f) than the rostral arrays (Fig. 5c, d). The
higher posteriors are consistent with the increased decoding
performance in the caudal arrays.

To examine the contribution of individual arrays to the Full
model and to characterize information flow, we dropped each
individual array from the model and recomputed predictions
(Supplementary Fig. 9). To simplify these results, we examined
the average effects of dropping the arrays at the corresponding
locations in the left and right hemispheres (Fig. 5). For example,
when predicting the posterior in array 4 (cvlPFC) in the left
hemisphere, we dropped array 3 (dlPFC) in the left/right
hemisphere and averaged the predictions (Fig. 5a, drop-L/R3
Partial model). Next, we calculated the difference in the predicted
posterior (ΔPosterior) between the Full model and the drop-L/R3
Partial model (Fig. 5b). This estimated the partial contribution of

the cdlPFC (bilaterally) to the posterior probability in the vlPFC.
Specifically, this estimates the Granger causal influence of past
activity in the cdlPFC to future activity in the vlPFC, and
therefore, assesses the relative flow of information from the
cdlPFC to the vlPFC.

This analysis showed a multiphasic contribution of the cdlPFC,
peaking at around 200 ms after object onset, to the signal in the
vlPFC. Across arrays, we found that inputs from neighboring
arrays tended to play a large role. For example, the contribution
from the cdlPFC to the vlPFC was relatively large (Fig. 5f, j), as
was the contribution from the vlPFC to the cdlPFC (Fig. 5e, i) and
the rdlPFC and cdlPFC to the mdlPFC (Fig. 5d, h). These effects
were consistent in both hemispheres (Supplementary Fig. 9).

We next summarized these effects by calculating the fraction of
variance about future information predicted in each array by the
other arrays (Fig. 6). This was done in the same way as the
analysis above (Fig. 5). We calculated the fraction of variance in
the posterior explained by the Full model, and then dropped an
array from the model, and recomputed the fraction of variance
explained by the Partial model. The difference in variance
explained between the Partial and Full models, normalized by the
variance explained in the Full model, characterized the partial
contribution of each array to the other arrays, and therefore, the
flow of information from one array to another.

We split this analysis out by several factors, which allowed us
to test specific hypotheses statistically. First, the ordinal distance
between arrays (see Fig. 1d for an ordinal number of arrays), from
the ventro-caudal array along the dorso-rostral axis (although we
also show data without collapsing by ordinal distance in
Supplementary Fig. 10). This allowed us to see if information

Fig. 4 Information-transfer model. A single-trial example of the information-transfer model. Predicting the decoding accuracy of action in Where blocks of
array 4 in the left hemisphere (array L4) with the input from all eight arrays. a The posterior probability of the output array: the raw and the predicted
value. b The kernel coefficients of four input arrays (arrays 1–4 in the left hemisphere). c The posterior probability of the input arrays (only showing arrays
L1–L3). d, e The raster of all neurons in the output (d) and input arrays (e). Ordered by the difference of distance to two choices, which was indicated by
the color bars.
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flow tends to be stronger locally or caudal vs. rostral. Second, we
split the analysis by block type to see if information flow
depended on whether the animal was learning to select actions or
objects. The third factor was the prediction of either chosen
actions or objects (Fig. 6; Supplementary Fig. 11). We found that
there was more information flow for chosen actions than chosen
objects (Fig. 6a vs. b; F (1, 1517)= 20.21, p < 0.001), consistent
with the increased information about actions relative to objects at
the population level (Fig. 3g). Connectivity within the LPFC is
recurrent30, and therefore information will flow in both
directions. However, we considered whether there was more
information flow in caudo-rostral vs. rostro-caudal directions. We
found that there was stronger flow in the caudo-rostral direction
than in the rostro-caudal direction when predicting actions
(Fig. 6a; unpaired t test, t (766)= 2.76, p= 0.006) but not objects
(Fig. 6b). There was also stronger information flow between
adjacent arrays (Fig. 6a; unpaired t test, t (766)= 7.59, p < 0.001;
Fig. 6b; unpaired t test, t (766)= 11.38, p < 0.001).

Prediction of chosen action and object across domain types.
Next, we examined whether information about actions could be
used to predict information about objects and vice versa. In Where
blocks, the animals did not have to use object information to select

an action, they could simply preplan an action. The action was
directed at an object. However, in What blocks, the animals had to
use object information to find the object, and then direct a saccade
toward it. Therefore, we expected information flow from object to
action, but less flow from action to object (Supplementary Fig. 10).
We found that there was stronger flow in the caudo-rostral
direction than in the rostro-caudal direction when predicting
action with an object (Fig. 6c; unpaired t test, t (766)= 7.39,
p < 0.001). We also found that there was stronger flow in the
rostro-caudal direction than in the caudo-rostral direction when
predicting object with action (Fig. 6d; unpaired t test,
t (766)= 3.83, p < 0.001). We repeated these analyses using only
lagged values of information in the arrays used for prediction and
found highly consistent results (i.e., the l-variable index from 1 to
10 instead of 0 to 10; Supplementary Fig. 12a, predicted actions
with objects; unpaired t test, t (766)= 7.45, p < 0.001. Supple-
mentary Fig. 12b, predicted objects with actions; unpaired t test,
t (766)= 3.93, p < 0.001). We also found that there was increased
information flow from object to action in What blocks compared
to Where blocks (Fig. 6c; Block type; F (1, 756)= 5.1, p= 0.024).
There was no difference in information flow from actions to
objects across block types (Fig. 6d; Block type; F (1, 756)= 0.4,
p= 0.544). In addition, the information flow from objects to

Fig. 5 Modeling example. An example of the posterior probability of the information-transfer model, predicting the decoding accuracy of action in Where
blocks of array 1 (c, g), array 2 (d, h), array 3 (e, i), and array 4 (f, j) in the left hemisphere with input from all eight arrays. a The predictions of array L4
from the Full model and the drop-L/R3 Partial model. b The difference between the Full model and the drop-L/R3 Partial model. Inset: the colored line
connects the dropped input array (indicated by the color of the line) and the output array. Here, array 3 as an input array, and array 4 as the output array.
c–f The posterior probability of the raw value, the Full model, and the Partial models with the average effect of the arrays at the corresponding locations in
the left and right hemispheres. g–j The difference of posterior probability between the Partial models and the Full model. Inset: the colored lines connect the
dropped input (indicated by the lines’ color) and the output array.
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actions was stronger than information flow from actions to objects
(compare Fig. 6c vs. d; F (1, 1517)= 45.6, p < 0.001).

We next examined information flow across learning. If the
animals were using the object information to locate the object and
generate a saccade, this should develop with learning and be
disrupted at reversal. At the beginning of the block, when the
monkeys were trying to determine the block type as well as the best
choice, and during reversals, when the animals have to switch
choice preference, there may be decreased information flow from

objects to actions. Consistent with this, we found that there was no
difference in measures of information flow when compared between
tasks in the initial trials of the block (Fig. 6e, f). However, as the
animals determined the block type and the best choice, the
difference emerged quickly (Movie S1). The difference was also lost
during the reversal, and then it returned later in the block when the
choice preference had switched (Fig. 6e, f).

To further examine the hypothesis that there is a ventro-dorsal
gradient in representations in the caudal LPFC, we examined
information flow between the cdlPFC and vlPFC in both task
conditions (Fig. 7; Supplementary Fig. 10). We found that
information flow was larger from the vlPFC to the cdlPFC when
predicting action with an object (Fig. 7a; F (1, 28)= 5.90,
p= 0.0219) and larger from the cdlPFC to the vlPFC when
predicting object with action (Fig. 7b; F (1, 28)= 6.17, p= 0.019).
Furthermore, the interaction between array direction (i.e., the
vlPFC to the cdlPFC vs. the cdlPFC to the vlPFC) and cognitive
process direction (i.e., object to action vs. action to object) was
also significant (F (1, 57)= 12.15, p < 0.001). We also found that
information flow from the vlPFC to the cdlPFC was stronger than
the opposite direction when predicting action with an object in
Where blocks (Fig. 7a, paired t test, t (7)= 3.78, p < 0.01).
Information flow from the cdlPFC to the vlPFC was stronger than
the opposite direction when predicting object with action in What
blocks (Fig. 7b, paired t test, t (7)= 2.49, p= 0.042). Thus, when
object locations define the chosen action, information about
objects flows from the ventral to dorsal LPFC; when actions
define the chosen object, information about actions flows from
the dorsal to ventral LPFC.

We also carried out analyses on the LFPs recorded on each
array, by computing cross-spectral power coupling between all
pairs of electrodes (Supplemental Results). Cross-spectral coupling
was strong between low frequencies (0–20 Hz, alpha, theta, and
beta) in both the rostral-to-caudal (Supplementary Fig. 13a) and
caudal-to-rostral (Supplementary Fig. 13b) directions. When we
examined differences in the coupling (Supplementary Figs. 13c
and 14), we found that coupling was stronger, particularly among
beta frequencies in the rostral-to-caudal direction (Supplementary
Fig. 13g–i), but stronger in the caudal-to-rostral direction, between
alpha/theta and gamma frequencies (Supplementary Fig. 13f).

Taken together, these results show that information flow is
stronger locally than distally. In addition, information flow from
objects to actions is stronger from caudal to rostral and ventral to
dorsal, and information flow from actions to objects is stronger
from rostral to caudal and dorsal to ventral. Finally, flow from
objects to actions was task-dependent, and developed with
learning.

Fig. 6 Prediction of chosen action and object. a–d Contribution of arrays
separated by different ordinal distances either rostral or caudal to each
array to the prediction of posterior in each array. The x-axis indicates the
ordinal distance (see Fig. 1d for array number) of the arrays that were
dropped in the partial model. The y-axis indicates the difference of variance
explained between the Partial models (i.e., when dropping one array,
bilaterally) and the Full model (ΔVar), normalized by the variance explained
in the Full model (fVar). Larger values indicate a stronger prediction of the
posterior from the arrays separated by distances indicated on the x-axis.
The separate panels show the prediction of decoding accuracy of action
with action (a), predicting object with an object (b), predicting action with
an object (c), and predicting object with action (d). Rostral–caudal indicate
information flow from rostral to caudal LPFC, labeled by negative ordinal
distance; Caudal–rostral indicates information flow from caudal to rostral
LPFC, labeled by positive ordinal distance. Error bars represent mean ±
SEM, n= 32/64/96/96/64/32 for the ordinal distance of −3/−2/−1/1/
2/3. A two-sided t test was used to compare two populations, *p= 0.0383,
**p= 0.0032. e, f The p value of the difference in information flow between
tasks (What and Where), aligned by the trial index, when doing predictions
within (e) or across (f) domain type. Bin= 10 trials, step= 1 trial. Dash
lines represent p= 0.05, Act represents action, Obj represents an object.
Source data are provided as a Source Data file.

Fig. 7 Information flow between ventral and dorsal–caudal LPFC.
Prediction variance between the cdlPFC and vlPFC. a Predicting action
information with object information. b Predicting objects with action
information. Inset: the location of each array and the flow direction and
strength between them. Error bars represent mean ± SEM, n= 8 for each
bar. A two-sided t test was used to compare two populations, *p= 0.0416,
**p= 0.0069. Source data are provided as a Source Data file.
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Discussion
We examined the spatiotemporal representation and flow of
information across the LPFC while monkeys carried out a two-
armed bandit reinforcement learning task. When we examined
the fraction of neurons encoding task variables, we found a
caudo-rostral gradient, with a stronger and earlier representation
of chosen actions and objects in the caudal relative to rostral
LPFC. The vlPFC had a stronger representation of chosen objects
than the cdlPFC, but the actions were represented similarly in
these two areas. The reward was signaled simultaneously across
the LPFC and most strongly in the cdlPFC. The results were
generally consistent when we examined decoding instead of
encoding. Interestingly, however, we found that there were more
single cells significant for chosen objects than chosen actions
across areas, whereas we were better able to decode chosen
actions than chosen objects. This shows that although there were
fewer neurons encoding actions, they did so more accurately31. It
is also important to note that while we use the term “action” to
refer to the saccade direction, the activity may represent
visual–spatial processing and not motor planning per se, as we
did not dissociate these factors. Previous work has examined this
distinction within the region from which we recorded using an
antisaccade task32, and found that about 60% of neurons recorded
across the area from which we recorded were visual–spatial,
whereas 25% were action-related. Similar results have also been
seen in delayed reach tasks33.

Analysis of information flow supported and extended the
analyses, which only looked at representations. We found that
there was stronger information flow from caudal-to-rostral areas.
This suggests that information about chosen actions and objects
is first represented in caudal areas, after which it flows to rostral
areas. The caudal–rostral gradient could have been driven by the
use of eye movements, as the caudal arrays were near the frontal
eye fields (FEF). Reaching movements may have led to increased
activity in more rostral areas, given their connectivity with mid-
line motor areas related to reaching movements34. We also found
that task-relevant information flow across areas was specific to
the required cognitive operation. Specifically, in What condition,
there was increased information flow from objects to actions,
when the monkeys had to use object information to direct a
saccade. This information flow also tracked learning. There was
stronger information flow from dorsal-to-ventral when predicting
object with action information, and stronger information flow
from ventral-to-dorsal when predicting action with object infor-
mation. Analysis of LFPs showed that alpha/theta to gamma
frequency power coupling was stronger from caudal to rostral,
consistent with the single-neuron data. However, coupling among
theta/alpha and beta showed a rostral-to-caudal flow. Some the-
ories suggest that top-down and bottom-up information flow
between areas in the sensory cortex utilizes different frequency
channels35,36. However, whether similar ideas apply to flow
within the LPFC is less clear.

While rodents have only a small region defined as the prefrontal
cortex, primates have a large region that spans medial, orbital, and
lateral prefrontal areas37. There is substantial anatomical and
functional heterogeneity between these areas38. Even within the
LPFC, there is considerable anatomical heterogeneity39,40. There
are gradients of connectivity along both the ventro-dorsal and
caudo-rostral axes9. The cdlPFC is more strongly connected to
parietal areas important for spatial vision and oculomotor control,
including the medial superior temporal and lateral intraparietal
cortex, whereas the vlPFC is more strongly connected to temporal
lobe visual areas41,42. In addition, the rdlPFC is connected to the
medial parietal areas, including regions of the retro-splenial cor-
tex43. However, there is also local connectivity within areas of the
LPFC44, which likely leads to local information flow. Based on

anatomical and functional considerations, proposals have been put
forward, suggesting organization along both the caudo-rostral and
ventro-dorsal axes of LPFC.

Ventro-dorsal specialization in the caudal LPFC. Several studies
have suggested that there is a domain-specific organization along
the ventro-dorsal axis of LPFC. Physiological recordings from
monkeys trained to perform delayed-response tasks have sug-
gested that the LPFC can be segregated into object and spatial
domains. Neurons that code visual–spatial information are
located in the cdlPFC, while those that code object identity
information are located in the vlPFC7,45,46. These results in the
visual domain have also been extended to auditory47 and soma-
tosensory48 information. This proposal has been further sup-
ported by anatomical studies, which have shown that the dorsal
regions of LPFC receive inputs from dorsally situated areas in the
parietal visual or dorsal auditory cortex, whereas the ventral
regions of LPFC receive inputs from the temporal lobe and
ventrally situated auditory areas41,49–51. These findings suggest
that the LPFC contains processing mechanisms for remembering
what and where an object is9, similar to what is found in the
temporal parietal cortex52. Although there is separation across
these processing streams, there is also substantial interaction and
mixing53–55.

In contrast to the “domain-specific” model, others have
suggested that object and spatial information are integrated
within the LPFC. To direct actions to appropriate objects, object
identity and spatial location must be combined. The “integrative”
model suggests that neuronal responses are shaped by the
cognitive demands imposed by the task rather than the spatial
location of the neurons. Miller and colleagues11 employed a
delayed-response task that required both memories of object
identity and location. They found that some LPFC neurons
showed only object-tuned (what) or location-tuned (where) delay
activity. However, over half of the neurons with delay activity
showed both what and where tuning. These neurons simulta-
neously reflected the location and identity of objects, and
therefore they may play a role in integrating the identity and
spatial location of objects in working memory1.

Most previous electrophysiological data examining the role of
LPFC in cognition were obtained using delayed-response
tasks7,11. These tasks investigate the maintenance of action or
object information over time. Our task was designed to address
how the LPFC neurons dissociate the action and object
information during rapid learning from reinforcement. We
focused our analyses on the anatomical information flow between
domains. We found data consistent with both “domain-specific”
and “integrative” models. First, there was a stronger encoding of
objects in the ventral than dorsal LPFC. However, there was only
a trend toward an enhanced representation of actions in the
dorsal relative to the ventral LPFC. Although many neurons
tended to code both chosen objects and actions, more neurons
tended to code only one domain (Supplementary Fig. 5), across
both task conditions, as opposed to both domains within a task
condition. When we predicted action with object information, we
found enhanced information flow from the ventral to dorsal
LPFC. When we predicted objects with action information, we
found enhanced information flow from the dorsal-to-ventral
LPFC (Fig. 7). Both effects were consistent across task conditions.
These results suggest that there is anatomical segregation of
information flow into the LPFC, followed by a rapid flow of
information within the LPFC. Previous work suggested that local
connectivity may account for the overlapping representation of
spatial and object information in both the dorsal and ventral
LPFC populations11, which our analyses support.
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Caudo-rostral gradient in the LPFC. In parallel with the ventro-
dorsal organization of the LPFC, other groups have suggested a
caudo-rostral organization (although spanning a larger expanse of
the LPFC than we sampled). Supporting this hypothesis, there are
differences in several anatomical features of the frontal cortex
along this axis, including larger soma56, reduced cell density57,
diminished intra-areal connectivity58, more dendritic spines59,
lower myelination57, decreased laminar differentiation60, and
longer connectional and synaptic distance from sensory input
regions25 in more anterior areas. Several groups have put forward
models for the functional organization of the LPFC along the
rostro-caudal axis16,61. For example, Badre and D’Esposito18

manipulated the level of abstraction of stimulus-response rules
required to make a choice and examined differences along this
axis as a function of abstraction. Each level of abstraction
increased the contingencies required to make a response. They
found that activation in the more rostral LPFC regions tracked
competition at higher abstraction levels, where abstraction was
related to the number of factors that had to be integrated to
respond correctly. By applying the same task, the authors found
that frontal damage due to stroke impaired action decisions at a
level of abstraction that was dependent on lesion location. Rostral
lesions affected more abstract conditions and caudal lesions
affected more concrete conditions21. Similar abstraction gradients
have been observed in other human neuroimaging and lesion
studies19,22,61,62. Collectively, these studies support the hypothesis
that control at increased levels of abstraction requires areas
located more rostrally in the frontal cortex.

Single-unit recording studies in macaques further support the
hypothesis that there is a caudo-rostral organization in the LPFC.
Riley et al.23 found gradients of several aspects of information
processing along this axis, including coding strength, response
latency, and receptive field size, when they examined activity in
untrained animals. Our results are consistent with it in the
context of task-related activity. Along the rostro-caudal axis,
more caudal neuronal populations showed stronger encoding
(Figs. 2g and 3g) and co-occurrence of encoding (Supplementary
Fig. 5g) for chosen action and object. This was also affected by the
task context and learning process, with stronger coding of actions
in Where blocks and stronger coding of objects in What blocks in
the hold period in caudal areas (Figs. 2c and 3c). Our results also
showed that the rdlPFC exhibited longer response latencies for
processing object and action information, in agreement with prior
studies23.

Most studies supporting a rostro-caudal organization of the
LPFC have suggested that the rdlPFC processes more abstract
rules16 or carries out domain-general feature integration opera-
tions63. The caudal LPFC, which is often taken to be the premotor
cortex in human imaging experiments, on the other hand, is
thought to carry out concrete operations16. However, other
studies have shown that the rdlPFC regions can also be recruited
by concrete operations like action selection64 and the temporal,
rather than the spatial activation profile of specific LPFC regions
is modulated by maintenance demands, irrespective of the level of
abstraction65. Tracer studies in monkeys have further shown that
the structural network in the LPFC does not follow a strict rostro-
caudal organization27. In our study, we found that caudal
neuronal populations showed stronger responses and shorter
response latencies to both action and object identity. Further-
more, when we examined the caudal–rostral representation of
block type (i.e., What or Where), which is an abstract rule that
defines the relevant learning dimension, we did not find an
enriched representation more rostrally. We did not find any
factors that dominated in the rdlPFC, although reward showed
less of a gradient along this axis, with no difference in response
latency. It is possible that if we had used a task with a different

form of abstraction, we would have engaged the rdlPFC more
strongly. For example, neurons that evaluate self-performance
have been found in the rhesus monkey frontal pole, consistent
with higher-order, metacognitive abilities residing in more rostral
locations66.

Cortical information flow in the LPFC. During cognitive pro-
cessing, sensory information flows from early visual areas to
parietal and temporal areas, and onto the prefrontal cortex.
Choice signals develop simultaneously in frontoparietal regions
and travel to the FEF and sensory cortex67. Several studies have
examined the relative timing and strength of signals across con-
nected cortical areas. However, this can only provide indirect
evidence of how information flows68–70. Other studies have used
approaches similar to ours and identified a specific neural signal
related to the executive control of cognition that is transmitted
across cortical areas71. The authors simultaneously recorded the
activity of neurons in the LPFC and posterior parietal cortex
(PPC) of monkeys performing a rule-based spatial categorization
task. They used a decoding analysis to “read out” the category,
and then computed the correlation between whitened time series
in the two areas at different time lags. The results showed that the
decoded time series in the LPFC was correlated with the time
series in the PPC at positive lags, which suggested that categor-
ization signals were transmitted asymmetrically in a top-down
direction from the LPFC to the PPC. A similar method has been
used in an object construction task in which the authors found
that retina-centered visual information could be used to predict
subsequent object-centered signals, but not vice versa72 when
monkeys were required to map from retina-centered to object-
centered coordinates to carry out a task.

Since our task included What and Where blocks, the monkeys
needed to use either action or object information to make a
choice in each trial. By adopting a causal analysis framework,
similar to the method used in a previous study71, we measured
how task-relevant neural signals were transmitted across
subregions in the LPFC. Our results showed that information
flow in the caudo-rostral direction was stronger than in the
rostro-caudal direction when processing the action but not the
object information. This was consistent with our decoding
analyses, in which we found that the caudal neuronal populations
had stronger (Fig. 3g) and faster representations of action
(Fig. 3h). Since the block type was not indicated by any explicit
cues in our task, the monkeys needed to use both action and
object information to guide their behavior, especially at the
beginning of each block. To investigate how this happened, the
information flow from actions to objects and from objects to
actions within the LPFC was calculated. We found that
information flow from objects to actions was stronger in the
caudo-rostral direction, especially in What blocks. The task-
dependent effect of flow from objects to actions also developed
with learning (Fig. 6f). Although it was weaker, information flow
from action to object also showed a rostral-to-caudal gradient.
This might be due to the stronger encoding of action than object
information in the rdlPFC (Fig. 3a, b, d, e).

In conclusion, we found a substantial caudo-rostral gradient in
the strength and response latencies of information relevant to
both variables. We also found a caudo-rostral flow of informa-
tion. When we specifically compared the dorsal and ventral areas
in caudal LPFC, we found an enhanced representation of chosen
objects in the vlPFC. We also found that there was more
information flow from chosen objects to chosen actions in the
ventral-to-dorsal direction, and more flow from chosen actions to
chosen objects in the dorsal-to-ventral direction. Therefore, our
analyses support a model in which information about chosen
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objects first flows into the vlPFC, and information about chosen
actions first flows into the cdlPFC. Following this, there is flow
within the LPFC, and from the caudal-to-rostral LPFC. Thus, our
analyses support both anatomical segregation and rapid physio-
logical integration of information relevant to reward-related
choices within the LPFC.

Methods
Subjects. Two male monkeys (Macaca mulatta, W—6.7 kg, age 4.5 yo, V—7.3 kg,
age 5 yo) were used as subjects in this study. For the duration of the study, the
monkeys were placed on water control and earned their fluid through their per-
formance on the task on testing days. Experimental procedures for all monkeys
were performed following the Guide for the Care and Use of Laboratory Animals
and were approved by the National Institute of Mental Health Animal Care and
Use Committee.

Experimental setup. Monkeys were trained to perform a saccade-based two-
armed bandit task for juice rewards28. Stimuli were presented on a 19-inch liquid
crystal display monitor situated 40 cm from the monkey’s eyes. During training
and testing, monkeys sat in a primate chair with their heads restrained. Stimulus
presentation and behavioral monitoring were controlled by a PC running Mon-
keylogic (version 1.0), a MATLAB-based behavioral control program73. Eye
movements were monitored at 400 fps using an Arrington Viewpoint eye tracker
(Arrington Research, Scottsdale, AZ) and sampled at 1 kHz. On rewarded trials, a
fixed amount of undiluted apple juice (0.08–0.17 ml) was delivered through a
pressurized plastic tube gated by a computer-controlled solenoid valve74.

Task design and stimuli. The monkeys were trained to complete around 24 blocks
per session (Fig. 1a, b). The task has been described in detail previously28,75. Each
block consisted of 80 trials and one reversal of the object-based or action-based
reward contingencies. On each trial, monkeys had to acquire and hold a central
fixation point for a random interval (400–600 ms). After the monkeys acquired and
held central fixation, two objects appeared one each to the left and right (6° visual
angle from fixation) of the central fixation point. The monkeys reported their
choices by making a saccade to their selection, which could be based on the object
or the direction of their saccade. After holding their choice for 400 ms, a reward
was stochastically delivered according to a 70%/30% reward schedule. If the
monkeys failed to acquire central fixation within 5 s, hold central fixation for the
required time, or make a choice within 1 s, the trial was aborted and then repeated.

Each block used two novel objects that were randomly assigned to the left or
right side of the fixation point for every trial. The objects were changed across
blocks but remained constant within a block. What and Where blocks were
randomly interleaved throughout the session, and block type was not indicated to
the monkey. For What blocks, reward probabilities were assigned to each object
independently of the saccade direction to select an object. Conversely, for Where
blocks, reward probabilities were assigned to each saccade direction independently
of the objects presented on either side of central fixation. The block type (What or
Where) was held constant for each 80-trial block. One of the objects or one of the
actions had a lower probability (30%) of being rewarded, and the other had a
higher probability (70%). The trial in which the reward mapping reversed in each
block was randomly selected from a uniform distribution from trial 30 to 50,
inclusive. The reversal trial was independent of the monkey’s performance and was
not signaled to the monkey75.

Data acquisition and preprocessing. Microelectrode arrays (Blackrock Micro-
systems, Salt Lake City, USA) were surgically implanted over the LPFC, sur-
rounding the principal sulcus (Fig. 1d). Four 96-electrode (10 × 10 layouts) arrays
were implanted in each hemisphere. Details of the surgery, implant design76 and
data acquisition29,75 have been described previously. Briefly, a single bone flap was
temporarily removed from the skull to expose the LPFC. Then the dura mater was
cut open to implant the electrode arrays into the cortical parenchyma. The dura
mater was then sutured, and the bone flap sewn back into place with absorbable
sutures to protect the brain and the implanted arrays. Meanwhile, a 3D-printed
biocompatible connector holder was implanted onto the posterior portion of the
skull. Neurophysiology recording for all monkeys began after they had recovered
from the implant surgery.

Recordings were made using the Grapevine System (Ripple, Salt Lake City,
USA). Two neural interface processors (NIPs) made up the recording system, one
NIP (384 channels) was connected to the four multielectrode arrays of each
hemisphere. Behavioral codes from MonkeyLogic and eye-tracking signals were
split and sent to each Ripple box. The raw extracellular signal was high-pass filtered
(1-kHz cutoff) and digitized (30 kHz) to acquire the single-unit activity. Spikes
were detected online, and the waveforms were stored using the Trellis package
(Grapevine). Single units were manually sorted offline. The threshold for spike
acquisition was set at 4.5 × root to the mean square of the baseline signal for each
electrode.

Neural data. We collected data in eight recording sessions (four sessions per ani-
mal). To identify task-related neurons, all trials on which monkeys chose one of the
two stimuli were analyzed. Trials in which the monkey broke fixation and failed to
make a choice were excluded. On valid trials, the firing rate of each cell was
computed in 50-ms bins, advanced in 10-ms increments, and time-locked to the cue
onset. We fit a sliding window fixed-effect ANOVA model to these windowed spike
counts. The ANOVA included factors for the chosen object, chosen action, reward,
and value. The value factor served to model value updating77. All other factors were
modeled as nominal variables. Significant encoding for each time bin and factor was
evaluated at p < 0.05.

We fit Rescorla–Wagner reinforcement learning models to the choice data for
each block type. Models were fit with separate learning rates and inverse
temperatures for the two-block types. In the mode, value updates were given by:

vi kþ 1ð Þ ¼ vi kð Þ þ δf R� vi kð Þð Þ ð1Þ
where vi is the value estimate for option i, R is the outcome for the choice for trial k,
and δf is the outcome-dependent learning rate parameter, where f indexes whether
the current choice was rewarded (R= 1) or not (R= 0), i.e., δpos,δneg. For each trial,
δf is one of two fitted values used to scale prediction errors based on the type of
reward feedback for the current choice. We then passed these value estimates
through a logistic function to generate choice probability estimates:

d1 kð Þ ¼ 1þ eβ v2 kð Þ�v1 kð Þð Þ
� ��1

; d2 kð Þ ¼ 1� d1 kð Þ ð2Þ
The likelihood for these models is given by

f x; yjβ; δpos; δneg
� �

¼
Y
k

½d1 kð Þc1 kð Þ þ d2ðkÞc2ðkÞ� ð3Þ

where c1 (k) had a value of 1 if option 1 was chosen on trial k and c2 (k) had a value
of 1 if option 2 was chosen. Conversely, c1 (k) had a value of 0 if option 2 was
chosen, and c2 (k) had a value of 0 if option 1 was chosen for trial k. We used
standard function optimization methods to maximize the likelihood of the data
given the parameters.

A four-way ANOVA was applied to examine the encoding of task variables after
cue onset and during the hold period. It was a standard, non-nested, linear model
with two levels of interaction. The factors included cerebral hemisphere
(i.e., left or right hemisphere), block type (i.e., What or Where blocks), domain type
(i.e., action or object identity), and array locations (i.e., from array 1 to array 4).

To detect the response latencies, a paired t test was performed between the
average percentage of task-related neurons of the baseline period (from −1.5 to
−0.5 s from cue onset) and each bin across the whole trial time course from all
eight arrays. The first time point that showed a significant difference was defined as
the response latency. A four-way ANOVA was applied to examine the difference of
response latencies from each region, which was carried out with leave-one-session-
out. The ANOVA was a standard, non-nested, linear model and with two levels of
interactions. The factors included cerebral hemisphere, block type, domain type,
and array locations.

Decoding analyses. We carried out the decoding analysis on chosen actions,
chosen objects, and rewards (i.e., reward or nonreward). Therefore, for these
analyses, the chance performance was 50%. Analyses were carried out using leave-
one-trial-out cross-validation. The model was fit with the remaining trials and
tested on the trial that was held out of the analysis. All simultaneously recorded
neurons from each array were used to predict the indicated factor. Decoding was
computed in 20-ms bins, advanced in 20-ms increments, and time-locked to cue
onset. Neural activity was not normalized or transformed. Raw spike counts in
20-ms bins for each neuron were used.

The posterior probability of choice, which is the probability of selecting the
more rewarding action or object over trials, was calculated by

pi tð Þ ¼
exp � xk tð Þ � Xi tð Þ

� �2� �

P
j¼1:2 exp � xkðtÞ � Xj tð Þ

� �2
� � ð4Þ

Here, pi (t) represents the choice probability for option i at time t, the vector
xk(t) represents the neural population activity, with each element of the vector
representing the spike count of a single neuron, in a single trial k, at time t. The
vector XiðtÞ represents the mean neural population activity across trials for a
chosen object or action that was indicated by i or j. This is a linear decoder which,
in a probabilistic sense, would be a linear Gaussian decoder with a spherical
covariance matrix.

Information flow analyses. A regression model was used to measure the flow of
information across the subregions of the LPFC

pi choicejri tð Þð Þ ¼ a0 þ
X
j¼1:10

a i;jð Þpi choicejri t � jð Þð Þ

þ
X

k¼1:8ni

X
l¼0:10

a k;lð Þpk choicejrk t � lð Þð Þ
ð5Þ
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Here, p represents the posterior probability of choice, a represents the kernel
coefficients related to the input arrays, i represents the output array (one of the
eight arrays), j represents the lagged bin number ahead of time t in the output
array, k represents the input arrays, and l represents the bin number ahead of time
t in the output array. Choice probability was computed from −0.5 to 1.5 s from cue
onset, in 20-ms bins, advanced in 20-ms increments. Note that we are predicting
the future information, pi (choice|ri (t)), using past information on the same array,P

j¼1:10 a i;jð Þpi choicejri t � jð Þð Þ and current and past information on other arrays,P
k¼1:8ni

P
l¼0:10 a k;lð Þpk choicejrk t � lð Þð Þ. When we tested for the effect of one

array on another, we dropped the array under consideration from the sum,P
k¼1:8ni

P
l¼0:10 a k;lð Þpk choice jrk t � lð Þð Þ and compared the prediction of

pi (choice|ri (t)) with and without the array under consideration.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from https://data.mendeley.
com/datasets/m4f38w49fb/1. Citation: Tang, Hua; Bartolo, Ramon; Averbeck, Bruno
(2020), “Dataset for studying information flow among macaque lateral prefrontal cortex”,
Mendeley Data, V1, https://doi.org/10.17632/m4f38w49fb.1. Source data are provided
with this paper.

Code availability
Custom codes are available on GitHub (https://github.com/CHT2016/information_flow).
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