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Abstract
COVID-19 pandemic situation has affected millions of people with tens of thousands of deaths worldwide. Despite all 
efforts for finding drugs or vaccines, the key role for the survival of patients is still related to the immune system. Therefore, 
improving the efficacy and the functionality of the immune system of COVID-19 patients is very crucial. The potential 
new, non-invasive, FDA-approved biophysical technology that could be considered in this regard is tumor treating fields 
(TTFields) based on an alternating electric field has great biological effects. TTFields have significant effects in improving 
the functionality of dendritic cell, and cytotoxic T-cells, and these cells have a major role in defense against viral infec-
tion. Hence, applying TTFields could help COVID-19 patients against infection. Additionally, TTFields can reduce viral 
genomic replication, by reducing the expressions of some of the vital members of DNA replication complex genes from the 
minichromosome maintenance family (MCMs). These genes not only are involved in DNA replication but it has also been 
proven that they have a crucial role in viral replication. Also, TTFields suppress the formation of the network of tunneling 
nanotubes (TNTs) which is knows as filamentous (F)-actin-rich tubular structures. TNTs have a critical role in promoting 
the spread of viruses through improving viral entry and acting as a protective agent for viral components from immune cells 
and even pharmaceuticals. Moreover, TTFields enhance autophagy which leads to apoptosis of virally infected cells. Thus, 
it can be speculated that using TTFields may prove to be a promising approach as a subsidiary treatment of COVID-19.
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Introduction

Novel coronavirus disease (COVID-19) has affected 
millions of people and has caused thousands of deaths 
worldwide. This pandemic has caused unpresented health, 
economic, and even cultural crises around the world [1]. 
Furthermore, in addition to its direct consequences, this 
infection has adversely impacted daily practice of medi-
cine by its interference in the medical system and intro-
duced new challenges to public health [2–5]. SARS-CoV-2 
is the human beta-coronavirus that caused COVID-19. 
CoVs are enveloped, positive-sense single-stranded RNA 
viruses from the family of the Coronaviridae. This fam-
ily of viruses is mainly characterized by club-like spikes 
that project from their surface, an unusually large RNA 

genome, and a unique replication strategy [6–8]. The virus 
mainly targets the lower respiratory system, leading to 
acute respiratory distress syndrome (ARDS) which may 
lead to death. Generally, the functional cycle of this virus 
is like other viruses, which include the steps of entering 
the cell, replicating its genomic structure, and forming 
new viruses that attack other healthy cells by destroying 
the primary cell and aggravating the symptoms of the 
disease, and eventually, the patient cannot survive if the 
immune system cannot rescue its defense [9–11]. However, 
the main cause of COVID-19 disease severity is a strong 
inflammatory process called a cytokine storm, which ulti-
mately leads to organ failure and patient death [12–15]. 
Steps of disease progression in COVID-19 include viral 
replication and mild symptoms in the early infection 
phase, adaptive immunity stimulation and predominance 
of respiratory symptoms in the pulmonary phase, and 
hyperinflammatory conditions such as ARDS in the hyper 
inflammation phase. Clinical manifestations include fever, 
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non-productive cough, dyspnea, myalgia, fatigue, normal 
or decreased leukocyte counts, and radiographic evidence 
of pneumonia [16, 17]. Since, drug delivery in lung tissue 
has complications, there have been attempts that should be 
made to fight COVID-19 locally at the infected sites [18]. 
Also, recent studies focused on finding molecular therapies 
based on blocking the entrance of virus into healthy cells 
by blocking receptors at the site of virus binding (such 
as angiotensin receptor blockers (ARBs)) [19]. However, 
the key role in the survival of patients is still related to the 
systemic immune system. Hence, improving the efficacy of 
the immune system of COVID-19 infected patients is very 
critical in improving the outcome in the affected popula-
tion [20]. Moreover, in spite of many efforts to identify 
chemical-based methods for the treatment of COVID-
19 infection, there is no effort or even speculation about 
potential applications of biophysical means for the treat-
ment of COVID-19. Furthermore, there are some simi-
larities in the biological aspects of cancerous cells, and 
virally infected cells [21, 22]. For example, it has been 
proven that conversion of a healthy cell to a cancerous 
cell is initiated by alterations in the metabolic pathways. 
Interestingly, viruses can stimulate a metabolic pathway 
similar to that of tumor cells in their host tissues and even 
in the neighboring cells which lead to uncontrolled pro-
liferation [23]. Also, the similarity between some can-
cer treatment methods and treatment of viruses has been 
reported [24]. Also, recent editorial investigators from 
the University of Pennsylvania have proposed performing 
FDG-PET-CT to detect and characterize systemic mani-
festations of COVID-19 infection in various organs in the 
body. FDG is avidly taken up by the inflammatory cells 
which can be readily visualized by this imaging modality. 
Since COVID-19 virus causes significant inflammation 
in the lungs, GI tract, lymph nodes, and cardiovascular 
structures, total body imaging by PET allows visualizing 
systemic manifestation of this very aggressive infection. 
Furthermore, FDG-PET imaging allows to detect cerebral 
complications of this disease which are relatively com-
mon and are a major cause of disability in this population. 
Also, FDG is heavily taken up by the venous clots which 
are known to develop in patients with this infection. In 
addition, PET imaging provides quantitative data and this 
allows monitoring the course of the disease and assessing 
response to standard and experimentation interventions. 
Therefore, performing FDG-PET-CT imaging will sub-
stantially enhance our ability to assess COVID-19 patients 
at various stages of this dangerous and potentially fatal 
disease. This will lead to optimal management of these 
patients [25]. Also, recently low-dose radiation therapy 
has been suggested for the treatment of COVID-19 [26].
Thus, based on the success of biophysical treatment of 
cancer, we propose a biophysical subsidiary treatment 

method for COVID-19 [27–29]. We believe that biophysi-
cal approaches which are based on recently introduced 
technologies may allow treating COVID infections locally, 
particularly in the lungs [30–34].

Current coping strategies with COVID‑19

We wish to indicate that of approximately 44 SARS-CoV-2 
candidate vaccines that were in clinical trials (phase I–III) and 
additional 164 candidates have been in preclinical stages; cur-
rently, just 8 vaccines may achieve a certificate for using in 
human [35]. Currently, the Pfizer, Moderna, and Astro-Zeneca 
vaccines have been approved by the FDA and WHO. Addi-
tionally, in spite of promising results that have been reported 
following the administration of COVID-19 vaccines, allergic 
reactions to vaccines have been observed [36, 37]. Developing 
vaccine has been a time-consuming process and producing a 
large volume for immunizing a large population, has been very 
challenging [38, 39]. Also, mutation of SARS-COV-2 viruses 
is of concern about controlling this pandemic situation in the 
future [40, 41].

Drugs for COVID-19 can be categorized into five main 
groups. Antiviral drugs for COVID-19 include Ribavirin, 
Favipiravir, Remdevisir, Lopinavir/ritonavir (LPV/RTV), 
and Plitidepsin. This group mainly acts by interfering in viral 
replication, and is considered as anti-replicative drugs [16, 42, 
43]. Remdevisir has attracted the most attention among antivi-
ral drugs for COVID-19. The next group is anti-inflammatory 
agents, which is used for inhibiting cytokine storm and attenu-
ating hyperinflammation [44]. The most important drugs in 
this category are corticosteroids [45, 46]. Another group is 
the drugs that activate special segments of the immune system 
against viruses, which are called immunogenic drugs, and play 
a key role in linking innate and adaptive immunity such as 
activators of toll-like receptors (TLR)[47, 48]. Other groups of 
drugs are monoclonal antibodies which are suitable candidates 
for immune therapy of COVID-19 like Omalizumab [49–51]. 
The last group of drugs against COVID-19 is adjunct drugs. 
They include stem cell treatments and herbal medicine [52]. 
Additionally, using combination of drugs like the combination 
of Lopinavir and ritonavir in combination with interferon β 
or using antibodies along with corticosteroids has also been 
suggested [53, 54]. A brief schematic of the most important 
current coping strategies with COVID-19 infection is illus-
trated in Fig. 1.

Similarities of treatment for cancer 
and COVID‑19

In an interesting recent study for finding novel potential 
drugs by virtual screening of their molecular dynamics 
has shown that seven drugs can be promising candidates 
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against COVID-19. These drugs are sapanisertib, ornida-
zole, napabucasin, lenalidomide, daniquidone, indoximod, 
and salicylamide. Among these, sapanisertib, napabucasin, 
lenalidomide, daniquidone, and indoximod are antican-
cer drugs. Also, except for indoximod which improves T 
cell function against cancer cells, the others have anti-
replication effects [55]. Hence, it can be concluded that 
anticancer drugs based on anti-DNA or RNA are good 
candidates for coping with COVID-19. This can be related 
to the biology, and treatment strategies between cancer-
ous cells and virally infected cells, as noted above. But, 
certainly one of the most important molecular mechanisms 
of similarity between cancer and viral infection is related 
to their genomic replication [21–23].

Generally, the scientific rationale and molecular mecha-
nisms which link viral replication in virally infected cells 
and DNA replication in cancer cells are based on a fam-
ily of proteins called the minichromosome maintenance 
(MCM) Family [56, 57]. MCM proteins were first recog-
nized in the yeast Saccharomyces cerevisiae and identi-
fied to have an essential role in DNA replication in all 
eukaryotic cells. They exhibit helicase activity in replica-
tion initiation and play essential roles in limiting replica-
tion in each cell cycle. At least 10 homologs of them have 
been characterized in humans, among which the MCM2–7 
complex contributes to the pre-replication complex for-
mation and exhibits helicase activity [58]. Overexpres-
sion of MCMs are detected in various cancer cell lines, 
and clinically correlated to carcinogenesis. So, MCMs are 
candidate markers for cell proliferation, and increasing in 

their level are considered as biomarkers for various malig-
nancies [59–61].

Interestingly, it has been proven that MCMs have a vital 
role in viral replication. Its roles were confirmed by deplet-
ing MCMs and assaying transient and long-term mainte-
nance of the viral episomes. In fact, MCMs cooperate with 
LANA during the G1/S phase of the cell cycle to support 
viral DNA replication. Latency-associated nuclear antigen 
(LANA) is a viral gene that serves as the master regulator 
of latency. Also, this protein is a multifunctional nuclear 
protein that has an important role in inducing malignancies 
[62]. Furthermore, MCM proteins are associated with RNA 
polymerase II holoenzyme, which plays a key role in SARS-
CoV-2 genome replication [63, 64]. Moreover, even though 
the MCM complex is thought to be a DNA replicative heli-
case, in research studying replication of the influenza virus 
RNA, it has been proved that MCM interacted with the PA 
subunit of the viral RNA-dependent RNA polymerase that is 
found to be involved in the replication genetically. This func-
tion is attributed to the MCM functions, and being a scaffold 
between the nascent RNA chains and the viral polymerase 
[65]. As mentioned before, several researchers proved that 
RNA-dependent RNA polymerase has a vital role in SARS-
CoV-2 genome replication [66]. So, owing to similarities 
between the influenza virus, and the SARS-COV-2 virus, it 
seems that MCMs also have a key function in SARS-COV-2 
viral replication [67, 68].

Also, another molecular mechanism that has a resem-
blance in virally infected cells and cancer cells is related to 
the function of the network of tunneling nanotubes. Network 

Fig. 1  An overview of the most 
important current coping strate-
gies with COVID-19
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of tunneling nanotubes (TNTs) are well-known filamentous 
(F)-actin-rich tubular structures that have been connected to 
the cytoplasm of the adjacent and or distant cells to mediate 
efficient cell-to-cell communication. They are composed of 
long cytoplasmic bridges with a terrific ability to accom-
plish a diverse array a wide range of functions including 
maintenance of cellular physiology and cell survival up to 
promoting immune surveillance [69, 70]. Ironically, the cru-
cial impact of TNTs in the progression of many types of 
cancer especially in their metastases process them has been 
well studied [71, 72].

Interestingly, the critical role of TNTs in promoting the 
spread of various pathogens including viruses either during 
the early or late phases of their lifecycle has widely been 
documented. Actually, TNTs facilitate viral entry and repli-
cation, especially for SARS-COV-2 viruses. Moreover, it has 
been reported that TNTs can be used by viruses for evading 
from host immunity and avoiding pharmaceutical targeting 
by using them to pass their genomes to naive cells. Also, 
apart from acting as a protective agent for viral components 
from the extracellular environment, employing TNTs for the 
propagation of viral infection is more energetically favorable 
than other possible pathways [73, 74]. Hence, the role of 
TNTs in transferring mRNAs, viral RNAs, and non-coding 
RNAs makes it a suitable target for finding new approaches 
against COVID-19 [70, 73, 75].

Moreover, one more molecular mechanism in which viral 
replication in the viral infected cell and cancer cells have 
similarities is the role of eukaryotic-translation-elongation-
factor-1-alpha (eEF1A). eEF1A not only has a major role in 
the delivery of all aminoacyl-tRNAs to the ribosome, except 
for initiator and selenocysteine tRNAs but it has also several 
roles including the regulation of the actin cytoskeleton, con-
trolling cell proliferation and cell death, and the cultivation 
of viral replication[76, 77]. Additionally, it has high expres-
sion in tumors. Hence, its high level may be considered as a 
tumor marker [78–80].

Furthermore, the role of eEF1A in replication of SARS-
COV-1, respiratory syncytial virus (RSV), and other RNA 
virus replication and pathogenesis has been proved pre-
viously [81–85]. Also, the association between eEF1A 
and RNA polymerase II as a key factor in SARS-COV-2 
viral replication makes it a suitable target for designing or 
repurposing drugs [86]. Ironically, Plitidepsin which is an 
anti-tumor drug and targets eEF1 has been repurposed for 
COVID-19 infection. Moreover, in vitro study has demon-
strated that Plitidepsin has better potential than Remdevisir 
against SARS-CoV-2 by a factor of 27.5, with lower toxicity 
in cell culture [87–90].

Subsequently, another area that has things in com-
mon between virology and cancer biology is autophagy. 
Autophagy or self-eating is an evolutionarily conserved deg-
radative process in which cytoplasmic components located 

in eukaryotic cells which are captured for subsequent deg-
radation through lysosomal hydrolases. Also, it is crucial 
to maintain homeostasis and avoiding from nutritional, 
metabolic, and infection-mediated stresses [91]. Moreover, 
its role in diseases progression especially cancers in differ-
ent stages of them has been discussed previously [92, 93]. 
Also, autophagy plays important role in viral replication and 
coordinates adaptive immunity by delivering virus-derived 
antigens for presentation to T lymphocytes [94]. Moreover, 
in some viruses, they evolved anti-autophagy strategies 
to hide from host immunity and cultivate viral replication 
[95]. Hence, it can be speculated that autophagy could be a 
suitable therapeutic target for COVID-19. Ironically, it has 
been reported that based on the settled cross-talk between 
autophagy and apoptosis, increasing autophagy can lead to 
apoptosis of virally infected cells and disrupts the viral rep-
lication cycle [96].

Furthermore, sensitivity and function of T cells and den-
dritic cells have great importance in cancer treatment, and 
overcoming viral infection (like SARS-COV-2) [97–99]. 
So, the rational for proposing indoximod for COVID-19 
treatment may also indicate some similarity between cancer 
treatment drugs and antiviral agents against SARS-COV-2 
viruses [100, 101].

Hence, it seems that treatments of COVID-19 and cancer 
have several similarities. Therefore, if we can find a suit-
able physical treatment for cancer that can interfere with 
MCM and TNT functions for avoiding from SARS-COV-2 
viruses’ replication, and improve the T cells and dendritic 
cells (DC cells), also increased autophagy, it could also 
have great potential for application as a subsidiary treat-
ment for COVID-19 infection. Fortunately, the technology 
that can fulfill these qualifications is available and named as 
the fourth modality against cancer; this technology is tumor 
treating fields (TTFields) [102].

Tumor treating fields, its benefits, 
and COVID‑19

Tumor treating fields (TTFields) technology is a non-invasive  
treatment technology based on the alternate electrical field 
and the biophysical phenomenon of dielectrophoresis. Its 
therapeutic effects are based on preventing mitosis by dis-
turbing genomic polymerization, as well as disruption of 
the mitosis spindle, and creation of a heterogeneous elec-
tric field in the cell, resulting in dysfunction in cancer cells 
[103–105]. Briefly, TTFields has several mechanisms of 
beneficial action in cancers including being anti-mitotic, 
inhibiting DNA repair (through reducing MCMs expres-
sion), immunomodulation, increasing cell membrane per-
meability, hindering migration and metastases (through 
reduction in signaling including nuclear factor (NF)-κB-, 
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mitogen-activated protein kinase (MAPK)-, and phos-
phatidylinositol 3-kinase (PI3K)/Akt-dependent), attenu-
ating TNT formation, and enhancing autophagy (Fig. 2b) 
[106–108]. Also, it can be applied through different arrays 
of electrodes on the head, chest, and abdomen for several 
types of cancer (Fig. 2a). Owing to the great ability in cancer 
treatment and its flexibility for administration in different 
cancers, it has been nominated as the fourth modality in 
cancer treatment [102, 109–114].

Moreover, it was confirmed that TTFields not only attenu-
ate the rejoining of radiation-induced DNA double-strand 
breaks (DSBs) but they also induce DNA DSBs. The mecha-
nism of this phenomenon is shown that TTFields reducing 
in the expressions of MCMs include MCM6 and MCM10 
and the Fanconi’s Anemia pathway genes [115]. As men-
tioned above, MCMs were introduced as replication licens-
ing factors, which are proved that play an essential role in 
viral genomic replication in vivo as well as in vitro [62, 63, 
65, 66, 116]. So, it seems that TTFields can reduce SARS-
COV-2 viral genome replication, which is very important for 
stopping the pathogenesis process of viruses.

Furthermore, it has been reported that TTFields can 
suppress the formation of TNTs drastically, and as far as 
mentioned above, TNTs can facilitate SARS-COV-2 viral 
entry, and evading them from the immune system and phar-
maceutical targeting [73, 108]. Hence, it can be speculated 
that TTFields not only can reduce SARS-COV-2 viral entry, 
and replication, but it can also enhance the efficiency of the 
immune system and antiviral pharmaceuticals against them.

Additionally, as far as mentioned above, TTFields 
enhances autophagy, and increasing autophagy in SARS-
COV-2 virally infected cells can lead to apoptosis in 
them[96, 106, 107, 117]. Hence, it can be supposed that 
TTFields can induce apoptosis in SARS-COV-2 virally 
infected cells subsequently disrupt the viral replication 
cycle.

Also, this heterogeneous electric field can disrupt the 
enzymatic function of the cell during the synthesis of 
genomic material, and even induce apoptosis in the abnor-
mal cell [105, 118]. Moreover, the most important regions 
that can be invaded and damaged by COVID-19 infection 
are located in the chest and abdomen. Also, considering 

Fig. 2  a Possibility for applying TTFields for several types of cancers by using different arrays of electrodes on the head, chest, and abdomen. b 
Mechanisms for being advantageous in applying TTFields against cancer
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the presence of different electrode arrays for covering this 
area (Fig. 2a), it can be assumed that TTFields may be ben-
eficial for preventing from multi-organ damages related to 
COVID-19 infection. Another advantage of this treatment 
is that it does not harm healthy cells; therefore, it is FDA-
approved [104]. Also, the safety of using TTFields for glio-
blastoma patients in the COVID-19 pandemic situation has 
been proved by experts [119]. Moreover, another key advan-
tage of TTFields is improving the function of the immune 
system and inducing immunogenicity, which improves the 
function of dendritic cells as an antigen-presenting cell and 
increases the sensitivity and function of cytotoxic-T cells 
[102, 120–122]. Additionally, it has been suggested that one 
of the key problems of the immune system in COVID-19 
is the loss of bridging between innate and adaptive immu-
nity [123]. Interestingly, both of these cells play an impor-
tant role in the treatment of COVID-19 viral infection also, 
bridging between the innate and adaptive immune system. 
Another important point is that this technology can be used 
as a monotherapy or combinational therapy with other ther-
apies such as Remdevisir [124–128]. This technology has 
now reached phase II of clinical trials for lung cancer [113]; 
using this technology is very simple and only requires put-
ting its electrodes on the chest wall of the patient and select-
ing the suitable frequency. Therefore, TTFields can reduce 
the degree of SARS-COV-2 viral replication and as such 
can improve the efficiency by activating immune cells like 
dendritic cells and cytotoxic T cells.

Despite all advantages mentioned before, applying 
TTFields against COVID-19 infection may be faced with 
drawbacks and limitations. The first consideration that 
should be noted is that TTFields have a novel immunoregu-
latory effect on macrophages by stimulation changing M2 
macrophages to the M1 [129–131]. Also, as far as men-
tioned in the literature, M1 macrophage is responsible for 
increasing pro-inflammatory cytokines like IL-1β, IL-12, 
TNF-α, and nitric oxide synthase (iNOS) which may help 
to cytokine storm [132–134]. Thus, targeting macrophages 
is suggested as a therapeutic option for COVID-19 infec-
tion [135]. Hence, using anti-inflammatory pharmaceuti-
cals along with applying TTFields can be a solution for this 
challenge [136–138]. However, the role of macrophages in 
COVID-19 is a controversial area [139, 140].

However, the most important limitation is related to the 
limitations for prescribing TTFields against COVID-19 in 
patients who need to be hospitalized in intensive care units 
(ICU), or critical care units (CCU). Also, considering the 
demand for accurately controlling and monitoring of vital 
characteristics of patients in critical condition especially for 
intubated patients, which is needed to connect so many criti-
cal care monitoring types of equipment to the patient’s body 
[141, 142]. Therefore, it is possible that there is not enough 
space on the body of patients especially on the chest area 
for putting TTFields electrodes. Also, the possible electrical 
interference between TTFields and critical care devices is 
a great obstacle for applying TTFields in patients in critical 

Fig. 3  Potential mechanism for the benefits, drawbacks, and limitations of using TTFields technology for coping with COVID-19 infection
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conditions. Hence, it seems that TTFields just can be used 
for COVID-19 patients before critical condition. However, 
more studies are needed for coordinating applying TTFields 
with guidelines related to the management of COVID-19 
patients during hospital admission in a non-intensive care 
setting [143]. So, it seems that TTFields can be considered 
as a suitable subsidiary treatment for COVID-19 patients 
before hospitalization in ICU, especially in patients with 
comorbidities who are associated with a higher risk of mor-
tality [144–147]. Additionally, there are some limitations 
for applying TTFields in patients with a pre-existing cardiac 
pacemaker [148].

As such using the tumor treatment field could be pro-
posed as an appropriate subsidiary treatment of COVID-
19 especially for patients before reaching to critical stages 
of diseases, especially those with comorbidities. Also, the 
potential mechanism for the benefits, drawbacks, and limita-
tions of using TTFields technology for coping with COVID-
19 infection is shown in Fig. 3.

The optimal instrument for using this technology is 
Novo TTFields -100L and the frequency range that could 
be administrated between 150 and 200 kHz with the voltage 
1–2 V/cm. The period for exposing the patient to TTFields 
is 12 h a day. The system has also a portable device that can 
be operated from a standard wall socket or a portable battery 
pack [103, 113]. In a clinical trial, one could select a con-
trol group with conventional treatment, and an experimental 
group with combination of both conventional treatment and 
exposure to TTFields, respectively. Moreover, it should be 
noted that before applying this system in a clinical trial, it 
should be evaluated in the in vitro and in vivo studies.

Conclusion

Since the future course of the COVID-19 pandemic is 
uncertain at this time, exploring new treatment options for 
viral infections is very timely and well justified. Biophys-
ics modalities have shown promising results in challeng-
ing domains like cancers. Therefore, applying biophysical 
interventions like TTFields should be considered in the 
future. So, owing to the critical role of the immune sys-
tem in COVID-19 patients, and the role of TTFields in 
improving the functionality of dendritic cells, and cyto-
toxic T cells, and the major role of these cells for defense 
against viral infection, it can be concluded that applying 
TTFields can help COVID-19 patients against this disease. 
Moreover, TTFields can reduce viral genomic replication 
by decreasing the expression of MCMs. Also, TTFields 
suppress the formation of the TNTs which plays a major 
role in promoting the spread of viruses through improv-
ing viral entry and acting as a protective agent for viral 

components from immune cells and even pharmaceuticals. 
Moreover, TTFields lead to apoptosis in SARS-COV-2 
virally infected cells through increasing autophagy in them. 
However, TTFields can induce macrophage polarization to 
the M1 type. So, the administration of anti-inflammatory 
drugs along with TTFields is necessary to avoid hyperin-
flammation. It is far-fetched that this technology is able to 
use in patients admitted to the ICU. Subsequently, it should 
be noted that this technology is non-invasive, safe, and con-
venient. Thus, it could be considered as an appropriate sub-
sidiary treatment for COVID-19 patients especially before 
reaching critical stages of diseases, particularly those with 
comorbidities.
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