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Background: Dermatomyositis is an autoimmune disease characterized by damage to
the skin and muscles. CD4+ T cells are of crucial importance in the occurrence and
development of dermatomyositis (DM). However, there are few bioinformatics studies on
potential pathogenic genes and immune cell infiltration of DM. Therefore, this study
intended to explore CD4+ T-cell infiltration–associated key genes in DM and construct a
new model to predict the level of CD4+ T-cell infiltration in DM.

Methods: GSE46239, GSE142807, GSE1551, and GSE193276 datasets were
downloaded. The WGCNA and CIBERSORT algorithms were performed to identify the
most correlated gene module with CD4+ T cells. Matascape was used for GO enrichment
and KEGG pathway analysis of the key gene module. LASSO regression analysis was
used to identify the key genes and construct the prediction model. The correlation
between the key genes and CD4+ T-cell infiltration was investigated. GSEA was
performed to research the underlying signaling pathways of the key genes. The key
gene-correlated transcription factors were identified through the RcisTarget and Gene-
motif rankings databases. The miRcode and DIANA-LncBase databases were used to
build the lncRNA-miRNA-mRNA network.

Results: In the brown module, 5 key genes (chromosome 1 open reading frame 106
(C1orf106), component of oligomeric Golgi complex 8 (COG8), envoplakin (EVPL),
GTPases of immunity-associated protein family member 6 (GIMAP6), and interferon-
alpha inducible protein 6 (IFI6)) highly associated with CD4+ T-cell infiltration were
identified. The prediction model was constructed and showed better predictive
performance in the training set, and this satisfactory model performance was validated
in another skin biopsy dataset and a muscle biopsy dataset. The expression levels of the
key genes promoted the CD4+ T-cell infiltration. GSEA results revealed that the key genes
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were remarkably enriched in many immunity-associated pathways, such as JAK/STAT
signaling pathway. The cisbp_M2205, transcription factor-binding site, was enriched in
C1orf106, EVPL, and IF16. Finally, 3,835 lncRNAs and 52 miRNAs significantly correlated
with key genes were used to build a ceRNA network.

Conclusion: The C1orf106, COG8, EVPL, GIMAP6, and IFI6 genes are associated with
CD4+ T-cell infiltration. The prediction model constructed based on the 5 key genes may
better predict the level of CD4+ T-cell infiltration in damaged muscle and lesional skin of DM.
These key genes could be recognized as potential biomarkers and immunotherapeutic
targets of DM.
Keywords: dermatomyositis, WGCNA, CD4+ T cells, key gene, biomarkers, bioinformatics
INTRODUCTION

Dermatomyositis (DM) is an autoimmune inflammatory disease
and a subtype of idiopathic inflammatory myopathy
characterized by typical skin lesions and symmetrical proximal
muscle weakness; besides, the most common complications and
causes of death are interstitial lung disease (ILD) and malignant
tumors (1–3). According to the current internationally
recognized diagnostic criteria for DM, such as the Bohan and
Peter criteria, characteristic skin features, including heliotrope
rash across the periorbital, Gottron’s sign, V-neck sign, and
shawl sign, are indispensable for the diagnosis of DM (4).
Although muscle involvement is common, it often occurs
months or years later than skin damage, and approximately
10%–20% of DM characterized by typical skin manifestations
with subtle or no muscle involvement is defined as clinically
amyopathic dermatomyositis (CADM) (5, 6). Therefore, early
diagnosis of DM is relatively difficult if patients lack
characteristic skin lesions. Cutaneous lesions are closely
associated with the disease activity and prognosis of DM, and
some atypical cutaneous manifestations can be used to predict
the possibility of current or future systemic diseases in DM
patients. For example, mechanic’s hands are related to an
increased risk of ILD in patients with DM, skin necrosis is
related to an increased risk of malignant tumors in patients with
DM, and skin ulceration is linked to the low survival rate of DM
patients (7, 8). Due to the lack of the ability to identify atypical
skin lesions of DM, patients tend to miss or delay the optimal
treatment time. In addition, the difficulty of treating DM lies in
that the symptoms of myositis may be significantly improved
after drug treatment, but the skin lesions will still be recurrent,
resulting in changes in appearance, persistent itching, and light
sensitivity, which seriously affect the quality of life of DM
patients (9, 10). Most importantly, the targeted therapeutic
drugs for skin lesions of DM, such as the application of topical
corticosteroids, systemic immunosuppressants, or biological
agents, may be of some efficacy, but the efficacy is variable,
lacks prospective studies, and is accompanied by many side
effects (9, 10). Notably, among all types of DM, CADM has the
lowest survival rate (7). All of these challenges indicate that it is
urgent to develop more effective and safer novel drugs for
treating skin lesions in patients with DM. Further
n.org 2
understanding of the molecular pathogenesis of skin
inflammatory injury in DM may reveal better molecular
markers and more effective therapeutic targets.

Ahmed et al. pointed out that skin biopsy was sufficient to
diagnose DM without muscle biopsy in the presence of the
characteristic skin manifestations and muscle symptoms of
DM (11). Therefore, the biopsy of skin lesions is important for
the early diagnosis of DM. The histopathological features of DM
skin lesions are often manifested as interface inflammatory
infiltration, perivascular inflammatory infiltration, increased
apoptosis of keratinocytes in the epidermis basal layer, mucin
deposition in the dermis, vacuolization of basal cells, keratinizing
disorder, endothelial cell damage, etc. (12). The pathogenesis of
skin inflammatory injury in DM is still unclear and may involve
cellular immunity, mechanical stress, sunlight exposure, etc. (13).
Multiple studies have observed that CD4+ T lymphocytes are the
most important inflammatory infiltrating cells in the skin lesions
of DM, mainly distributed at the dermal–epidermal junction
around the blood vessels (14–16). Most of the infiltrating CD4+ T
lymphocytes express CD40L, indicating that activation of
CD4+CD40L+ T cells may be the main mechanism leading to
the characteristic skin immune damage of DM (16). CD4+ T
lymphocytes and activated CD4+ memory T cells in skin lesions
are positively correlated with the area and severity index score of
DM skin lesions (14). Maddukuri et al. found that compared
with skin from the healthy controls and peripheral blood
mononuclear cells (PBMCs) of patients with DM, the
inflammatory infiltration of CD4+ T lymphocytes in the skin
lesions in DM patients increased, and CD4+ T lymphocytes
significantly expressed cannabinoid type 2 receptor (CB2R)
and also produced interleukin (IL)-4, IL-31, interferon (IFN)-g,
and IFN-b. Notably, after treatment with lenabasum (a CB2R
antagonist), the infiltration of CD4+ T lymphocytes, as well as the
expression of CB2R, IL-31, IFN-g, and IFN-b were all
downregulated in the skin lesions, but this phenomenon was
not observed in the PBMCs of DM patients (9). Their study not
only indicated that CB2R regulating CD4+ T-cell–mediated
immune inflammation is a specific skin lesion mechanism of
DM but also suggested that although CD4+ T-lymphocyte
infiltration is dominant in the lesional skin, damaged muscle,
and peripheral blood of DM, there may be some differences in
the immune regulatory mechanisms. DM is regarded as a CD4+
May 2022 | Volume 13 | Article 854848

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Identification CD4+ T-Related Biomarkers in DM
T-cell–driven disease, and CD4+ T cells might participate in the
occurrence and development of DM in the following ways:
mediating the growth, proliferation, classification, and
transformation of B cells, indirectly participating in the
production of myositis-specific autoantibodies (MSAs) and
myositis-associated autoantibodies (MAAs), and the
differentiation of T helper (Th) cells (17–21). However, the
mechanism of CD4+ T-lymphocyte infiltration in DM remains
unclear. Therefore, the identification of novel biomarkers
associated with CD4+ T-cell infiltration may contribute to the
exploration of the immune infiltration mechanism of DM, and
plays an important guiding role for the early diagnosis, the
evaluation of prognosis, and the discovery of new therapeutic
targets of DM, especially for DM with skin lesions.

With the rapid development of bioinformatics, increasing
online tools are being applied to find novel biomarkers,
particularly those correlated to immunity. Weighted gene
coexpression network analysis (WGCNA) is a powerful tool
for the identification of biologically relevant associations
between phenotypes and gene modules (22). It has been
extensively utilized for the recognition of new biomarkers and
therapeutic targets for diverse diseases at the transcriptional level
(23, 24). Cell type identification by estimating relative subsets of
RNA transcripts (CIBERSORT) is a deconvolution algorithm to
analyze gene expression data of different immune cells (25). The
least absolute shrinkage and selection operator (LASSO)
regression is an analytical method that prevents overfitting
through L1 regularization and is used to identify the key genes
with high forecast accuracy (26).

In this study, gene expression profiles of lesional skin samples
from DM patients and the normal control group were
downloaded from the Gene Expression Omnibus (GEO)
database. The CIBERSORT algorithm was performed to
quantify the proportion of infiltrating immune cells in DM
lesional skin. The infiltration scores of seven T-cell subtypes
were selected as WGCNA phenotypic data for the WGCNA
analysis to recognize coexpressed genes and explore the
interrelation between gene modules and phenotypes. Gene
Ontology (GO) enrichment analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis were applied
to further assess the underlying function of the key gene module.
By the LASSO method, the key genes were identified and a
prediction model was constructed. We validated the
performance of the constructed prediction model on another
skin biopsy dataset and a muscle biopsy dataset from DM
patients. The key gene expression levels of affected skin in DM,
the relationship between the key genes and CD4+ T-cell
infiltration, and the interactions between the key genes were
analyzed. To explore the underlying molecular mechanisms that
the key genes might be involved in, we performed gene set
enrichment analysis (GSEA), researched the relationship
between the key genes and disease-regulating genes, and built a
network of transcriptional regulators. To gain insight into the
upstream regulatory sites of the key genes, we established a long
noncoding RNA (lncRNA)-microRNA (miRNA)-messenger
RNA (mRNA) network, based on the competing endogenous
Frontiers in Immunology | www.frontiersin.org 3
RNA (ceRNA) theory. From what we know, this is the first time
that CIBERSORT, WGCNA, and LASSO methods have been
used in combination to identify novel biomarkers associated with
CD4+ T-cell infiltration of DM, construct a prediction model
evaluating CD4+ T-cell infiltration, and investigate the regulatory
mechanisms of the key genes.
MATERIALS AND METHODS

Data Download
We downloaded GSE46239, GSE142807, GSE1551, and GSE193276
datasets as Series Matrix Files from the NCBI GEO public database.
The GSE46239 dataset (as a training set) was annotated by the
GPL570 platform and involved the expression profile data from 52
samples of skin biopsies, including 48 DM patients and 4 normal
samples (Supplementary Table S1). The GSE46239 dataset was
chosen as the training set as it has a larger sample size compared to
other skin biopsy datasets, with better statistical representation.
GSE142807 was annotated by GPL17692 and consisted of the
expression profile data from 48 skin biopsies, including 43 DM
patients and 5 normal samples (Supplementary Table S2).
GSE1551 was annotated by GPL96 and was composed of the
expression profile data from 23 muscle biopsies of 13 DM
patients and 10 normal samples (Supplementary Table S3).
GSE193276 was annotated by GPL16791 and comprised the
expression profile data from 14 skin biopsies of 7 DM patients
before and after treatment (Supplementary Table S4). GSE142807,
GSE1551, and GSE193276 were used as validation sets. Figure 1
presents the workflow of this study.
FIGURE 1 | The workflow of this study.
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Immune Cell Infiltration Analysis
The CIBERSORT algorithm is commonly utilized to evaluate the
types of immune cells in the microenvironment. This algorithm
utilizes the gene expression values, consisting of 547 genes, to
evaluate the proportion of 22 different infiltrating immune cells.
In this study, we applied the CIBERSORT-R package to assess
the relative percentage of immune cell infiltration at the site of
lesional skin in DM. In addition, the Spearman correlation
analysis was performed on the immune cell infiltration levels
and gene expression levels.

Coexpression Network Construction and
Identification of Key Gene Module
The transcriptional data of all genes were extracted from the
GSE46239 dataset. The gene coexpression network was
constructed by using the WGCNA-R package, and the top
5,000 genes were filtered out for further analysis based on the
algorithm. The function “sft$powerEstimate” determines
the soft-thresholding value b; we set the b to 5. Firstly, the
expression level of an individual transcript similarity matrix was
transformed into an adjacency matrix, and the topological
overlap matrix (TOM) was generated from the adjacency
matrix to estimate the network connectivity. Secondly, the
clustering tree was constructed by TOM and average linkage
hierarchical clustering. One branch of the tree represents one
gene module, and one color represents one module. In
accordance with the weighted correlation coefficients, the genes
were clustered based on their expression patterns, and genes with
similar expression patterns were classified into one module. All
genes were divided into several gene modules in the above way.
Module eigengene (ME) is viewed as the main component of
each gene module. For that reason, MEs can reflect the level of
gene expression in the module. The correlation between gene
modules and CD4+ T-cell infiltration was evaluated through the
Pearson correlation test in WCGNA. Eventually, the gene
module most significantly related to CD4+ T-cell infiltration
was identified as the key gene module for further analysis.

Functional Enrichment Analysis of Key
Gene Module
To understand the biological functions and pathways of the key
gene module, GO functional enrichment and KEGG pathway
analyses were performed using Metascape (http://metascape.
org). The enrichment cutoff used in this study was set to Min
overlap ≥3 and p ≤ 0.01.

Construction and Validation of
Prediction Model
The LASSO regression was applied to establish the predictionmodel
based on all genes in the key gene module. After enrolling each gene
expression value, we calculated the formula for the risk score of each
sample in the training set. The risk score formula was established by
weighting the estimated regression coefficients in the LASSO
analysis. We used the median risk score as the cutoff point and
drew the receiver operating characteristic (ROC) curves to evaluate
the model’s accuracy. Subsequently, the prediction model was
Frontiers in Immunology | www.frontiersin.org 4
validated by the GSE142807 and GSE1551 datasets. We used the
“Circlize package” and “corrplot package” to analyze key gene
correlation visualized the result using Circos analysis.

Gene Set Enrichment Analysis
GSEA is the process of sorting genes based on the expression
difference of genes from two disparate samples using a
predefined gene set (according to the KEGG database) and
then determining if the predefined set of genes is enriched at
the top or bottom of the sorting list. To explore the underlying
molecular mechanisms for the involvement of the key genes, the
GSEA software (https://www.broadinstitute.org/gsea) was
employed to investigate the differences in the KEGG pathways
between the high- and low-expression groups of key genes. The
number of the permutations was set to 1,000, and the type of
the permutations was set to phenotype. The absolute value of the
normalized enrichment score (NES) >1, the false-positive rate
(FDR) q-value <0.25, and the nominal p-value <0.05 were
deemed as the significantly enriched pathways.

Enrichment Analysis for Transcription
Factors of Key Genes
Transcription factors (TFs) participate in the initial process of
eukaryotic gene transcription and can be classified into two types
according to their mechanism of action (27). The first type is
general TFs assembled with RNA polymerase II to form the
transcription initiation complex. Under these conditions, the
transcription can start at the correct location (27). The second
type is cis-acting elements, including promoters, enhancers, and
so on, involved in the regulation of gene expression (27). In this
study, TF enrichment analysis was performed to identify key TFs
related to the key genes. This process used the Gene-motif
rankings and annotation of TFs by motifs based on the “R
package RcisTarget”. The GeneCards database (https://www.
genecards.org) was used to identify the regulatory genes of
DM. The relationship between the key genes and regulated
genes was also analyzed.

Construction of lncRNA-miRNA-mRNA
(ceRNA) Regulatory Network
MiRcode (http://mircode.org/) was performed to forecast the
miRNAs of the key genes and establish the pairs of miRNA-
mRNA. The DIANA-LncBase (https://diana.e-ce.uth.gr/
lncbasev3/home) was applied to predict the lncRNAs through
the known miRNAs and establish the pairs of lncRNA-miRNA.
The commonly identified mRNAs were then incorporated. Based
on the lncRNA-miRNA-mRNA interactions, a ceRNA network
was built by applying the Cytoscape software. The top 5 lncRNAs
with the highest connectivity were identified using the
“table” function.

Statistical Analysis
Statistical analysis was performed using R version 4.0. All
statistical tests were two-sided and p-values of <0.05 were
considered as statistically significant differences.
May 2022 | Volume 13 | Article 854848
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RESULTS

Results of Immune Cell Infiltration
We assessed the relative abundance of immune cell infiltration of
every sample through the CIBERSORT algorithm. The
cumulative histogram shows the relative fractions of 20
immune cell subtypes (Figure 2A). The heatmap of the
correlation between immune cells is presented in Figure 2B.

Results of the WGCNA Analysis
According to CIBERSORT, the infiltration fractions of seven T-
cell subtypes in each sample were used as the trait data for the
WGCNA analysis. Samples in the GSE46239 dataset were
clustered by calculating average linkage and Pearson’s
correlation coefficient. A gene coexpression network was
established by the expression values of the top 5,000 genes
using the WGCNA-R package, and a sample dendrogram and
trait heatmap were constructed (Figure 3A). The power of b = 5
(scale-free R2 = 0.9) was chosen as the soft-thresholding
parameter to construct a scale-free network based on the scale-
free topological criteria (Figures 3B, C). After building the
hierarchical clustering tree by a dynamic hybrid cutting
method, ten gene coexpression modules were generated (black
module, blue module, brown module, green–yellow module,
grey module, magenta module, pink module, salmon module,
tan module, and yellow module) (Figure 3D). Gene names in
each module are presented in Supplementary Table S5.
Correlation analysis between gene modules and phenotypes
showed that the brown module exhibited the highest
Frontiers in Immunology | www.frontiersin.org 5
correlation with CD4+ T cells (correlation coefficient (Cor) =
0.7, p = 1e−08) (Figure 3E). Also, module membership (MM) in
the brown module presented a significantly positive correlation
with T-cell CD4 memory activated (Cor = 0.9, p < 1e−200)
(Figure 3F). We selected the brown module as the key module
for subsequent analysis to explore the underlying functions and
mechanisms of these genes driving CD4+ T-cell infiltration
in DM.

Functional Enrichment Analysis Results of
Key Gene Module
GO enrichment and KEGG pathway analyses identified the top
20 terms enriched in the brown module, which were immune-
related terms. Among them, the four terms with the highest fold
enrichment were response to the virus, regulation of response to
biotic stimulus, positive regulation of immune response, and
immune effector process (Figure 4A). Supplementary Table S6
shows the 50 representative genes enriched by the KEGG
pathways. We selected the most representative terms from each
of the 20 clusters to construct a network layout (Figure 4B). The
interaction network of all genes in the brown module was
established through the string online database (https://string-
db.org) and visualized using Cytoscape (Figure 4C).

Construction and Validation of Prediction
Model and Identification of Key Genes
The strongly connected genes in the brown module may be the
underlying key factors driving the infiltration of CD4+ T cells. A
total of 506 candidate key genes were identified from the brown
A

B

FIGURE 2 | The landscape of immune infiltration between the DM and normal groups. (A) The cumulative histogram indicates the relative proportions of 22 immune
cells. (B) The heatmap shows the correlation in the infiltration of 22 immune cell type proportions. Colored squares represent the strength of the correlation; the red
color represents positive correlation, and the blue color represents negative correlation. The deeper the color, the stronger the correlation.
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module based on the cutoff standard (module membership >0.8 and
gene significance >0.5). Feature selection was conducted by LASSO
regression in candidate key genes. Eventually, 5 genes that can be
used as characterized genes of DM were identified, which were
chromosome 1 open reading frame 106 (C1orf106), component of
oligomeric Golgi complex 8 (COG8), envoplakin (EVPL), GTPases
of immunity-associated protein family member 6 (GIMAP6), and
interferon-alpha inducible protein 6 (IFI6) (Figures 4D–F). We
referred to these five genes as key genes. The prediction model was
established according to the LASSO algorithm based on the
expression levels of the key genes and the regression coefficients
Frontiers in Immunology | www.frontiersin.org 6
of LASSO. The risk score formula was: risk score = C1orf106 ×
(-0.00944194461775629) + COG8 × (-0.00881190286420128) +
EVPL × ( - 0 . 0 0 7 5 3 0 5 7 3 7 2 6 6 4 8 4 ) + G IMAP 6 ×
0.00937653812406344 + IFI6 × 0.0695325226398151. We found
that the gene prediction model constructed by the 5 genes has a
better predicted performance in the training set (the dataset of skin
biopsies), with an area under the curve (AUC) of 0.974 (Figure 5A).
The prediction model was verified in the GSE142807 validation set
(another dataset of skin biopsies) with an AUC of 0.976
(Figure 5B). To understand whether this model also presents a
good predictive performance in muscle biopsy tissue from DM
A B

D

E

F

C

FIGURE 3 | Identification of key module. (A) Sample dendrogram and trait heatmap. A branch indicates a single sample in our training set. (B, C) The process of
b selection, the scale-free fit index, and the average connectivity for different b. (D) Cluster dendrogram. A color branch of the cluster tree represents a coexpression module.
The two-colored rows below the cluster tree represent the primitive module and coalesced module. (E) Heatmap shows the correlations of ME with T-cell infiltration. The
background color of single cells indicates the correlation strength. The red color represents positive correlation with phenotypic trait; the blue color represents negative
correlation. The number in each cell indicates the correlation coefficient (R), and the p-value (in parentheses) represents correlation significance (p < 0.01 indicated the
significant correlation). ME, module eigengene. (F) The correlation between ME in the brown module and T-cell CD4 memory activated (Cor = 0.9, p < 1e−200) (p < 0.01
indicated the significant correlation).
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patients, we validated the model performance in the GSE1551
dataset with an AUC of 0.807 (Figure 5C). The above results
demonstrated that the prediction model has better stability and
prediction ability in both the skin and muscle biopsy datasets. On
the basis, we further evaluated the predictive value of each key gene
through the ROC curve, and the results showed that the AUC values
of the 5 key genes were as follows: 0.943 (C1orf106), 1.000 (COG8),
0.969 (EVPL), 0.945 (GIMAP6), and 0.964 (IFI6), respectively
(Figures 5D–H). The results described above demonstrated that
the prediction model based on the training set had superior
accuracy, and the 5 key genes could well predict the
inflammatory infiltration level of CD4+ T cells in DM patients.

Expression and Interaction of Key Genes
and the Relationship With CD4+ T-Cell
Infiltration Level
The expression of the key genes in damaged skin tissues of DM
patients was analyzed, and the results suggested that, compared
Frontiers in Immunology | www.frontiersin.org 7
with the normal group, the expression of C1orf106, COG8, and
EVPL was lower, and the expression of IFI6 and GIMAP6 was
higher in the DM group (Figures 6A–E). The correlation
analysis of the key genes suggested that C1orf106 presented a
significantly positive correlation with COG8 and EVPL, IFI6
presented a significantly positive correlation with GIMAP6,
and the remaining genes were pairwise negatively
correlated (Figures 6F–J). These mechanisms require
further exploration.

The correlation analysis between the expression levels of the
key genes and CD4+ T cells indicated that the expression of
C1orf106, COG8, and EVPL was significantly negatively
correlated with the expression of T-cell CD4 memory
activated. Whereas, the expression of GIMAP6 and IFI6
presented a remarkably positive correlation (Figure 6K). The
results presented above suggested the expression levels of the key
genes in DM all promoted the infiltration of CD4+ T cells. To
evaluate the changes of the key gene expression levels in the
A

B

D

E

F

C

FIGURE 4 | Functional enrichment analysis of key module and identification of key genes related to DM. (A) Bar chart of the top 20 enriched terms (The enrichment
cutoff was set to Min overlap ≥3 and p ≤ 0.01). (B) Network diagram showing the enriched terms. Each enrichment term is a node; nodes with the same color share
the same cluster ID. (C) Protein–protein interaction network of genes in the brown module. (D) The confidence interval of each lambda. The horizontal axis shows
the logarithm of the lambda, the vertical axis shows mean-squared error. (E) The distribution of the LASSO coefficient. Each color line shows the changing tendency
of each gene coefficient chosen by the LASSO algorithm. The horizontal axis shows the log value of lambda, the vertical axis shows the coefficient corresponding to
lambda, and the numeral on the upmost axis shows the number of genes whose coefficient is not zero at different log lambda values. (F) Five genes were screened
out by LASSO regression and their coefficient.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Identification CD4+ T-Related Biomarkers in DM
lesional skin before and after treatment of DM patients, we
analyzed the GSE193276 dataset and found that the EVPL
expression level was significantly increased and the IFI6
expression level was significantly decreased after treatment
Frontiers in Immunology | www.frontiersin.org 8
(Supplementary Figure S1). It indicated that EVPL and IFI6
may not only be related to the infiltration of CD4+ T cells but also
are more likely to participate in the progression of DM compared
with the other three key genes.
A B D

E F G H

C

FIGURE 5 | The validation of the model predictive efficacy and the evaluation of the independent predictive performance of key genes. (A) ROC curve analysis of the
training set, AUC = 0.974. (B) ROC curve analysis of the GSE142807 validation set, AUC = 0.976. (C) ROC curves analysis of the GSE1551 validation set, AUC = 0.807.
(D–H) ROC curve analyses respectively of C1orf106 (AUC = 0.943), COG8 (AUC = 1.000), EVPL (AUC = 0.969), GIMAP6 (AUC = 0.945), and IFI6 (AUC = 0.964).
A B D
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J K

C

FIGURE 6 | (A–E) The expression level of the five key genes between the DM and normal groups (**p < 0.01; ***p < 0.001; p < 0.05 were considered significantly
different). (F–J) The correlation analysis between key genes and T-cell CD4 memory activated expression. The correlation coefficients and p-values were shown at
the top of the graphs (p < 0.01 indicated the significant correlation). (K) The Circos diagram depicts Pearson correlations between key genes. The red color
represents positive correlation, and the green color represents negative correlation.
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GSEA Analysis Results of Key Genes
Furthermore, to investigate the underlying molecular
mechanisms of the key genes affecting the CD4+ T-cell
infiltration in DM, we conducted enrichment analysis for the 5
key genes involved in signaling pathways. GSEA analysis showed
that the key genes involved in many immune-related pathways
were significantly enriched. The Janus Kinase/Signal transducers
and activators of transcription (JAK/STAT) signaling pathway,
NOD-like receptor signaling pathway, natural killer cell-
mediated cytotoxicity, etc., were significantly enriched in the
low-expression group of C1orf106. The chemokine signaling
pathway, NOD-like receptor signaling pathway, cytokine–
cytokine receptor interaction, etc., were significantly enriched
in the low-expression group of COG8. The TOLL-like receptor
signaling pathway, antigen processing and presentation,
chemokine signaling pathway, etc., were significantly enriched
in the low-expression group of EVPL. Leukocyte transendothelial
migration, the JAK/STAT signaling pathway, complement and
coagulation cascades, etc., were significantly enriched in the
high-expression of GIMAP6. The JAK/STAT signaling pathway,
retinoic acid inducible-gene I (RIG-I)-like receptor signaling
pathway, intestinal immune network for IgA production, etc.,
were significantly enriched in the high-expression group of IFI6
(Figure 7). The above results suggest that C1orf106, COG8, EVPL,
GIMAP6, and IFI6 genes may affect the infiltration of CD4+ T cells
in DM through diverse immune-related pathways.

Enrichment Analysis for Transcription
Factors of Key Genes
Gene modules are composed of coexpression genes, suggesting
potential coregulatory mechanisms such as multiple
transcription factors. In view of this, the enrichment analysis
of transcription factors was performed (Figure 8). The
enrichment analysis includes three steps: (1) The cumulative
recovery curve was used for enrichment analysis; (2) the
annotation of Motif-TF; and (3) the significant gene selection.
The enrichment analysis results indicated that the highest NES of
Motif-TF annotated as cisbp_M2205 was 7.46, and the 3 key
genes (C1orf106, EVPL, and IFI6) were enriched in this motif,
indicating that the transcription binding domain was the master
regulatory factor for key genes C1orf106, EVPL, and IFI6.
Meanwhile, all the enriched motifs and corresponding
transcription factors for the 5 key genes are displayed in
Supplementary Table S7.

Correlation Analysis Between Key Genes
and Disease-Regulating Genes
These genes involved in the development and progression of
diseases are called disease-regulating genes. Regulatory genes
identified by the GeneCards database were most likely involved
in the development of DM and were analyzed for differential
expression between DM groups and normal groups. The results
showed that regulatory genes chromodomain-helicase-DNA-
binding protein (CHD) 3, CHD4, interferon induced with
helicase C domain 1 (IFIH1), interferon-stimulated gene 15
(ISG15), microRNA 21 (MIR21), and tripartite motif-
Frontiers in Immunology | www.frontiersin.org 9
containing 33 (TRIM33) had significant differences in
expression between the two groups (Figure 9A). The
correlation analysis of the key genes and differential regulatory
genes indicated that COG8 was significantly negatively correlated
with ISG15 (Pearson correlation coefficient = -0.84, p = 1.34e−14)
and GIMAP6 was significantly positively correlated with IFIH1
(Pearson correlation coefficient = 0.74, p = 2.56e−10)
(Figure 9B). The above results suggested that COG8 and
GIMAP6 may take part in the regulation of ISG15 and IFIH1
on DM, respectively.

Construction of the lncRNA-miRNA-mRNA
(ceRNA) Network
According to the ceRNA hypothesis, miRNAs negatively regulate
the expression of their target mRNAs by binding to response
elements in target mRNAs, while lncRNAs inhibit miRNAs’
negative regulation on target mRNAs through acting as
molecular sponges (28, 29). We constructed a lncRNA-
miRNA-mRNA (ceRNA) network. Based on the mRNAs of
the 5 key genes, miRNAs of the key genes were predicted
reversely by applying the miRcode database, and 396 miRNA-
mRNA interaction pairs were obtained. Afterward, we used the
DIANA-LncBase database to identify reversely lncRNAs, and
8,769 lncRNA-miRNA interaction pairs were obtained. A total of
18,598 lncRNA-miRNA-mRNA relation pairs were obtained,
involving 52 miRNAs and 3,835 lncRNAs (Supplementary
Table S8). Eventually, the ceRNA network was constructed,
using the Cytoscape software to visualize this network
(Supplementary Figure S2). The top 5 connectivity degree of
lncRNAs were CTC-459F4.3, KCNQ1OT1, AC006548.28,
MIR6818, and RP3-323A16.1.
DISCUSSIONS

The definitive pathogenesis of DM has not been fully
determined, but it is widely believed to be an autoimmune
response that environmental factors trigger in genetically
susceptible individuals. The most favorable evidence in support
of immune-mediated pathogenesis is the presence of multiple
immune cell infiltration and autoantibodies in muscle biopsies of
DM patients. Studies have shown that T lymphocytes are related
to the pathogenesis of DM and the disease activity, but the
specific mechanism remains unclear (30). CD4+ T cells are the
most considerable immune infiltrating cells in the skin, muscle,
and bronchoalveolar lavage fluid of DM patients, so it is crucial
to explore potential therapeutic targets based on CD4+ T cells.
However, no studies so far have systematically screened
biomarkers correlated with CD4+ T-cell immune infiltration
and evaluated their value in the immune infiltration process of
DM. CD4+ T cells are related to the area and the severity of skin
lesions, and some skin manifestations are associated with the
prognosis of patients, indicating that CD4+ T cells play an
important role in the pathogenesis and prognosis of DM skin
damage. This study first identified the key genes associated with
CD4+ T-cell infiltration in skin biopsy samples of DM patients by
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integrating bioinformatics analysis and then validated the better
model performance in a muscle biopsy dataset from DM patients
to further search for potential targeted genes involved in the
pathogenesis of DM.

The WGCNA analysis suggested that the brown module was
the most correlated with the level of CD4+ T-cell infiltration
within the WGCNA coexpression network. Gene enrichment
Frontiers in Immunology | www.frontiersin.org 10
analysis identified the brown module was highly correlated with
immunity. The 5 key genes related to the CD4+ T-cell infiltration
level, namely C1orf106, COG8, EVPL, GIMAP6, and IFI6, have
been identified by the LASSO regression model. Moreover, the
expression levels of the 5 key genes could promote CD4+ T-cell
infiltration in DM patients. This model was well validated in the
DM muscle biopsy dataset, indicating this predictive model may
A

B

D

E

C

FIGURE 7 | The results of GSEA. Enrichment analysis of pathway and KEGG-involved key genes. (A–E) Graphs respectively show the GSEA results of C1orf106,
COG8, EVPL, GIMAP6, and IFI6 genes. Each graph includes 2 parts. The first part is line graph of enrichment score (ES), the horizontal axis represents ranked gene set,
and the vertical axis represents running ES (NES represents normalized ES). The score at the peak of the line graph is the ES for that gene set. The position of gene set
was marked by the vertical line in the second part (The absolute value of the NES >1, the false-positive rate (FDR) q-value <0.25, and the nominal p-value <0.05 were
considered as the significantly enriched pathways).
May 2022 | Volume 13 | Article 854848

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Identification CD4+ T-Related Biomarkers in DM
also assess the level of CD4+ T-cell infiltration of the muscle
involvement in DM. These results indicated that the 5 key genes
are factors affecting the immune infiltration of CD4+ T cells in
DM patients.

C1orf106, also known as innate immunity activator (INAVA),
is located on chromosome 1 and encodes the C1orf106 protein
Frontiers in Immunology | www.frontiersin.org 11
(31). The C1orf106 protein is an epithelial junction protein that
maintains the junction of the functional epithelial cells through
the direct interaction with adhesins and is essential for
maintaining the integrity of the intestinal epithelial barrier
(31). The polymorphism of C1orf106 is a susceptibility factor
for inflammatory bowel disease (IBD), and the decrease of
A B

FIGURE 8 | (A) Histogram of AUC. The first step to assess the overrepresentation of each motif for key genes is to calculate the AUC. The red vertical line
represents the significance level that motifs with a greater AUC than the significance level are regarded as significant motifs. (B) The recovery curve for a few motifs.
The red line represents the global mean of recovered curve of motifs, and the green line represents mean ± standard deviation. Motifs greater than mean ± standard
deviation were regarded statistically significant. The blue line represents the recovered curve of the current motif. The motif cisbp_M2205 was significantly enriched in
key genes (C1orf106, EVPL, and IFI6), while cisbp_M0456 and cisbp_M1261 did not reach the significance level.
A

B

FIGURE 9 | (A) Differential analysis of disease-regulating genes. Regulatory genes of CHD3, CHD4, IFIH1, ISG15, MIR21, and TRIM33 showed significantly different
expression between the DM and normal control groups. Compared to normal control, CHD3, CHD4, and TRIM33 were lowly expressed in the DM group, while
IFIH1, ISG15, and MIR21 were highly expressed (*p < 0.05, **p < 0.01, ***p < 0.001, ns, no significance; p < 0.05 were considered significantly different). (B) The
correlation analysis of key genes and differential regulatory genes. The first plot indicates COG8 was significantly negatively correlated with ISG15, the second pot
indicates visualization of Pearson correlation between regulatory genes and key genes, and the third plot indicates GIMAP6 was significantly positively correlated with
IFIH1. The Pearson correlation coefficients and p-values were shown at the top of the graphs (p < 0.01 indicated the significant correlation).
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C1orf106 protein expression could lead to the loss of intestinal
mucosa barrier integrity, resulting in increased susceptibility to
IBD (32). Human macrophages carrying the C1orf106-risk allele
rs7554511 reduced the expression of C1orf106 protein,
decreasing the NOD2 signaling and the secretion of cytokines
initiated by pattern recognition receptors (PRR) (33). The
impaired T-cell function and Th cell differentiation were
observed in the absence of NOD2 (34). We found that the
NOD-like receptor signaling pathway was enriched in
C1orf106 low expression, but the result seems different from
that of the previous study (33), which may be one of the reasons
why C1orf106 low expression promotes the infiltration of CD4+

T cells in DM patients. Our study suggested that other molecular
mechanisms such as the enrichment of the JAK/STAT signaling
pathway may be related to the low expression of C1orf106,
promoting CD4+ T-cell infiltration. Studies have shown that
methylation changes of CD4+ T cells affect the polarization of
CD4+ T cells, which may be the pathogenesis of psoriasis (35,
36). Zhou et al. found that the single nucleotide polymorphisms
(SNPs) rs2853953 in C1orf106 may mediate the genetic risk of
psoriasis through DNA methylation (37). The above studies
indicated that the SNPs in the C1orf106 gene may affect CD4+

T-cell polarization through methylation. Overexpression of
C1orf106 was associated with invasive breast cancer and its
poor prognosis and could be used as a novel marker to predict
the aggressiveness and prognosis of breast cancer (38). In
addition, 2 SNPs (rs442905 and rs59457695) in the C1orf106
gene and protein expression levels could be used to predict the
therapeutic effect of infliximab in patients with Crohn’s disease
(39). Based on the above, it appears particularly interesting to
further explore the relationships between the C1orf106 gene and
DM, C1orf106, and CD4+ T cells.

The COG8 gene encodes the COG8 protein which is involved in
intracellular membrane transport and protein glycosylation (40).
The dysfunction of the COG complex interferes with the
glycosylation of proteins by affecting the separation of
glycosyltransferase (41). Receptors related to T-cell differentiation,
such as CD4, CD8, cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), and Notch receptors, are glycoprotein receptors whose
expression and function depend on normal glycosylation (42).
Previous studies suggested that glycosylation has a certain
regulatory effect on T-cell–mediated diseases such as multiple
sclerosis (MS), systemic lupus erythematosus (SLE), and IBD
(43–46). The silencing of COG8 could enhance the expression of
immune-related genes (47). Chemokines are the key drivers of
inflammation. Their functions include not only appealing
leukocytes to the inflammation sites but also activating adhesion
molecules to permit leukocyte extravasation (48). Liu et al. found,
after silencing the COG8 gene, the mean fluorescence intensity
(MFI) of the chemokine receptor C-X-C motif chemokine receptor
4 (CXCR4) on the surface of CD4+ T cells infected with human
immunodeficiency virus (HIV)-1 had a slight increase (49).
Dendritic cells induce germinal center (GC) CD4+ T-cell
migration by upregulating CXCR4 on the surface of CD4+ T cells
(50). Schjetne found CXCR4 was one of the extraordinary targets
for Ab-mediated delivery of Ag for major histocompatibility
Frontiers in Immunology | www.frontiersin.org 12
complex, class II (MHC-II) presentation and could promote
CD4+ T-cell proliferation (51). Moreover, CXCR4 was related to
idiopathic CD4+ T lymphocytopenia (52). Our results also
indicated a chemokine signaling pathway was associated with
COG8 low expression. A worthy of consideration is that COG8
may promote CD4+ T-cell infiltration in the skin by multiple
pathways, including the chemokine signaling pathway and
glycosylation. Nevertheless, since there are no studies between
COG8 and DM, it requires further experimental validation.
COG8 is a potential prognostic biomarker in kidney renal clear
cell carcinoma (KIRC), and the KIRC patients with low expression
of COG8 showed worse progression-free survival and disease-free
survival (53).Whether COG8 can be used as a prognostic marker in
DM remains to be explored.

The EVPL protein is encoded by the EVPL gene and is a
member of the plakin protein family, predominantly expressed
in the skin, esophagus, and other tissues. The cornified envelope
is indispensable for the skin barrier function, while envoplakin,
periplakin, and involucrin jointly form the protein scaffolds of
the cornified envelope (54). Sevilla et al. found that combined
loss of the cornified envelope protein (EPI−/−) could not only
damage the epidermal barrier but also increase CD4+ T-cell
infiltration and decrease gd T cells, changing the composition of
T-cell subsets (54). The expression levels of cytokines and
chemokines increased, and the responsiveness of lymphoid
stress surveillance intensified (55). Shen et al. found that the
EVPL protein expression was downregulated in mouse atopic
dermatitis skin lesions, the skin injury was significantly
improved, and the expression of EVPL in skin lesions was
upregulated after resveratrol treatment (56). Similarly, our
results also found the expression of EVPL in skin lesions was
also increased. It has been shown that EVPL, as a novel
biomarker in metastatic melanoma, can be used to predict the
poor prognosis of patients with metastatic melanoma (57).
Although there are presently no studies about EVPL related to
the pathogenesis of DM, combined with the evidence presented
above, we thought that EVPL deficiency may lead to skin damage
in patients with DM, which is most likely related to CD4+ T-
cell infiltration.

The GTPase of immunity-associated proteins (GIMAPs) are a
family of genes thought to be involved in the development,
signaling, and apoptosis of lymphocytes, having an essential role
in immune system homeostasis (58). GIMAP6 is located on
chromosome 7q36.1 and encodes the GIMAP6 protein. GIMAP6
protein is an antiapoptotic protein associated with T cells and a
member of the GIMAP family that is dominantly expressed in
CD3+ T lymphocytes (59). GIMAP6 protein can act on the
regulation of the activation and apoptosis of peripheral T cells to
maintain the homeostasis of peripheral T cells, and the
dysregulation of T-lymphocyte homeostasis is closely linked to
autoimmune diseases (58, 60). The apoptosis of CD4+ T
lymphocytes was accelerated and the number of CD4+ T cells
was significantly reduced in the peripheral blood of the GIMAP6
gene-deficient mice (60). Genetic association studies have shown
that the GIMAP gene is related to autoimmune diseases such as
SLE, Behcet’s syndrome, type I diabetes (61–63). An increase in
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GIMAP6 protein level enhances the survival rate of activated T
cells by increasing the resistance to cell death induced by
genotoxic restimulation and activation (59). Thereby, in
autoimmune diseases, GIMAP6 may promote the T-cell–
mediated immune response immunity by regulating T-cell
activity. Combined with our results that GIMAP6 expression
was significantly upregulated in DM, we speculated that
GIMAP6 might contribute to regulating the development,
activation, and apoptosis of CD4+ T cells. GIMAP6 has been
recognized as a prognostic biomarker in head and neck
squamous cell carcinoma, breast cancer, and female lung
adenocarcinoma and as a predictor of response to
immunotherapy in lung adenocarcinoma (64–66). We are
looking forward to furthering studies exploring the relationship
between GIMAP6 and CD4+ T cells in DM.

IFI6 is an interferon-stimulated gene (ISG), and its expression is
highly induced by IFN-a (67). IFI6 protein, encoded by IFI16,
participates in the immune system response to type I interferon
(IFN-I) by activating the JAK/STAT signaling pathway engaged in
immune regulation and antiapoptosis (67). It has been clear that the
pathogenesis of DM is related to IFN-I, especially IFN-b, which is
highly expressed in T cells in DM cutaneous lesions, and the IFN-I
pathway is highly active in DM skin lesions (14). The infiltration of
CD4+ T lymphocytes increased in DM skin lesions and strongly
expressed IFN-b and IFN-g (9). In juvenile dermatomyositis (JDM)
patients, the disease activity relates to the IFN-I and IFN-II scores
(68). Sustained IFN responses mediated by continuous stimulation
of antigen-presenting cells are implicated in a variety of
autoimmune diseases, and the resulting activation of T and B
cells may be accountable for the generation of autoantibodies
(69). Studies implied that the mRNA expression of IFI6 was
remarkably increased in the muscle tissue of DM patients (70).
IFI6 was highly expressed in SLE, psoriasis, and type I diabetes and
was also able to forecast the treatment response of rheumatoid
arthritis patients to tocilizumab (71–73). The IFN-I pathway also
mediates the upregulation of hundreds of ISG through the JAK/
STAT signaling pathway (74). Our study also showed that the JAK/
STAT signaling pathway was enriched in the high expression of
IFI6. Therefore, IFI6 and IFN-I may form a positive feedback loop.
IFN-a and IFN-b can activate CD4+ T cells, and IFN-a canmediate
the differentiation of CD4+ T cells towards Th1 cells (75–77). This
evidence indicated that the highly expressed IFI6 may promote the
infiltration of CD4+ T cells and regulate the body’s immune
function to participate in the occurrence and development of DM
by being involved in the IFN-I signaling pathway.

Wong et al. found that a large group of genes involved in T
cells and IFN-induced genes were overexpressed in skin lesion
biopsies of patients with DM, especially in active skin lesions
such as ISG15 and IFIH (78). ISG15 is an IFN-1 induced gene
and encodes ISG15 protein, which is highly upregulated in
muscle, blood, and skin of DM patients (78–80). ISG15 is
widely considered to be a regulatory gene in DM and may
regulate the pathogenesis of DM by driving injury mechanisms
of myofibers and capillary DM (81). IFIH1 is also named
Frontiers in Immunology | www.frontiersin.org 13
melanoma differentiation–associated gene 5 (MAD5), and the
IFIH1 protein encoded by this gene acts as a cytoplasmic sensor
that recognizes viral double-stranded RNA and then triggers
transcription of genes encoding type I interferons (24). The
IFIH1 protein is considered a specific autoantigen target of
DM, and the anti-MDA5 antibody is highly expressed in DM
(82, 83). It is speculated that the virus may trigger the
overproduction of IFN-I, thereby promoting the development
of anti-MDA5–associated DM. Patients with anti-MDA5–
associated DM have unique cutaneous manifestations and an
increased risk of rapidly progressive interstitial lung disease (RP-
ILD), leading to high mortality (24). The biological pathways of
ISG15 and IFIH1 include T-cell activation, antigen processing,
complement activation, etc. (78). The percentage of
CD4+CXCR4+ T cells in the peripheral blood of idiopathic
inflammatory myopathy–related ILD (IIM-ILD) patients was
significantly increased. CD4+CXCR4+ T cells are a novel
biomarker of IIM-ILD, which could predict disease severity
and prognosis (84). Our study found that the key genes COG8
and GIMAP6 were related to the upregulation of ISG15 and IFIH
in DM skin lesions, suggesting that COG8 and GIMAP6 may be
involved in the occurrence and development of DM and may
mediate the infiltration of CD4+ T cells in DM through
regulatory genes. Further studies on the relationship between
the key genes, disease-regulating genes, and CD4+ T cells may
better reveal the pathogenesis of DM.

In the end, we constructed the ceRNA regulatory network to
gain insight into the upstream regulatory sites of the key genes.
However, this study has some limitations. Only bioinformatics
methods were used for key gene screening and verification,
which is in the prediction stage. Additional clinical samples, in
vivo and in vitro experiments, and functional studies are needed
to validate the prediction results.
CONCLUSIONS

In summary, we found that the 5 key genes, C1orf106, COG8, EVPL,
GIMAP6, and IFI6, were associated with the CD4+ T-cell infiltration
in lesional skin tissues of DM, and the prediction model constructed
based on the 5 key genes may better also predict the level of CD4+

T-cell infiltration in damaged muscle tissues of DM. Therefore,
these key genes could be underlying diagnostic markers and
immunotherapy targets for DM. This study may provide a novel
perspective for further understanding the mechanism and new
orientations for the treatment of DM based on CD4+ T cells.
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AUC area under the curve
C1orf106 chromosome 1 open reading frame 106
CADM clinically amyopathic dermatomyositis
CB2R cannabinoid type 2 receptor
ceRNA competing endogenous RNA
CHD3 chromodomain- helicase- DNA- binding protein 3
CIBERSORT cell type identification by estimating relative subsets of RNA transcripts
COG8 component of oligomeric Golgi complex 8
Cor correlation coefficient
CTLA-4 cytotoxic T-lymphocyte–associated protein 4
CXCR4 C-X-C motif chemokine receptor 4
DM dermatomyositis
EVPL envoplakin
ES enrichment score
FDR false-positive rate
GC germinal center
GEO Gene Expression Omnibus
GIMAPs GTPases of immunity-associated proteins
GIMAP6 GTPases of immunity-associated protein family member 6
GO Gene Ontology
GPL GEO platforms
GSEA Gene S e t Enrichment An a l y s i s
HIV-1 human immunodeficiency virus 1
IBD inflammatory bowel disease
IFI6 interferon-alpha inducible protein 6
IFIH1 interferon induced with helicase C domain 1
IFN interferon
IFN-I type I interferon
IL interleukin
ILD interstitial lung disease
IIMILD idiopathic inflammatory myopathy–related ILD
INAVA innate immunity activator
ISG interferon-stimulated gene
ISG15 interferon-stimulated gene 15
JAK/STAT Janus kinase/signal transducers and activators of transcription
JDM juvenile dermatomyositis
KEGG Kyoto Encyclopedia of Genes and Genomes
KIRC kidney renal clear cell carcinoma
LASSO least absolute shrinkage and selection operator
lncRNA long noncoding RNA
MAAs myositis-associated autoantibodies
MSAs myositis-specific autoantibodies
MAD5 melanoma differentiation–associated gene 5
ME module eigengene
MFI mean fluorescence intensity
MHC-II major histocompatibility complex class II
mRNA messenger RNA
miRNA microRNA
MIR21 microRNA 21
MM module membership
MS multiple sclerosis
NES normalized enrichment score
PBMCs peripheral blood mononuclear cells
RIG-I retinoic acid inducible-gene I
ROC curve receiver operating characteristic curve
PRR pattern recognition receptors
RP-ILD rapidly progressive interstitial lung disease
SLE systemic lupus erythematosus
SNPs single nucleotide polymorphisms
TFs transcription factors
Th T helper
TOM topological overlap matrix
TRIM33 tripartitemotif-containing 33
WGCNA weighted gene coexpression network analysis
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