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In late mitosis and G1, Mcm2-7 are assembled onto replica-
tion origins to license them for initiation in the upcoming S
phase. After initiation, Mcm2-7 provide helicase activity to
unwindDNAat the replication fork.Herewe examine the struc-
ture ofMcm2-7 on chromatin inXenopus egg extracts.We show
that prior to replication initiation, Mcm2-7 is present at
licensed replication origins in a complex with a molecular mass
close to double that of the Mcm2-7 hexamer. This complex has
approximately stoichiometric quantities of the 6 Mcm2-7 pro-
teins and we conclude that it consists of a double heterohex-
amer. This provides a configuration potentially capable of initi-
ating a pair of bidirectional replication forks in S phase.We also
show that after initiation, Mcm2-7 associate with Cdc45 and
GINS to form a relatively stable CMG (Cdc45-MCM-GINS)
complex. The CMG proteins also associate less strongly with
other replication proteins, consistent with the idea that a single
CMG complex forms the core of the replisome.

In eukaryotes, precise duplication of the genome during S
phase is achieved through the initiation of replication forks at
numerous origins distributed throughout the DNA. The cen-
tral component of the replication fork is the replicative helicase
that unwinds the template DNA and coordinates the replica-
tion of leading and lagging strands. In eukaryotes, the major
replicative helicase activity is provided by the 6 Mcm2-7 pro-
teins (1–4), which are activated as a helicase by associationwith
Cdc45 and the GINS complex (5, 6).
To ensure that no segment of DNA replicates more than

once in a single cell cycle, the replication process is divided into
two non-overlapping stages (7–10). In the first stage, which
occurs in late mitosis and early G1 phase, origins of replication
are “licensed” for use in the upcoming S phase by loading
Mcm2-7 (without associated Cdc45 or GINS) to form the pre-
replicative complex (pre-RC). To prevent DNA from replicat-
ing more than once in a single cell cycle it is essential that once

S phase starts, no further Mcm2-7 can be loaded onto DNA.
This ensures that replicated replication origins cannot reload
Mcm2-7 and therefore cannot replicate a second time during a
single S phase (7–10).
The licensing reaction has been reconstituted in vitro using

proteins from the amphibian Xenopus laevis (11) and from the
yeast Saccharomyces cerevisiae (12, 13). First the origin recog-
nition complex (ORC)4 binds to DNA at the origin, and DNA-
bound ORC then recruits the Cdt1- and Cdc6-licensing pro-
teins. Finally, in an ATP-consuming reaction ORC, Cdc6 and
Cdt1 cooperate to load Mcm2-7 onto DNA. Electron micros-
copy of the reconstituted reaction in S. cerevisiae shows that the
DNA apparently takes a path directly through theMCM loaded
onto DNA (12, 13). This is consistent with previous structural
studies of archaeal MCM proteins showing that they form a
double hexameric complex with a positively charged central
channel capable of encircling double-stranded DNA (14–17).
The size of the S. cerevisiae complexes on DNA suggest that
they form back-to-back double hexamers (12, 13).
This idea that the licensing of origins involves the clamping

of a symmetrical double hexamer around DNA is biologically
plausible. First, it is important that the association of Mcm2-7
with DNA at licensed origins is very stable, because it must
persist fromG1 until the completion of DNA replication which
may take �10 h in some cell types. The clamping of the ring-
shapedMcm2-7 complex around DNA can potentially provide
an association that would be stable over these long periods.
Secondly, replication forks are initiated bidirectionally from
replication origins, so it is important that origins contain back-
to-back Mcm2-7 hexamers that can support this bidirectional
movement.
In this report, we provide evidence that the licensing of rep-

lication origins in Xenopus egg extracts corresponds to the
loading of double Mcm2-7 hexamers onto DNA prior to the
onset of S phase. The conservation of this mechanism between
yeasts and frogs suggests that it is likely to be a conservedmech-
anism used by all eukaryotes. We also provide evidence that
during S phase in the Xenopus system, Mcm2-7 associate with
Cdc45 and GINS to form CMG complexes only when replica-
tion forks have been initiated.

EXPERIMENTAL PROCEDURES

Xenopus Egg Extract—Metaphase-arrested Xenopus laevis
egg extracts were prepared as previously described (18).
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Extracts were supplemented with 6.25 �g/ml cycloheximide,
0.625mMphosphocreatine, and 0.375�g/ml creatine phospho-
kinase and released into interphase by 15 min of incubation
with 0.3 mM CaCl2. Demembranated Xenopus sperm nuclei
were added to final concentrations of 15 ng/�l for S-phase sam-
ples, 20 ng/�l for CDK- andCdc7-blocked samples, and 7 ng/�l
for Mcm3-depleted extract. Replication reactions were carried
out at 23 °C. Immunodepletion of interphase extract with
Mcm3 rabbit antibody serum was performed as described pre-
viously (18). DNA synthesis was assessed in extract supple-
mented with �-[32P]dATP by TCA precipitation as described
(18).
Releasing Proteins from Chromatin—Reactions (2 ml for

AKTA column sample, 0.48 ml for glycerol gradient sample or
0.32 ml for SMART column sample) were diluted with 10–20
volumes of ice-cold ANIB buffer (50 mM HEPES-KOH pH7.6,
50 mM potassium acetate, 25 mM sodium glycerophosphate pH
7.6, 10 mM magnesium acetate, 0.1% Triton X-100, 2.5 mM

MgATP, 0.1mM sodium vanadate, 0.1�Mmicrocystin, 1�g/ml
each of leupeptin, pepstatin, and aprotonin, 0.5mM spermidine,
0.15 mM spermine, 0.1 mM PMSF, 1� Halt protease inhibitor
mixture (Thermo Scientific)), underlaid with ANIB buffer con-
taining 30% sucrose and spun 10min, 2,500� g, 4 °C. The top of
the cushion was washed three times with ANIB buffer and the
rest of the cushion removed from above the pellet. Chromatin
was resuspended in one-fourth original extract volume in
ANIB � 30% sucrose (or for glycerol gradients, ANIB). Benzo-
nase (Novagen) or DNase I (Roche) was added to 2 units/�l or 3
units/�l final concentration respectively and incubated for 10
min, room temperature. Samples were sonicated (Bioruptor,
Diagenode) for 5 min (10 s sonication, 45 s break, medium
setting), centrifuged 5 min, 20,000 � g, 4 °C, and the superna-
tant taken as solubilized chromatin. 5 �l of control samples
were taken at every stage and analyzed by immunoblotting.
For samples at higher salt concentrations, chromatinwas iso-

lated using ANIB buffer with 50mMpotassium acetate as above
but cushion buffer contained no detergent. After resuspension,
digestionwithBenzonase and sonication, the potassiumacetate
concentration was adjusted as desired and chromatin incu-
bated for further 5 min at room temperature before the final
spin.
Gel Filtration and Glycerol Gradients—Chromatin samples

for gel filtration or glycerol gradient were prepared as described
above; extract samples were prepared by adding 4 volumes of
ANIB buffer �10% sucrose and centrifuging 10 min, 20,000 �
g, 4 °C to remove insoluble material.
Analytical gel filtration was performed using Superose 6 PC

3.2/30 column and SMARTTM system (AmershamBiosciences,
GE Healthcare) with 50 �l of sample. Large-scale gel filtration
for immunoprecipitation was performed using a Superose 6
10/300 GL column and AKTA system (GE Healthcare) and a
500-�l sample. Columns were run in ANIB plus 30% sucrose
and indicated salt concentration. 30 fractions of 50�l (SMART)
or 500 �l (AKTA) were collected, and aliquots of the first 24
fractions analyzed. Columns were calibrated using a kit for
molecular masses 29,000–700,000 (Sigma, MWGF1000).
4 ml of 20–40% glycerol gradients in ANIB buffer (contain-

ing appropriate salt concentrations) were prepared in 4-ml thin

wall tubes (Beckman Coulter, 328874). 100 �l of released chro-
matin protein sample was loaded and samples spun in SW60 Ti
rotor (Beckman Coulter) 16 h, 45,000 rpm, 4 °C. A separate
glycerol gradient with size marker proteins (Sigma,
MWGF1000) was included in every run. Spun gradients were
divided into 200-�l fractions.
Molecular masses were calculated according to Siegel and

Monty (19) using the values: thyroglobulin tetramer (1338 kDa,
107 Å), thyroglobulin dimer (669 kDa, 85 Å, 19.5 S), apoferritin
(443 kDa, 67 Å, 17.6 S), �-amylase (200 kDa, 54 Å, 8.9 S), BSA
(66 kDa, 35.5 Å, 4.3 S), carbonic anhydrase (29 kDa, 24.3 Å,
3.2 S).
DNA Isolation—ForDNA isolation, chromatin samples were

prepared from 120 �l of extract. Digestion with Benzonase or
DNase I was stopped by addition of EDTA to 65 mM and pro-
teins digested by addition of proteinaseK to 2�g/ml and SDS to
1% and 30 min of incubation at 37 °C. DNA was phenol-chlo-
roform extracted and ethanol precipitated.
Recombinant Proteins, Reagents, and Antibodies—p27KIP1

was a gift fromGaganmeet Chadha (Dundee University). PHA-
767491 (20) was synthesized at Dundee University. Mcm2 and
Mcm3 affinity-purified antibodies were previously described (21),
as were Mcm4, Mcm5, Mcm6, and Mcm7 antibodies (22). Psf2,
Sld5,Tipin andCdc45 antibodieswere raised in sheep against full-
length His6-tagged X. laevis recombinant proteins expressed and
purified from Escherichia coli (RosettaTM(DE3)pLysS, Novagen)
using Ni2�-NTA affinity chromatography. His6-tagged C-termi-
nal fragments of Ctf4/And-1 (828–1127 aa) and Mcm10 (278–
860 aa) were purified in the same way. Cdc45, Psf2, Ctf4,Mcm10,
and Tipin antibodies were affinity purified. Antibody specificity is
shown in supplemental Fig. S5. Antibodies were used for immu-
noblotting at 1:1000 dilutions.
Immunoprecipitations and Mass Spectrometry—Mcm3 and

Cdc45 immunoprecipitations were performed using affinity-
purified antibodies or control sheep IgG (Sigma, S2763) cova-
lently coupled toDynabeadsM-270 Epoxy (Invitrogen) accord-
ing to the manufacturer’s instructions.
ForMcm3 immunoprecipitation, gel filtration fractionswere

combined and incubated for 2 h with 350 �l of Mcm3 or IgG
beads. After 5 � 5min washes with ANIB, beads were boiled in
70 �l of LDS sample buffer (Invitrogen) and 40-�l IP samples
were run on a 4–12% gradient NuPAGE gel (Invitrogen). The
gel was stained with Cypro Ruby Protein Gel Stain (Molecular
probes, Invitrogen) or SimplyBlue SafeStain (Invitrogen).
Mcm3 and IgG laneswere cut into 40 equal slices for analysis by
mass spectrometry. For Cdc45 and Ctf4 immunoprecipitation,
chromatin was isolated in mid-S phase from a 4-ml reaction;
500 �l of antibody-coupled beads were used and 40-�l IP sam-
ples run on 10%NuPAGE gel (Invitrogen) inMOPS buffer for 2
cm, lanes cut into 10 slices for analysis by mass spectrometry.
Mass spectrometry of immunoprecipitates was as described
(23). Briefly, samples were reduced with dithiothreitol, alky-
lated with iodoacetamide and digested with trypsin. Peptide
solutions were analyzed using nano LC-MS/MS on an LTQ
Orbitrap XL (ThermoFisher, San Jose, CA). Total spectral
count for a protein includes repeated identification of the same
sequence or any versionswithmodifications or different charge
states. Soluble chromatin fractionated by gel filtration was pre-
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cipitated with methanol/chloroform, prepared for mass spec-
trometry and protein abundance was estimated from total ion
current as described (21, 24).

RESULTS

We first devised a method for isolating intact protein com-
plexes from chromatin assembled in the Xenopus cell-free sys-
tem (Fig. 1A). Demembranated sperm nuclei were incubated in
egg extract as appropriate, the extract was diluted, and chroma-
tin was centrifuged into a sucrose cushion. The DNA was
extensively degraded by a combination of sonication and
DNase treatment, until no large DNAmolecules were visible by
agarose gel electrophoresis (supplemental Fig. S1). Insoluble
material was then removed by centrifugation, and DNase-sol-
ubilized chromatin subjected to further analysis.When low salt
buffers (50 mM potassium acetate) were used for chromatin
resuspension,�80% ofMcm2-7 proteins loaded onto the DNA
was released by DNase treatment (Fig. 1B). Certain replication
fork proteins, such as DNA polymerase � were also released
from chromatin by this protocol, but many others, such as
Cdc45, remained in the insoluble pellet. We next investigated
the effect of salt concentration on the solubility of replication

fork proteins (Fig. 1C). This showed that a wide range of repli-
cation fork proteins remained insoluble when isolated in 50mM

potassium acetate, but became soluble at 300–400 mM.
Because most of the chromatin-bound Mcm2-7 license dor-
mant replication origins that remain inactive during normal S
phases (25–27) this result is consistent with the idea that
Mcm2-7 on licensed origins are soluble in low salt, but become
insoluble when they associate with replication fork proteins in
the active replisome.
Licensed Origins Contain Double Hexamers of Mcm2-7—To

analyze the status of Mcm2-7 on licensed chromatin prior to S
phase onset, we prevented replication initiation by adding the
CDK inhibitor p27KIP1 to the extract. BecauseMcm2-7 hexam-
ers are very sensitive to disruption by salt (22, 28), we per-
formed the chromatin manipulations in 50 mM potassium ace-
tate. As expected, KIP1 blocked the assembly of replication fork
proteins Cdc45, PCNA, and Psf2 onto the chromatin (Fig. 2A).
We examined the structure of chromatin-bound Mcm2-7 by a
combination of gel filtration (Fig. 2B) and glycerol gradient sed-
imentation (Fig. 2C). Gel filtration overestimates the size of
elongated molecules, while glycerol gradient sedimentation
underestimates the size of elongated molecules, but combining
results from both techniques allows the calculation of molecu-
lar masses that are not biased by shape (19). The results (Fig.
2D) suggest that chromatin-boundMcm2-7 on licensed origins
has a molecular mass of �945 kDa. This value is significantly
higher than free Mcm2-7 complex in the extract, which has a
calculated molecular mass of �530 kDa and consists of a single
heterohexamer containing one copy each of Mcm2, Mcm3,
Mcm4, Mcm5, Mcm6, and Mcm7 (22). Because chromatin-
boundMcm2-7 has amolecularmass almost double that of free
hexamericMcm2-7, this is consistent with origin licensing rep-
resenting the assembly of double hexamers onto replication
origins (7, 12, 13).
The bulk of chromatin-bound Mcm2-7 still migrated as an

apparent double-hexamer when KIP1 was omitted from the
reaction and chromatin was isolated from mid-S phase (Fig.
2E). This unchanged behavior is likely explained because most
of the Mcm2-7 license dormant origins that do not normally
initiate replication forks (25), and because replication forks are
only poorly soluble under the low salt conditions used (Fig. 1C).
To determine whether the large chromatin-bound Mcm2-7

complex contains proteins other thanMcm2-7, chromatin sol-
ubilized in 50mM potassium acetate was separated by gel filtra-
tion; fractions containing the large Mcm2-7 complex were
pooled (supplemental Fig. S2) and immunoprecipitated with
anti-Mcm3 antibodies. The resulting Mcm3 immunoprecipi-
tates were separated by SDS-PAGE and stained for total pro-
tein. The major proteins in the immunoprecipitate migrated as
expected of the 6 Mcm2-7 proteins (Fig. 3A). Although the 6
proteins were not fully resolved, doublets corresponding to
Mcm2�Mcm4, Mcm3�6, andMcm5�7 (22, 29) were present
in approximately stoichiometric amounts, as expected of a dou-
ble heterohexamer. Apart from IgG used for the immunopre-
cipitation, no proteins other than Mcm2-7 could be seen at
levels high enough to be stoichiometric with Mcm2-7.
To gain amore quantitative assessment of proteins present in

the large Mcm2-7 complex, gel filtration fractions were immu-
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FIGURE 1. Protein release from replicating X. laevis chromatin. A, sche-
matic representation of chromatin protein preparation procedure. B and C,
chromatin was isolated from egg extract in the middle of S-phase (when
replisome proteins peak on chromatin) in the presence of 50 mM potassium
acetate, and DNA was digested by Benzonase and sonication. Ex, 0.5 �l of egg
extract; Ch, chromatin after first centrifugation; other lanes correspond to
material isolated from 5 �l of egg extract. B, chromatin was maintained in 50
mM potassium acetate throughout the procedure. P, pellet after DNA diges-
tion; S, supernatant after DNA digestion. C, after DNA digestion, the salt con-
centration was adjusted to the 50, 100, 150, 200, 250, 300, 350, or 400 mM

potassium acetate before samples were separated by centrifugation into sol-
uble and insoluble (pellet) fractions. Fractions were separated by SDS-PAGE
and immunoblotted with antibodies to the indicated proteins.
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noprecipitated with Mcm3 antibodies, and the proteins sepa-
rated by SDS-PAGE (Fig. 3B). The gel lanes were then divided
into 40 equal slices, and proteins within each slice were ana-
lyzed bymass spectrometry. The top 20 proteins specific for the
Mcm3 immunoprecipitation are shown in Fig. 3C, with the
spectral count (total number of peptide identifications) for each
protein shown as the height of the bar. This shows that peptides
associated with Mcm2-7 were detected �10 times more often

than peptides from any of the other detected proteins, suggest-
ing that Mcm2-7 were the most abundant proteins in the sam-
ple. To determine the possible co-elution of these other pro-
teins with Mcm2-7, the gel filtration fractions of solubilized
chromatin were individually analyzed by LC-MS/MS mass
spectrometry. The relative abundance of the top 20 proteins
fromFig. 3Cwas determined by comparing the total ion current
of peptides across the gel filtration fractions (21). For each pro-
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tein, the peak abundance of the protein was normalized to 1,
and the results are shown in Fig. 3D as a heat map. Consistent
with the immunoblotting results, all 6 Mcm2-7 polypeptides
peak with an apparent molecular mass of �1150 kDa. None of
the 16 other proteins peaked at the same position as Mcm2-7,
suggesting that none of them quantitatively associate with
Mcm2-7. Taken together, all these results strongly suggest that

the increased molecular mass of Mcm2-7 when loaded onto
chromatin is a consequence of formation of a double Mcm2-7
hexamer. Consistent with this interpretation, cross-linking
experiments showed that new interactions between Mcm2-7
proteins after they have been loaded onto chromatin (data not
shown).
Effect of Cdc7—During S phase, a proportion of licensed ori-

gins initiate pairs of replication forks that progress bidirection-
ally away from the origin. Replication initiation requires the
activity of two protein kinases: S phase inducing CDKs and
Cdc7.Mcm2-7 are themajor substrates of Cdc7. It has recently
been suggested that phosphorylation of Mcm2-7 by Cdc7 pro-
motes separation of the double hexamers into single hexamers
(13). In Xenopus egg extracts, phosphorylation of Mcm2-7 by
Cdc7 kinase occurs shortly after licensing and is independent of
S phase CDK activity (30, 31). Cdc7 causes a hyperphosphory-
lation ofXenopusMcm4 that can be detected as amobility shift
ofMcm4 on SDS gels (32). The hyperphosphorylation ofMcm4
in KIP1-treated extract can be clearly seen when gel filtration
fractions of chromatin and whole extract were run next to each
other (Fig. 4A). Virtually all chromatin-bound Mcm4 was
hyperphosphorylated (Fig. 4B) and the hyperphosphorylated
Mcm4 on chromatin migrated on gel filtration with the double
hexamer (Fig. 4A). These results suggest that Cdc7 phosphory-
lation of Mcm2-7 does not significantly break up the double
hexamer.
A small molecule inhibitor of Cdc7 kinase activity, PHA-

767491, has been described (20). PHA-767491 can inhibit DNA
replication and Mcm4 hyperphosphorylation in Xenopus egg
extracts and this effect appears to be due to specific inhibition
of Cdc7 kinase activity in the extract.5 Fig. 4B shows that like
KIP1, PHA-767491 completely blocked the initiation of repli-
cation forks, as evidenced by the absence of the fork proteins
Cdc45, PCNA, and Psf2 on chromatin. PHA-767491 also sub-
stantially reduced the hyperphosphorylation of Mcm4. Fig. 4C
shows that the size of the Mcm2-7 complex on chromatin
assembled in the presence of PHA-767491 was very similar to
the complex formed in the presence of KIP1. Taken together,
these results suggest that Cdc7 phosphorylation of Mcm2-7
does not significantly affect stability of the double hexamer.
Active Mcm2-7 at Replication Forks—We next investigated

what happens to Mcm2-7 once they have initiated replication
forks following combined CDK and Cdc7 activity. Analysis of
Mcm2-7 in Drosophila cells has shown that when replication
forks initiate, Mcm2-7 associate with Cdc45 and the GINS
complex to form theCMG (Cdc45-MCM-GINS) helicase (5, 6).
Fig. 1A shows that in Xenopus extracts, potassium acetate con-
centrations of �300 mM were required in order to efficiently
release replication fork proteins in a soluble form following
DNase digestion. At 300mM, Cdc45 and the Psf2 component of
the GINS complex were substantially solubilized by DNase
treatment (Fig. 5A). However, as the potassium acetate concen-
tration was increased, the size of the released Mcm2-7 com-
plexes decreased, as evidenced by changes to migration on gel
filtration (Fig. 5B) and glycerol gradients (Fig. 5C). In particular,

5 W. T. Poh and J. J. Blow, unpublished data.
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Mcm3 and Mcm5, the subunits most easily detached from the
Mcm2-7hexamer (22, 28), started tomigrate ongel filtration as an
isolated dimer (Fig. 5, B and C). The same size decrease of the
double hexameric Mcm2-7 was observed with chromatin assem-
bled in p27KIP1 treated extract and solubilized at 300 mM potas-
sium acetate (data not shown). This indicates that the inactive
form ofMcm2-7 is unstable at higher salt concentrations.
Inwhole extract, Cdc45 behaved on gel filtration and glycerol

gradients as an isolated monomer of �76 kDa (predicted
molecular mass 65 kDa), while the GINS subunits Psf1, -2, and
-3 and Sld5 behaved as a single isolated hetero-tetramer of�86
kDa (predictedmolecularmass, 94 kDa) (supplemental Fig. S3).
Fig. 6A shows the calculated molecular masses of chromatin-
bound Cdc45 and GINS at 100 and 300 mM potassium acetate.
At 300 mM potassium acetate, most of the Cdc45 and GINS

forms a complex with a calculatedmolecularmass of�707 kDa
(Fig. 6A), slightly larger than the main Mcm2-7 peak of �633
kDa. Although theMcm2-7 peak does not precisely correspond
to the Cdc45 and GINS peaks, there is still substantial overlap
between the profiles (Fig. 5,B andC). This is consistentwith the
Cdc45 and GINS peak being the CMG complex, which has a
predicted molecular mass of 706 kDa. The bulk of Mcm2-7 is
likely to come from unfired origins to which Cdc45 and GINS
would not be substantially recruited, explaining why Mcm2-7
peak at a slightly lowermass, as double hexamers are unstable at
this salt concentration.
To provide evidence that the �700 kDa complexes contain-

ing Cdc45 and GINS represent a discrete CMG complex, we
immunoprecipitated Cdc45 from chromatin solubilized in 300
mM potassium acetate and analyzed co-precipitating proteins
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by immunoblotting (Fig. 6B) and mass spectrometry (Fig. 6C).
Fig. 6B revealed that Cdc45 efficiently co-precipitated the Sld5
component of theGINS complex, and less efficiently co-precip-
itatedMcm3and -7.Mass spectrometry also showed significant
enrichment of Mcm2-7 and the Psf1-3 components of the
GINS complex in the Cdc45 precipitation (Fig. 6C). These
results are consistent with the bulk of Cdc45 being in the form
of the CMG complex at 300 mM potassium acetate.

The CMG helicase makes up part of a larger Replisome Pro-
gression Complex (RPC), which contains a range of other pro-
teins including the Tipin-Timeless (Tof1-Csm3) complex that
allows replication forks to pause at protein-DNA barriers, the
histone chaperone FACTandCtf4 (23, 33–35). Toprobe for the
existence of a Xenopus RPC, we examined complexes solubi-
lized from replicating chromatin in 100 mM potassium acetate.
At this salt concentration, only a small fraction of the replisome
proteins were solubilized (Fig. 1C), but Mcm2-7 remained
together in a highmolecularmass complex (Fig. 7A and supple-
mental Fig. S4) with an estimated molecular mass of �811 kDa
(Fig. 6A). In 100 mM K acetate, GINS and Cdc45 migrated dif-
ferently from the bulk of Mcm2-7, particularly on glycerol gra-
dients (supplemental Fig. S4), behaving as though they were
part of larger complexes with molecular masses of �817 and
�913 kDa, respectively. This is consistent with the presence in
these complexes of other components of the replisomeprogres-
sion complex. Immunoprecipitation of Cdc45 suggested that
there was still significant physical association of Cdc45 with
Mcm2-7 and GINS in these complexes (Fig. 7B). A proportion
of the RPC component Ctf4 was also found co-migrating with

Mcm2-7 (Fig. 7A) and co-precipitated with Mcm2-7, Cdc45,
and GINS (Fig. 7B). Mass spectrometry of Cdc45 immunopre-
cipitates from replicating chromatin solubilized in 100 mM

potassium acetate also revealed the presence of Ctf4 plus other
replication fork proteins, including part of the FACT complex
(Fig. 7C). These experiments show that a range of other repli-
some proteins physically associate with Mcm2-7, Cdc45, and
GINS on replicating chromatin.
To increase the proportion of Mcm2-7 complexes that

undergo initiation and to minimize the number of unfired dor-
mant origins, we lowered total Mcm2-7 levels in the extract
�90% by immunodepletion. Unfortunately the immunodeple-
tion also reduced overall replication rates so that origin firing
was less synchronous than in undepleted extract (Fig. 8, A and
B). Despite this, the size of chromatin-bound Mcm2-7 in
depleted extract (Fig. 8C; mean peak size �90 Å) was slightly
smaller than the Mcm2-7 peak seen in undepleted extract (Fig.
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7A; mean peak size 97 Å). The reduced size of Mcm2-7 in the
depleted extract more closely matched the �91 Å) size of
Cdc45 and the GINS complex (Figs. 6A, 7A, and 8C). These
results are consistent with the idea that reducing the number of
dormant origins caused a greater proportion of Mcm2-7 com-
plexes to be assembled into active replisomes, thereby reducing
the proportion of double-hexameric Mcm2-7 present at
unfired origins.

DISCUSSION

We have examined the physical composition of chromatin-
bound complexes ofMcm2-7 inXenopus egg extracts.We pro-
vide evidence for the existence of at least two different com-
plexes. Prior to replication fork initiationwe show thatMcm2-7
bind to chromatin in a large complex that appears to be an
Mcm2-7 double hexamer. During S phase, chromatin-bound
Mcm2-7 associate with Cdc45 and GINS, to form a complex
that appears to represent theXenopusCMGcomplex, as well as
associating with a range of other replisome proteins.
Licensed Origins Contain Double Hexamers of Mcm2-7—

Two recent reports have described the reconstitution of origin
licensing using ORC, Cdc6, Cdt1, and Mcm2-7 from budding
yeast (12, 13). Electron microscopy showed that when Mcm2-7
was loaded ontoDNA, it encircledDNAas a head-to-head double
hexamer. Gel filtration analysis showed that this complex eluted
on gel filtration with approximately double the size of the free
hexamer (12). Previous work has shown that an analogous licens-
ing reaction can be reconstituted using Xenopus sperm and
nucleoplasmin, ORC, Cdc6, Cdt1, and Mcm2-7 purified from

Xenopus eggs (11). Nucleoplasmin is required to decondense the
sperm chromatin and allow ORC to bind DNA (36); the subse-
quent steps in Xenopus appear very similar to those in budding
yeast (11).
Here we have assessed the physical state of Mcm2-7 loaded

onto sperm chromatin inXenopus egg extracts.We show, using
gel filtration and glycerol gradient, that once loaded onto chro-
matin as a consequence of origin licensing, Mcm2-7 form a
complex with a molecular mass approximately equal to that of
an Mcm2-7 double hexamer. No other proteins are present in
the complex at stoichiometric quantities. In contrast, previous
work has shown that the bulk of freeMcm2-7 proteins inXeno-
pus egg extract form a heterohexamer consisting of one each of
the 6 proteinsMcm2-7 proteins (22). The relative ratios of the 6
Mcm2-7 proteins on licensed chromatin is approximately stoi-
chiometric. This is consistent with previous data showing that
Mcm2-7 proteins are loaded on to chromatin in a similar pro-
portion to the ratios in the free heterohexamer (29). We con-
clude that in Xenopus egg extract, when Mcm2-7 are loaded
onto chromatin they predominantly form double heterohex-
amers, consistent with the loading of Mcm2-7 in the reconsti-
tuted yeast system. The conservation of this mechanism
between yeasts and frogs suggests that it is likely to be a con-
servedmechanismused by all eukaryotes. Itmakes good sense if
the licensing of replication origins represents the loading of two
anti-parallel double hexamers, as this is the configuration
required to initiate a pair of bidirectional replication forks in S
phase.

0

5

10

15

20

25

0 40 80 120
Time  (min)

D
N

A 
sy

nt
he

si
s 

(%
 d

AT
P 

in
co

rp
or

at
ed

)

C

Ex -D
NA
30’ 45’ 60’ 75’ 90’ 120’

chromatin

Mcm2

Cdc45

BA

Mcm4

Mcm2

Mcm5

Cdc45

Mcm7

669 443 292001300 [kD]
85 67 2456107 [Å]

FIGURE 8. CMG complex at minimally licensed chromatin. Mcm3 depleted extract was supplemented with 10% of normal extract. A, DNA synthesis was
assayed by �-[32P]dATP incorporation. B, chromatin was isolated at the indicated times and immunoblotted for Mcm2 and Cdc45 proteins. C, chromatin was
isolated at 45 min and proteins were released from chromatin in 100 mM potassium acetate. Soluble chromatin protein complexes were separated by gel
filtration and immunoblotted for the indicated proteins.

Double Hexameric Mcm2-7 at Origins in Xenopus

11862 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 286 • NUMBER 13 • APRIL 1, 2011



It is unclear precisely how the double hexamer is assembled
on DNA from free hexamers. Several possibilities have been
discussed (7, 12, 13). One possibility is that a single molecule of
chromatin-bound ORC could cooperatively bind and load the
double hexamer. Another possibility is that a pair of ORCmol-
ecules could be co-ordinated at each origin in an anti-parallel
fashion, each of which loads one hexamer which combine to
form the double hexamer. In support of this latter model,
archaeal replication origins typically have ORC binding sites
arranged in an anti-parallel fashion around the origin (37).
Another possibility is that Mcm2-7 are initially loaded as
hexamers, which are unstable, but can subsequently become
stabilized if they encounter another hexamer to allow a double
hexamer to form. This idea is less appealing because there
would potentially be a lot of unproductive loading and unload-
ing of hexamers that fail to form double hexamers. There is also
some evidence in Xenopus that two molecules of Cdc6 can act
together at origins, consistent with either of the first two mod-
els (29, 38).
CMG and RPC Complexes in S Phase—Following activation

of Cdc7 and S phase CDKs, a proportion ofMcm2-7 at licensed
replication origins initiate a pair of bidirectional replication
forks. This is accompanied by the association of other repli-
some (replication fork) proteinswithMcm2-7 and its activation
as a helicase. However, the majority of origins remain dormant
during S phase, unless replication fork progression is inhibited
(25–27, 39).We showhere thatMcm2-7 at unreplicated origins
remain as double hexamers during S phase. We also show that
prior to replication fork initiation, Cdc7 phosphorylation of
Mcm4 does not affect its ability to form double hexamers.
Biochemical analysis in Drosophila has provided evidence

that forMcm2-7 to be active as a helicase, it must be associated
with Cdc45 and the four GINS proteins Psf1, -2, -3, and Sld5,
thereby forming the CMG complex (5, 6). Although a discrete
CMG complex has not previously been isolated from other
organisms, there is evidence that a similar complex is a con-
served feature of the eukaryotic replisome. A group of interact-
ing replisome proteins, the Replisome Progression Complex,
has been purified from budding yeast, which containsMcm2-7,
Cdc45, GINS and several other replisome proteins (23, 33, 34).
Similarly, in a range of other organisms, physical interactions
between Cdc45, Mcm2-7 and GINS have been reported at rep-
lication forks (40–46).
We provide here evidence for the existence of a discrete

CMG subcomplex that forms part of the replisome in Xenopus
egg extracts. When replication forks were fully solubilized in
300 mM potassium acetate, Mcm2-7 proteins behaved as a het-
erogeneous set of complexes. A subset of the Mcm2-7 proteins
co-migrated with Cdc45 and GINS proteins with a molecular
mass of 707 kDa, as expected of the Xenopus CMG complex.
Immunoprecipitation and mass spectrometry demonstrated
that Cdc45 and GINS were major components of this 707 kDa
complex. This suggests that the Xenopus CMG complex is a
particularly stable subcomponent of the replisome. At lower
salt concentrations (100 mM potassium acetate), interactions
between the CMGproteins and a range of other replisome pro-
teins were seen, consistent with the existence of a more exten-
sive RPC-like complex.

A more detailed analysis of replisome complexes in Xenopus
is complicated by the fact thatmany replisome proteins, such as
Cdc45, remain insoluble in low salt conditions, while other pro-
tein complexes, such asMcm2-7 tend to break up in higher salt.
For this reasonwe have not been able to precisely determine the
steps by which the double hexamer of Mcm2-7 is converted
into an active helicase. BecauseMcm2-7 tend to break up in the
salt concentrations necessary to solubilize replisome proteins,
we cannot determine whether the two Mcm2-7 hexamers sep-
arate at replication initiation, or whether the two opposing
replisomes remain associated to extrude rabbit ears of repli-
catedDNAbehind the replisome (47–50). At present all we can
conclude is that at the lowest salt concentration where we can
solubilize replisome proteins, CMG proteins migrate on gel
filtration columns at a size significantly smaller than would
be expected of a dimeric double replisome. Recent results
obtained by stretching DNA that is replicating in Xenopus
egg extracts showed that no physical association is required
between sister replisomes in order for normal fork progres-
sion to occur (51). Further developments of the technique we
have used here may be able to address this issue and deter-
mine the precise sequence events occurring as Mcm2-7 dou-
ble hexamers are converted into active replisomes.
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