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(e aim of this paper is to choose the optimal motion sensor for the selected human activity recognition. In the described studies,
different human motion measurement methods are used simultaneously such as optoelectronics, video, electromyographic,
accelerometric, and pressure sensors. Several analyses of activity recognition were performed: recognition correctness for all
activities together, matrices of the recognition errors of the individual activities for all volunteers for the individual sensors, and
recognition correctness of all activities for each volunteer and each sensor. (e experiments enabled to find a range of in-
terchangeability and to choose the most appropriate sensor for recognition of the selected motion.

1. Introduction

Telemetric recording and automatic interpretation of mo-
tion activities play a significant role in home monitoring.
From a variety of applications, we can distinguish a fewmost
common ones: prevention and detection of falls, detection of
abnormal or dangerous situations, rehabilitation monitor-
ing, and activity assessment and quantification. An auto-
matic system usually consists of sensors, specific signal or
image processing methods, and recognition module for the
selected activity. Selection of sensors seems to be the most
important issue and must take into account useable sensor
properties: wearing ability, sensitivity to disturbances, oc-
currence of outsiders, etc. Out of the many propositions of
sensors, it is difficult to choose the best universal one because
each sensor works best in a certain range of recognized
activities. (is fact motivates us to study that topic.

In [1], electromyographic (EMG) analysis of four lower
limb muscles was performed during seven classes of pre-
ventive exercises against loss of balance or falling. Other
researchers integrated EMG and inertial measurement unit
(IMU) to construct a balance evaluation system for re-
cording the body in a dynamic and static posture [2]. In [3],
seven hand movements were classified (by neural networks
with backpropagation and Gustafson–Kessel algorithm) on

the basis of EMG signal of four forearm muscles. An EMG-
and augmented reality- (AR-) based rehabilitation system
for the upper limbs was proposed in [4]. In [5], an EMG
biofeedback device for forearm physiotherapy was con-
structed to discriminate 6 classes of movements.

Novak et al. [6] proposed a system for automatic de-
tection of gait phases using acceleration and pressure sensors
and supervised learning algorithm. For gait abnormalities
detection in [7], the authors built a prototype of pressure
force sensing resistor (FSR), bend sensor, and IMU. Prin-
cipal component analysis (PCA) was used for the features
generation and support vector machine (SVM) for multi-
class classification. Shu et al. [8] presented a time-space
measurement tool in the form of insoles of conductive fabric
sensors placed around the midfoot and the heel.(e wireless
capacitive pressure sensors were introduced in [9]. Other
studies [10] were related to equilibrium measurements with
an instrumented insole with 3 pressure sensors per foot.

An accelerometric (ACC) system for monitoring the
daily motor activity (sitting, standing, lying, and periods of
natural walking) was proposed in [11]. An ACC sensor was
placed on the subject’s sternum. Detection of gait parameters
by means of a detector composed of gyrometric, accel-
erometric, and magnetic sensors was proposed in [12]. Rong
et al. [13] presented the use of 3D accelerometric sensor
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located at the waist to identify people based on their
characteristic gait patterns. Identification was prepared with
discrete wavelet transform (DWT). Jafari et al. [14] proposed
ACC-based detection of accidental fall. (e selected signal
features were used for distinction of four transitions (sitting-
standing, standing-sitting, lying-standing, and standing-ly-
ing) with the use of neural network and k-nearest neighbour
(k-NN) classification. In [15], researchers developed ACC-
based fall detection for smartphones. (e proposed system
enabled fall event detection, location tracking of the person,
and notifications of emergency situations.

Juang et al. [16] introduced a system for detection of four
body postures (standing, bending forward, sitting, or lying)
and sudden falls. For classification purposes, the silhouette
was segmented from each image frame. (e feature vector
was composed of Fourier transform coefficients and a ratio
of body silhouette length and width. Real-time system was
implemented in [17]. It consisted of three main modules:
segmentation of silhouette, recognition, and identification of
posture. (e authors introduced decision rules based on
body parameters. It was possible to detect four postures:
standing, sitting, squatting, and bending. In [18], authors
performed analysis by means of supervised and non-
supervised learning for classification of the body position on
images sequence. Other researchers [19] presented the
posture detection method which took into account in-
formation about the body shape and the skin colour. Song
and Chen [20] proposed vision-based activity recognition on
the basis of information of pose, location, and elapsed time.

In the mentioned papers, the selection of particular
sensors was not so clearly justified. (is raises a natural
question about the optimal choice. (e aim of our research
was based on the use of various sensors applied to simulta-
neously capture the signs in basic activities and study the
correlation of information obtained from them. (is ap-
proach enabled the choice of the proper sensor depending on
the situation and the current need. (e experiments aimed at
determining how well the simple measuring devices can
approximate the information obtained from the specialized
medical equipment. Our measurements were performed by
means of three-dimensional motion capture system, wireless
EMG amplifier and wireless feet pressure system (as reference
equipment), and accelerometer and video camera (as cur-
rently available consumer-grade sensors).

2. Materials and Methods

2.1. Plan of the Experiment. A total number of 20 volunteers
(8 women, 12 men, age—22 to 61, average age—27) were
examined. Each subject was instructed to do about 30 (19 to
46) repetitions of 12 different activities:

(i) Squatting from a stand position (1a) and getting up
from a squat (1b)

(ii) Sitting on a chair from a stand position (2a) and
getting up from a chair (2b)

(iii) Reaching (3a) and returning from reaching the
upper limb forward in the sagittal plane (standing)
(3b)

(iv) Reaching (4a) and returning from reaching the
upper limb upwards in the sagittal plane (standing)
(4b)

(v) Bending from a stand position (5a) and straight-
ening the trunk forward in the sagittal plane (5b)

(vi) Single step for the right (6a) and left lower limb (6b).

(e measurements were performed simultaneously with
the following:

(i) A, a motion capture system: Optotrak Certus (NDI)
with NDI First Principles software

(ii) B, a wireless biopotential amplifier: ME6000 (Mega
Electronics) with MegaWin software

(iii) C, a wireless feet pressure measurement system:
ParoLogg with Parologg software

(iv) D, a digital video camera: Sony HDR-FX7E
(v) E: ACC recorder (Revitus system) with dedicated

software.

2.2. Characteristics of the Examined Signals. (e three-di-
mensional motion trajectories of 30 infrared markers M1 to
M30 located on the body were measured from the left side of
the observed person (Figure 1). (e acquisition was per-
formed with the sampling frequency 100Hz, accuracy
0.1mm, and resolution 0.01mm.

Surface EMG signals were recorded (2 kHz) from 8
muscles of both lower limbs: (1) quadriceps (vastus lateralis),
(2) biceps femoris, (3) tibialis anterior, and (4) gastrocne-
mius (medial head).

Feet pressure signals were captured with 64 piezor-
esistive sensors (32 for each feet) with 100Hz. Triaxial ac-
celeration signal was recorded by sensors integrated in
Revitus device located on the sternum.(e recorder enabled
online measurement via Bluetooth (100Hz).

Video signals (720× 576 pixels, 25 frames per second)
were obtained from silhouette measurement using a digital
camera placed from the volunteer’s left side.

2.3. Processing of theMeasurementData. To calculate feature
vectors for classification, the processing of data recorded
with sensors B to E was performed in MATLAB.

(e three-dimensional motion trajectories were used for
determining the precise time moments of start and end of
activities. (e exception was the gait (6a, 6b), which cannot
be performed in a natural way in the distance as short as 4m
(the maximal width of registration space of the motion
capture system).(erefore, for the gait (6a, 6b), the start and
end points of duration were determined from visual analysis
of video frames.

(e difference of performance time between analyzed
movements and acting volunteers requires normalization of
the data length with a window W. In order to make the
optimal selection of its width, a set of histograms of activities
performance were calculated:

(i) Histograms of minimal, maximal, and average
(MIN, MAX, AVG) performance time for all people

2 Journal of Healthcare Engineering



and all activities together; the ALL histogram—for all
values of duration time together and for all volun-
teers and activities (Figure 2)

(ii) Histograms of all performance time for all volun-
teers, for each activity separately from 1a to 6b
(Figure 3).

Based on the ALL histogram, the length of time window
was set to W � 1.6 s, as the shortest of all window-covering
activities of various types. Above this value, the other his-
tograms (except for MAX) do not show a significant activity.

(e electromyographic signals were processed as follows:

(i) Calculating the absolute value of the signal
(ii) Averaging the signal in a moving time window

(0.1 s)
(iii) Normalizing the amplitude separately for each

volunteer—dividing the signal by the maximal value
from all measurements of all activities for each
volunteer

(iv) Creating the vector data (which are then used as a
component of the input classifier vector) consisting

of the prepared (as above) EMG signal of each
muscle of the left (L) and right (R) lower limb:
EL1 EL2 EL3 EL4 ER1 ER2 ER3 ER4 

(v) Normalizing the amplitude to (0 1] interval
(vi) Resampling the signal to the frequency of 25Hz.

(e feet pressure signals were processed as follows:

(i) Averaging the signal values from the sensors in the
three selected areas—the heel (1), the center (2), and
the front (3) for the left (L) and the right (R) foot:
L1 L2 L3 R1 R2 R3 

(ii) Averaging the signal in a moving time window of
0.3 s

(iii) Normalizing the amplitude for each volunteer
separately

(iv) Creating the vector data: L1 L2 L3 R1 R2 R3 

(v) Normalizing the amplitude to (0 1] interval
(vi) Resampling the signal to the frequency of 25Hz.

(e accelerometric signals were processed as follows
[21]:

(i) Subtracting the offset value from the signal (off-
set—average of the 10 s length signal, when a person
is in a stationary upright position) separately for
each channel (x, y, z) and for each person

(ii) Averaging the signal in a moving time window of
0.2 s

(iii) Normalizing the amplitude for each volunteer
separately

(iv) Creating the vector data consisting of a prepared
acceleration signal in the axes x, y, z: X Y Z 

(v) Normalizing the amplitude to (0 1] interval
(vi) Resampling the signal to the frequency of 25Hz.

(e video signal was prepared as follows [22]:

(i) Converting a colour image to a grayscale.
(ii) Calculating the vector motion field with 2 coor-

dinates—optical flow (OF) using Horn–Schunck
algorithm [23].

(iii) Median filtering of the motion field components
(5× 5 pixels).

(iv) Detecting the moving objects—binarization of the
motion field module with a T threshold constant
for all people and all activities; the threshold has
been chosen experimentally in [24].

(v) Calculating an area of the moving silhouette
Sn−1 on the (n− 1)-th frame (yellow area in
Figure 4(b)) as a joint part from areas OFn−1/n−2
(blue) and OFn/n−1 (turquoise), where OFn−1/n−2
is the motion field calculated on the basis of
(n− 1)-th and (n − 2)-th frame and OFn/n−1is the
motion field calculated on the basis of n-th and
(n− 1)-th frame.

(vi) Filling the holes in the area Sn−1.

M2 
M1 

M3 

M9 
M8 
M4 
M7 
M6 
M5 

M15 

M16 

M17 

M18 

M19 

M20 
M21 
M22 
M23 

M14 
M13 
M12 
M11 
M10 

M24 

M25 

M26 

M27 
M28 
M29 
M30 

Figure 1: Placement of the markers M1 to M30.
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(vii) (ickening the contour mask of the movable sil-
houette part Sn−1 (inside to approximately four
pixels (Figure 4(c)).

(viii) Determining the histograms of motion field
directions—aggregation of motion field vectors
from the bold contour to 8 directions; each di-
rection corresponds to the following angle ranges
[−337.50° 22.50°], [22.50° 67.50°], . . ., [292.50°
−337.50°].

(ix) Normalizing the histograms.
(x) Creating the data vector consisting of the histo-

grams with bins B1, B2, B3, B4, B5, B6, B7,
B8—each bar corresponds to one of eight di-
rections: B1 B2 B3 B4 B5 B6 B7 B8 .

2.4. Identification of the Activities. To identify the selected
activities, a supervised classification was performed. (e set
of all measurement data from each sensor was divided into
learning and test sets. (e former contained 2400 randomly
selected representatives of all 10 activities, while the latter all
4874 remaining cases.

For classification of the selected activities, k-NN algo-
rithm and Manhattan metrics were used. Before the clas-
sification step, the classifier was tested using the LOO
(Leave-One-Out) method. On the basis of these analyses, k
equal to 1 was the optimal value for all sensors and sets of
sensors.

For each activity a and each sensor s, the correctness of
recognition for all volunteers Rs_a (1) and its calculation
errorUs_a (2) were calculated.Us_a is a measure of the results
dispersion coming from intersubject differences. Due to
different numbers of activity repetitions for each volunteer,
we used weighted standard deviation (2):

Rs_a �
Ps_a

Ws_a

, (1)

wherePs_a is the sum of correctly identified repetitions of the
activity a for all volunteers for the sensor s and Ws_a is the

sum of all repetitions of the activity a performed by all
volunteers for the sensor s:

Us_a �

���������������


n
i�1wi xi −Rs_a 

2

(n− 1/n)
n
i�1wi




, (2)

where n� 20 is the number of weights, equal to the number
of volunteers; wi is the weight for the i-th volunteer, equal to
the number of the activity a repetitions performed by the i-th
volunteer; and xi is the percentage of correct recognition for
specific activity calculated for the i-th volunteer.

In order to represent an additional variable, Rs_a_ALL
(and its calculation errorUs_ALL) was employed. It illustrates
the percentage of correct recognition for all activities and all
volunteers for each sensor:

Rs_a_ALL �
Ps_a_ALL

Ws_a_ALL
, (3)

where Ps_a_ALL is the sum of correctly identified repetitions
of all activities ALL performed by all volunteers for the
sensor s andWs_a_ALL is the sum of all performed repetitions
of all activities ALL for all volunteers.

Us_a_ALL �

������������������


n
i�1ui yi −Rs_a_ALL 

2

(n− 1/n)
n
i�1ui




, (4)

where ui is the weight for the i-th volunteer, equal to the total
number of repetitions of all activities performed by the i-th
volunteer, and yi is the percentage of correct recognition for
all activities calculated for volunteer i.

For each volunteer V and sensor s, the percent recog-
nition for all activities Rs_V (5) and its calculation error Us_V
(6) were determined. Us_V is a measure of the results value
dispersion arising from differences between different
activities.

Rs_V �
Ps_V

Ws_V

, (5)

0.8 1 1.2 1.4 1.6 1.8 2
0

5
M

IN

Duration time of activity (s)

(a)

0.8 1 1.2 1.4 1.6 1.8 2
0

5

M
A

X

Duration time of activity (s)

(b)

0.8 1 1.2 1.4 1.6 1.8 2
0

5

AV
G

Duration time of activity (s)

(c)

0.8 1 1.2 1.4 1.6 1.8 2
Duration time of activity (s)

0

20

A
LL

(d)

Figure 2: Histograms of performance time for all volunteers and all activities together: (a) minimal MIN, (b) maximal MAX, (c) average
AVG duration, and (d) collective ALL.
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where Ps_V is the sum of correctly identified repetitions of all
activities with the sensor s performed by the volunteer V and
Ws_V is the sum of repetitions of all activities performed by
the volunteer V.

Us_V �

����������������


m
j�1pj zj −Rs_V 

2

(m− 1/m)
m
j�1pj




, (6)

where m� 12 is the number of weights, equal to the number
of activity types, pj is the weight for the j-th activity, equal to
the number of its repetitions performed by the volunteer,
and zj is the percentage of correct recognition for the j-th
activity for the specific subject.

In addition, the calculation error Us_V_ALL, was de-
termined as an activity-related dispersion:
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Figure 3: Histograms 1a to 6b of all performance time for all volunteers, for each activity separately 1a to 6b.
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Us_V_ALL �
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m
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, (7)

where qj is the weight for the j-th activity equal to the
number of all the repetitions performed by all volunteers and
rj is the percentage of correct recognition for the j-th activity
calculated for all volunteers.

3. Results

(e correctness of recognition Rs_a (1) of activities 1a to 6b
for all persons for sensors B to E is presented in Table 1.

Matrices of the recognition errors (in %) of the indi-
vidual activities 1a to 6b for all volunteers for the individual
sensors B to E are shown in Tables 2–5. (e percentage of
correct recognition Rs_a for the individual activities is
therefore placed on a diagonal matrix.

(e correctness of recognition Rs_V of all activities for
volunteers V1 to V20 and Rs_a_ALL for ALL volunteers for
sensors B to E is presented in Table 6.

4. Discussion

(e correctness of recognition Rs_a (1) is negatively corre-
lated with the dispersion of the value Us_a (2) (Table 1).
(erefore, less reliable recognition of the activity carried out
by all volunteers does not mean worse recognition of the
activity for each individual volunteer, but rather it is the
implication of the individual way of performing the activity
by the volunteer.

Some types of activities such as free gait or the return
from reaching in the vertical and horizontal plane showed
much less reliable recognition than others, regardless of the
sensor type. Reliability of gait recognition is low probably
due to high diversity in walking rhythm. Reaching is difficult
to recognize, as it is characterized by low degree of dynamics
of the whole body.

It was found that, among the single sensors, the best
classifier for different activities is sensor B, followed suc-
cessively by sensors D, E, and C.

(e correctness of recognition Rs_V (5) is negatively
correlated with the value of dispersion Us_V (7) (Table 6). It
means that less reliable recognition for a single volunteer
(taking into account all activities) does not come from an
inferior recognition reliability of every single activity for that
volunteer, but rather it is a result of the existing in-
consistency of individual activities recognitions.

Our research is focused on the recognition of only 12
types of daily life activities. (e motivation of that choice is
mainly based on the following aspects:

(i) Since the chosen activities are done quite often and
are easy to repeat, we limit as much as possible the
errors coming from different volunteer performance
of the activity and thus the comparison of the sensors
is more reliable

(ii) It can be presumed that any activity (even more
complex) can be presented by means of the simple
(elementary) poses [26].

Although the choice of a proper sensor is a very complex
issue, in our studies, we simplify it only to the comparison of
motion items. Nevertheless, the final choice of the sensors is
precisely related with the application. (e following re-
quirements should then be taken into consideration:

(i) Individual characteristics of the sensor signal
(ii) Size of the registration space
(iii) Sensor accuracy
(iv) Sensor portability and unobtrusiveness
(v) Cost of the sensor device and reliable software
(vi) Privacy of the supervised person.

(e reason for the performance differences for each
activity and for each sensor has the source in differences in:

(i) Speed, range, and way of doing the particular motion

(a) (b) (c) (d) (e)

Figure 4: Optical flow algorithm [25]. (a) (n− 1)-th frame representing the silhouette during free gait. (b) Joint part (yellow) of the areas:
OFn−1/n−2 (blue) and OFn/n−1 (turquoise). (c) (n− 1)-th frame representing the free gait with detected silhouette contour. (d) Optical flow
calculated on bold contour of the moving silhouette and (e) optical flow of the zoomed silhouette part from red frame in (d).
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(ii) Anatomy and biomechanics of the volunteer body
(physical fitness, strength, endurance, flexibility, way
of loading the body weight, etc.).

(e above factors have an impact on all of the sensors (B
to E).

5. Conclusions

(e paper presents results of recognition of 12 motor
activities in human based on individual interpretation of
simultaneous recordings from various sensors. (e main

finding is that some sensors are more appropriate to the
selected activities, while the other sensors show higher
performance compared with the others. Consequently, we
specified both areas where sensors show distinctive
properties and a common range of activities where the
sensors show similar metrological properties and may be
selected based on other criteria (e.g., cost and
commodity).

Additionally, we found that some recognition results
generalized for all volunteers as well as those generalized for
all activities showed surprisingly low values. (is suggests
that the recognition performance is dependent on particular

Table 1: Correctness of recognition Rs_a (in %) of activities 1a to 6b and Rs_a_ALL of ALL activities for all volunteers for sensors B to E.

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b All

B 96.9 100.0 99.5 98.5 99.0 99.3 99.1 98.6 97.9 98.2 96.0 97.6 98.4
3.9 0.0 1.5 3.7 3.4 1.8 3.2 3.1 3.7 3.5 12.7 7.5 1.8

C 90.8 91.8 95.7 96.7 94.9 92.4 95.3 93.6 87.0 88.2 94.9 97.1 93.1
10.0 10.8 12.4 15.5 6.9 6.4 10.2 7.6 15.0 14.6 14.1 8.2 5.7

D 95.2 97.2 95.5 94.2 96.6 95.1 98.4 97.6 97.9 99.3 96.5 96.0 96.7
17.2 11.2 15.8 15.4 6.6 8.8 3.2 4.1 2.8 1.9 12.3 12.1 5.2

E 99.7 99.5 95.5 95.5 99.3 97.6 96.0 79.8 99.3 99.3 91.7 92.3 95.5
1.1 1.6 17.7 18.8 1.8 4.4 7.9 25.0 1.7 1.7 9.1 8.4 4.4

Calculation errors Us_a and Us_a_ALL are in italics.

Table 2: Matrix of recognition errors (in %) of activities 1a to 6b for all volunteers for sensor B.

B Performed activity
1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

Recognized activity

1a 96.9 0.5 0.8
1b 100
2a 2.0 99.5 0.8 0.2
2b 98.5
3a 99.0 0.2
3b 99.3 0.5
4a 0.5 0.2 99.1 0.7 1.1
4b 0.7 0.7 98.6 0.9 1.8
5a 0.5 0.5 0.2 97.9
5b 98.2
6a 96.0 2.4
6b 4.0 97.6

Table 3: Matrix of recognition errors (in %) of activities 1a to 6b for all volunteers for sensor C.

C Performed activity
1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

Recognized activity

1a 90.8 0.3 4.1 0.5 0.5
1b 91.8 3.9 0.9
2a 0.3 0.8 95.7 1.5 0.7 0.2 0.7
2b 1.8 1.3 96.7 0.2 0.9 1.4
3a 3.1 94.9 0.2 0.5
3b 2.0 92.4 0.5
4a 2.8 0.5 0.8 1.0 1.0 0.2 95.3 4.0 4.6 1.6
4b 0.3 3.3 1.5 0.5 1.7 3.8 93.6 1.6 5.5
5a 1.0 0.3 0.5 87.0 2.7 0.3 0.3
5b 1.3 0.5 0.3 1.5 0.5 4.3 88.2
6a 94.9 2.7
6b 4.8 97.1
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volunteer (i.e., subject-specific) and also on particular ac-
tion. Accordingly, the hierarchy of expected recognition
results for particular actions is not universal, and to produce
optimal results, it should be individually adjusted with
regard to particular user behavior.

(e prospective ways of future extension of our studies
are as follows:

(i) Expanding the list of activities with more complex
ones

(ii) Evaluating and adaptating the proposed solutions in
home environment

(iii) Extending video processing algorithm with a de-
tection of individual body parts.

Data Availability

Research data are not openly available because of the vol-
unteers’ privacy.

Table 5: Matrix of recognition errors (in %) of activities 1a to 6b for all volunteers for sensor E.

E Performed activity
1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

Recognized activity

1a 99.7 0.5
1b 99.5 0.7
2a 95.5 0.2 0.2 0.2
2b 95.5 0.2 0.2 0.9
3a 0.5 99.3 3.8 0
3b 0.8 97.6 2.8
4a 3.8 3.8 0.5 0.2 96.0 16.2 0.2
4b 0.3 1.7 79.8
5a 0.3 99.3
5b 0.5 99.3
6a 91.7 7.7
6b 8.3 92.3

Table 4: Matrix of recognition errors (in %) of activities 1a to 6b for all volunteers for sensor D.

D Performed activity
1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

Recognized activity

1a 95.2 1.0 0.3 0.9
1b 2.0 97.2 0.3 0.8 0.7
2a 0.5 0.5 95.5 3.5 0.2 0.2 0.9 0.3
2b 1.0 2.3 94.2 0.2
3a 96.6 0.7
3b 95.1 1.2
4a 0.3 0.3 2.9 0.2 98.4 0.9 0.5 0.5
4b 0.3 0.3 0.3 0.5 4.6 0.7 97.6
5a 1.3 0.3 1.0 1.0 97.9
5b 0.8 0.3 99.3
6a 96.5 3.2
6b 2.9 96.0

Table 6: Correctness of recognition Rs_V (in %) of all activities for volunteers V1 to V20 and Rs_a_ALL for ALL volunteers for sensors B to E.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 All

B 99.1 94.8 98.4 98.3 98.7 99.1 99.6 97.7 98.3 98.0 98.4 99.6 92.6 100.0 99.6 99.1 97.3 99.6 99.6 100.0 98.4
2.0 7.8 2.4 4.6 3.1 1.9 1.5 4.1 3.3 4.5 3.7 1.4 15.8 0.0 1.4 2.9 4.3 1.1 1.1 0.0 1.1

C 98.2 94.8 98.0 97.9 92.3 97.4 97.3 94.9 95.7 91.2 94.4 88.0 85.3 97.1 87.3 88.9 75.2 94.7 93.5 98.4 93.1
2.5 5.6 3.3 2.2 11.6 5.9 5.0 7.8 4.1 12.5 7.2 17.2 15.9 3.3 13.4 13.6 22.7 13.1 11.8 4.4 3.3

D 96.9 93.1 99.2 96.9 98.3 98.7 100.0 76.2 93.1 97.6 99.2 99.2 91.1 98.2 100.0 98.3 94.6 100.0 100.0 100.0 96.7
3.9 11.1 1.9 6.5 2.5 3.2 0.0 33.8 11.3 4.1 2.7 1.9 17.2 2.9 0.0 2.5 9.1 0.0 0.0 0.0 1.5

E 97.4 95.3 95.9 88.8 97.9 99.1 99.6 97.7 94.4 93.6 99.2 81.0 96.5 94.9 99.2 98.3 92.3 97.3 97.7 94.8 95.5
6.4 9.7 7.4 23.4 3.6 1.9 2.0 3.1 10.5 14.7 1.9 31.8 5.3 16.2 1.9 3.9 16.1 4.7 4.5 11.2 5.8

Calculation errors Us_V and Us_V_ALL are in italics.
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