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Biochemical networks are characterized by recurrent patterns and motifs, but the design principles
underlying the dynamics of the mammalian intracellular signalling network remain unclear. We
systematically analysed decay rates of 134 signalling proteins and investigated their gene
expression profiles in response to stimulation to get insights into transcriptional feedback
regulation. We found a clear separation of the signalling pathways into flexible and static parts:
for each pathway a subgroup of unstable signal inhibitors is transcriptionally induced upon
stimulation, while the other constitutively expressed signalling proteins are long-lived. Kinetic
modelling suggests that this design principle allows for swift feedback regulation and establishes
latency phases after signalling, and that it might be an optimal design due to a trade-off between
energy efficiency and flexibility.
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Introduction

Evolution gave rise to recurring patterns and motifs in
biological networks, e.g. in signal-processing networks in
bacteria, in metabolic networks, in neuronal networks and in
ecological food webs (Jeong et al, 2000; Kollmann et al, 2005;
Alon, 2007; Bluthgen et al, 2007). The recognition of these
patterns helps to understand network optimization principles,
and to interpret the network structure. Despite its importance,
no such general evolutionary footprints have been identified in
mammalian intracellular signalling networks.

Many extracellular stimuli elicit cellular responses by
engaging intracellular signalling pathways, which activate
nuclear transcription factors within minutes. These nuclear
transcription factors induce changes in target gene expression
on a timescale beyond 30 min. Some of these target genes are
again involved in signalling, and thus slowly feed back into
the signalling network. Cellular decision-making frequently
requires ongoing signalling activity over several hours
before the cell decides about commitment to a certain fate

(cf. Supplementary information). Experimental evidence
suggests that the slow transcriptional feedbacks efficiently
modulate such late-phase signalling (Amit et al, 2007; see also
Supplementary information), and thus phenotypic responses
to extracellular stimulation. Depending on the cellular context
and stimulus, some signalling pathways deactivate within
minutes, by fast post-translational feedback regulation. In
these cases, transcriptional feedback does not affect the
signalling dynamics, but instead seems to prepare the system
for future stimulation events (Mettetal et al, 2008) and to
mediate adaptation. In this study, we identify design principles
in early transcriptional feedback regulation of mammalian
signalling pathways.

Results and discussion

We analyse published gene expression profiles from rat,
mouse, and human cell lines in response to stimulation of
any of five major mammalian signalling pathways. The
pathways are growth factor signalling via MAPK cascades,
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growth factor signalling via PI3K, b-adrenergic signalling
via cAMP, TGFb signalling via Smads, and cytokine signalling
via JAKs and STATs (see Supplementary Figures 1–5, and
Materials and methods). We focus on early transcriptional
feedback, and thus restrict our analysis to gene expression
changes within less than 4 h after extracellular stimulation.
Key regulators in transcription factor networks are character-
ized by unstable mRNAs (Wang and Purisima, 2005). We
expected that the same might be true for feedback regulators of
signalling pathways, and therefore included mRNA and
protein half-life measurements in our analysis. Protein half-
lives were manually collected from the published literature
(see Supplementary information) and mRNA data were taken
from genome-wide microarray measurements (Raghavan et al,
2002; Yang et al, 2003).

Figure 1 relates transcriptional induction in response to
extracellular stimulation with half-life data, and thus sum-
marizes the results of our analysis. We found that the
expression of at least one of the mRNAs changes in each of
the five pathways analysed, confirming that transcriptional
feedback is a general design principle in biochemical signalling
networks. In total, 15 out of 134 signal proteins were
significantly upregulated throughout all analysed pathways,
with repression (negative values at the horizontal axis in
Figure 1) being rare. Our half-life analysis revealed that the
mRNAs and proteins of transcriptionally induced signalling
species were all unstable (vertical axis in Figure 1). On the
other hand, mRNAs and proteins of uninduced signalling
species tended to be stable.

We classified signalling proteins into two functional
categories (‘signal transducers’ and ‘signal inhibitors’) to get
further insights into the design principles of transcriptional
feedback. The term signal transducer refers to proteins that are
required to sense and to transmit the signal (e.g. kinases),
while signal inhibitors attenuate information transfer, e.g. by
catalysing kinase dephosphorylation. We found that 14 out of
51 signal inhibitors were induced in response to extracellular
stimulation of their signal transduction chain (red symbols in
Figure 1), while only 1 out of 83 signal transducers was
marginally upregulated (blue symbols). This revealed two
design principles at once: (i) transcriptional negative feedback
is the dominant general design principle in intracellular
signalling in mammals, whereas positive feedback seems to
play no major role and (ii) the negative feedback regulation is
asymmetric in these biochemical signalling networks,
i.e. negative feedback does not occur by downregulation of
signal transducers, but relies on the induction of a subset of
signal inhibitors (Po0.0001, Fisher’s exact test). We call these
induced proteins ‘rapid feedback inhibitors’ (RFIs).

The vertical dimension of Figure 1 shows that the induced RFIs
have very short average mRNA (with one exception) and protein
half-lives (median 0.5 and 1 h, respectively). The RFI mRNAs
and proteins are significantly less stable than all other molecules
analysed (both Po0.0005, two-sided Mann–Whitney test). The
average RFI half-lives are an order of magnitude shorter than
those of signal transducers (median mRNA and protein half-life
of 6 and 12 h, respectively; both Po0.0005, two-sided Mann–
Whitney test). The constitutively expressed, non-inducible
signal inhibitors have a median mRNA and protein half-life of
2.6 and 9 h, respectively, and are thus more stable than the
inducible RFIs (both Po0.01, two-sided Mann–Whitney test).

We next asked whether RFIs differ from constitutively
expressed signal inhibitors in terms of position or function in
the mammalian signal transduction network. Figure 2 depicts
the signalling pathways considered in this study, with
functional groups containing RFIs are in boxes with dark grey
background. MAPK phosphatases (DUSPs) are induced in
response to MAPK signalling (cf. Amit et al, 2007). Similarly, in
all other analysed pathways RFIs were induced, such as protein
phosphatase 1 (PPR15A), phosphodiesterases (PDE4B/D),
Smad7, SnoN, and SOCS proteins. In all pathways, RFIs
attenuate signal transduction, often at multiple levels, ranging
from cell surface receptors to transcription factors. Moreover,
there is no common mode of inhibition, as some RFIs inhibit
catalytically (PDEs, DUSPs, and PPR15A), others act by binding
to their targets (Sprouty, SnoN, BAMBI, and TGIF) and yet
others may combine these mechanisms (SOCS and Smad7). In
terms of their mode of action, RFIs do not differ appreciably
from that of constitutively expressed signal inhibitors.

Taken together, we found that early transcriptional feedback
regulation in the mammalian signalling network is mediated
exclusively by induction of a subgroup of signal inhibitors
(RFIs). These RFIs are highly unstable in terms of mRNA and
protein. This is consistent with the idea that rapid transcrip-
tional regulation of steady-state protein expression requires
short mRNA and protein half-lives (Box 1). It was surprising to
see that negative feedback exclusively relies on rapid RFI
induction, downregulation of signal transducers playing no
role. Neither did we expect that the mRNAs and proteins of
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Figure 1 Correlation between half-life and degree of induction after signal
activation for signal transducers and signal inhibitors of five important signal
transduction networks. Shown are stimulus-induced expression changes of 134
signalling proteins divided by the standard deviation of all log2-fold change
values in the corresponding array data set (z-value; horizontal dimension) in
relation to the mRNA and protein half-lives, respectively (vertical dimension).
Rapid feedback inhibitors (RFIs), defined as signal inhibitors whose mRNAs are
induced (z>1) within 4 h after signal administration (grey box), are generally
characterized by mRNAs (squares) and proteins (circles) with very short half-life
(o2 h). By contrast, signal transducers (blue) and most long-lived signal
inhibitors (red) are not induced within 4 h and have significantly longer half-lives
than the RFIs.
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constitutively expressed signalling proteins are generally
stable. Thus, our analysis reveals a clear subdivision of the
mammalian signalling network into two parts: (i) a constitu-
tively expressed static part comprising stable signalling
proteins required to receive and transmit the signal and (ii) a
flexible part that is transcriptionally induced upon stimulation,
and mediates negative feedback regulation.

The separation of the signalling network into flexible and
static parts suggests that, as compared to signal transducer
downregulation, RFI induction could be more effective in
achieving signal attenuation. Accordingly, it has previously
been shown for the MAPK cascade that phosphatases exert
stronger control on signal duration than kinases (Hornberg
et al, 2005). We therefore analysed the time courses of signal
attenuation for both scenarios in more detail (Box 1), and
indeed found a difference for catalytic inhibitors: the induction
of a short-lived phosphatase allows for faster inhibition of the
pathway when compared to the downregulation of a short-lived

kinase. Moreover, upregulation of phosphatases will result in a
longer latency period, i.e. in a more prolonged attenuated state
after the external activation has stopped. Such quick attenua-
tion combined with long latency might be advantageous for the
cell since it prevents repetitive activation, and allows for more
efficient feedback regulation. Yet, RFI action can, in principle,
be rapidly reversed (e.g. by inhibitory phosphorylation of RFIs),
while recovery from transducer downregulation can only
occur by slow resynthesis. Several RFIs do not inhibit their
targets by a catalytic mode of action, but merely act as
stoichiometric inhibitors (see above). We found that the
dynamics of attenuation by upregulation of stoichiometric
inhibitors does not appreciably differ from downregulation of
the corresponding target. Taken together, these simulations
suggest that the design pattern of negative feedback regulation
by a small group of RFIs might have been evolved to speed up
the adaptation upon activation, and to introduce a lag phase
upon deactivation in some (but not all) signalling pathways.
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Figure 2 Induction and lifetimes of signal transduction proteins (and their mRNAs) at various positions in signal transduction networks. Signal transducers and signal
inhibitors were classified into groups of functionally similar proteins (e.g. receptor tyrosine kinases). Post-translational regulatory interactions among these groups are
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An alternative but not mutually exclusive explanation for
the separation of the signalling network into flexible and static
parts might be improved energy efficiency. Unstable proteins

and unstable mRNAs are energetically disadvantageous
because they require a high production rate and therefore
high ATP consumption to achieve a particular protein
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Box 1 Dynamics of gene expression: The expression of a gene into its protein is determined by four processes: transcription, translation, mRNA degradation,
and protein degradation (schematically depicted above). As illustrated in panel A, the dynamics of gene expression may be described by two differential equations
incorporating these four reactions. The steady-state protein concentration, PSS, of a gene product is given by:

Pss ¼
k1 � k2

d1 � d2
ð1Þ

If a gene is regulated at the transcriptional level (i.e. if the transcription rate is changed to k1 at t¼0) the time course of protein expression P(t) is given by:

PðtÞ ¼ Pss � 1 � Pss � Pð0Þ
Pss

� d1 � e�d2t � d2 � e�d1t

d1 � d2

� �
ð2Þ

Thus, the response time, defined as the time required to reach the new steady state, is solely determined by the decay rates. The response time depends
on both, d1 and d2, if the protein and the mRNA half-lives are of similar magnitude, while it is mainly set by the slowest decay in case mRNA and protein
stability differ significantly from each other. This implies that for transcriptional regulation, both the mRNA and the protein have to be unstable to attain a new steady
state rapidly.

Unstable proteins and mRNAs need higher translation or transcription rates, respectively, to reach the same steady-state protein concentration (equation (1)).
Therefore, their production consumes more free energy, as the energy expenditure is proportional to the transcription and translation rates (k1 and k2[mRNA]).
Thus, a trade-off exists between making the protein network flexible (by increasing d1 and d2, and simultaneously increasing k1 and k2 to maintain the expression
level), and making it energy efficient (by decreasing k1 or k2 and, to compensate, simultaneously decreasing d1 or d2).

Transcriptional regulation and the dynamics of signal transduction: The activation of signalling networks can be modulated by transcriptional regulation of the
concentrations of their components. The time required to attain a new signalling steady state defined by transcriptional regulation of a signal inhibitor is determined
by the stability of the signal inhibitor mRNA and protein (see above). The behaviour is slightly more complex if feedback is involved: a negative feedback system
subjected to activation reaches a steady state faster than expected from the decay rates of the feedback regulator, while no such acceleration is observed upon
deactivation (Alon, 2007). Rapid transcriptional feedback regulation of the signalling network requires that both the mRNA and the protein of the transcriptional
feedback regulator need to be unstable, since otherwise: (i) feedback induction upon stimulus addition implies continuously increasing feedback strength over
many hours and (ii) long latency will be observed upon stimulus removal.

Transcriptional negative regulation of the signalling network can, in principle, occur by upregulation of signal inhibitors or by downregulation of signal
transducers. In the following, we compare the dynamic behaviour of a generic protein kinase cascade for three different transcriptional regulatory designs to get
insights into kinetic implications of RFI action: (i) repression of a kinase acting as a signal transducer (panel B, left); (ii) induction of a phosphatase acting as a
catalytic RFI (panel B, middle); and (iii) induction of a stoichiometric inhibitor acting as a non-catalytic RFI (panel B, right).

Box 1 Kinetic analysis of RFI action.
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expression level (Box 1). Thus, cells face a trade-off between
flexibility and energy efficiency in the evolution of their
regulatory networks: the nodes in the network can either be
designed in a flexible, rapidly responding manner (unstable
mRNAs and proteins) or such that free energy expenditure is
minimal (stable mRNAs/proteins), but not both. The mam-
malian signalling network seems to circumvent this trade-off
in an especially elegant manner; the network consumes only
low amounts of free energy in the unstimulated state because
constitutively expressed signal transducers required to receive
the signal have stable mRNAs and proteins (static part). In
contrast, the mRNAs and proteins of stimulus-induced RFIs
are highly unstable, and thus allow for rapid stimulus-
dependent negative feedback. This part of the network is
flexible, and consumes energy only when the pathway is
stimulated.

Experimental evidence supports the physiological relevance
of the proposed energy minimization principle: depending on
the cellular context, protein turnover requires between 30 and
70% of the total cellular energy budget (Wieser and
Krumschnabel, 2001). From quantitative experimental mea-
surements, we estimate that signalling proteins make upB5%
of the total cellular protein mass (Supplementary informa-
tion). The most abundant cellular proteins, i.e. housekeeping
and structural proteins, are very stable with half-lives of up to
60 days (Nissen et al, 1978) and thus do not contribute strongly
to the cellular energy budget. We therefore expect that
signalling protein turnover consumes much more than 5% of
the total energy spent for protein synthesis, and thus
constitutes one of the dominant energy sinks in mammalian
cells. Our analysis showed that signalling pathways are
transcriptionally regulated at multiple points by the induction
of different and possibly cell-type-specific inhibitors (see
Figure 2 and Supplementary information). If these flexible
parts of the signalling pathway would be highly turned over
constitutively, they would likely represent a strong energy
burden. However, we show that the constitutively expressed

signalling proteins are generally stable. Thus, our analysis
suggests that an energy minimization principle might have
contributed to an evolutionary selection pressure favouring
this strategy of regulation. Kinetic modelling therefore reveals
that the criteria of rapid feedback regulation and energy
efficiency favour the same wiring of the regulatory network.
Consequently, we have two possible explanations for the
observed separation of the signalling network into flexible and
static parts, but we cannot presently select between them.

A circuitry involving RFIs could also be beneficial for
simpler eukaryotic organisms like yeast. Accordingly, it is
known that all three yeast MAPK signalling cascades induce
their phosphatases PTP2, PTP3, and MSG5 (reviewed by
Martin et al, 2005). We analysed transcriptional feedback in
response to cAMP signalling and found specific upregulation
of the signal inhibitor RGS2 (see Supplementary information).
If yeast harbours RFIs, we expect these feedback regulators to
be unstable as well. Therefore, we analysed a genome-wide
data set of yeast protein half-lives (Belle et al, 2006). For the
cell integrity, high osmolarity and cAMP pathways, we found
that all 20 analysed signal transducers had a protein half-life of
more than 15 min, while 4 out of 17 inhibitors were short-lived
proteins with half-lives of 15 min or less. Therefore, unstable
proteins in these pathways are inhibitors (Po0.05, two-sided
Fisher’s exact test). Moreover, transcriptional feedback occurs
by induction of these unstable signal inhibitors, particularly
via PTP2 with a half-life of only 3 min. This suggests that the
yeast signalling network shows a similar design pattern as
mammalian cells.

In pheromone signalling, we found an exception to our
finding that transcriptional regulation of signalling is through
negative feedback: the transducers FUS3, STE12, and STE2 in
the MAPK pathway required to receive the pheromone signal
are transcriptionally upregulated in response to pheromone
stimulation, with rapid kinetics (o15 min) well below the cell
cycle time (Roberts et al, 2000). Therefore, this is positive
feedback. Interestingly, for positive feedback, the two possible

In a weakly activated phosphorylation/dephosphorylation cycle (modelled with linear kinetics), the amount of active phosphorylated protein at steady state is
proportional to the ratio of kinase to phosphatase concentrations (Heinrich et al, 2002). Thus, the signal can be reduced to 10% of its original value, either by
reducing kinase expression to 10% or by a 10-fold phosphatase upregulation. The figure above shows how the signal cascade activation level (i.e. the ratio of
kinase and phosphatase activities) follows a slow change in kinase or phosphatase expression, if modelled according to equation (2) (with d1¼2/h and d2¼1/h). A
10-fold phosphatase upregulation allows to switch off the signal much more quickly (middle graph, solid line) when compared to 10-fold kinase downregulation
(panel B, left graph, solid line). We also analysed the recovery time after removal of the external activation if the kinase and phosphatase expression are regulated
in the opposite direction. In this case, kinase upregulation (left graph, dashed line) allows for faster disappearance of the signalling than phosphatase
downregulation (middle graph, dashed line). Thus, the signalling activity immediately follows transcriptional regulation of kinase expression (due to direct
proportionality), while phosphatases regulate signalling pathways asymmetrically, with a long latency for recovery (this is due to the inverse proportionality). Similar
conclusions also hold for strongly activated kinase cascades, although the difference between phosphatase and kinase regulation becomes less pronounced
(not shown).

Several RFIs act as stoichiometric inhibitors, that is, they inhibit signal transduction non-catalytically by binding reversibly to their targets (as depicted
schematically in the figure, right). We analysed a limiting case of stoichiometric inhibition, where the inhibitor binds to a kinase with very high affinity. Then, all
available inhibitor I will be bound, unless the inhibitor is in present in excess over its target. Thus, the free, active concentration K of the targeted kinase with the
total concentration KT is given by:

K ¼ maxð0; ½KT� � ½I�Þ ð3Þ

The cascade activity was assumed to be proportional to the free kinase concentration K (see above), and was analysed for slow inhibitor up- and downregulation
according to equation (2) (panel B, right; d1¼2/h and d2¼1/h). The change in the signal level (again 10-fold ultimately) immediately follows alterations in inhibitor
protein expression. This statement holds true for as long as the inhibitor is not induced too strongly. Otherwise, the concentration I exceeds KT, so that the system
shows some latency before it recovers. In any case, the signalling dynamics in response to inhibitor regulation do not differ from those observed upon kinase
regulation (compare left and right graphs on panel B).

Box 1 Continued.
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selection criteria we discussed (energy efficiency and quick
feedback regulation) predicted that induction of the transducer
should be a better strategy than repression of the inhibitor (not
shown). This is indeed observed with pheromone signalling.
And, some of these signal transducers in this pathway are
short-lived proteins, much like the signal inhibitors involved
in transcriptional negative feedback, which ensures that the
pathway can be upregulated quickly. The pheromone pathway
of yeast is different when compared to many other signalling
pathways, as it is only required in certain phases of the cellular
life cycle and therefore might require a positive feedback.
However, the limited amount of available data does not allow
us to substantiate this explanation.

Rapid transcriptional feedback inhibition as a general
regulatory principle might allow signal transduction
cascades to tone down signalling (to ‘adapt’), as suggested
by experimental studies where signalling persisted if tran-
scriptional feedback was blocked by protein biosynthesis
inhibitors (Amit et al, 2007; see also Supplementary informa-
tion). Efficient signal adaptation might enable signalling
cascades to induce controlled pulses of gene expression in a
robust manner, independent of environmental variations and
transcriptional noise (Rao et al, 2002; Sauro and Kholodenko,
2004; Dublanche et al, 2006; Alon, 2007). Consistent with a
role in signal termination, many of the RFIs given in Figure 2
are identified as tumour suppressors or, in the case of
cytostatic TGFb signalling, as oncogenes. Cellular decision-
making frequently requires ongoing signalling activity over
several hours (see also Supplementary information). This
suggests that RFIs are key regulators of the cell fate, while
rapidly acting post-translational feedbacks might often be
more important for initial signal processing and specificity
(Altan-Bonnet and Germain, 2005; Santos et al, 2007).

Materials and methods

Microarray data

Microarray data were collected from the Gene Expression Omnibus
database (Barrett et al, 2005) using R and bioconductor. Data sets with
the following accession numbers were used: GDS896, GSE6783,
GSE6462 (MAPK signalling); GDS854, GDS855, GSE5232 (TGFb
signalling); GSE3737, GSE6783, GSE6462 (PI3K/AKT signalling);
GDS323, GDS1036, GDS1365, GDS1489 (JAK/STAT signalling);
GDS1038 (cAMP signalling).

The expression values were log2-transformed where they were not
already stored as log2-transformed values. For each gene and each
stimulus duration in each data set, the median value of replicas was
calculated and the value for unstimulated cells was subtracted. The
result corresponds to log2-fold changes displayed in the heatmaps in
the Supplementary information. For the main figures, the values were
further normalized to account for different fold changes in the different
experiments. This was done by dividing by the standard deviation of
all log2-fold change values in the array data set, resulting in ‘z-values’.
A gene was marked as induced if the median z-value over all data sets,
conditions and time points was larger than 1. Expression data where
the majority of replicas were reported as not expressed (absent call)
were left out.

Only proteins for which mRNA or protein half-life and microarray
measurements were available were taken into account in the analysis.
For four induced inhibitors (SOCS5, TGIF, BAMBI, and SRTY1),
microarray data showed no induction but literature data were available
that showed rapid induction. They were marked as induced in the
pathway map in the main text (Figure 2) and marked with asterisks

with the reference in the expression heatmaps in the supplement, but
were considered unchanged in the statistical analysis.

mRNA half-lives

mRNA half-lives were taken from the genome-wide data set reported in
Yang et al (2003) and Raghavan et al (2002). We considered all three
different treatment conditions in Raghavan et al (2002). The mRNA
half-lives used in the display and calculations are the median over all
half-life measurements for each gene (including all conditions in
Raghavan et al, 2002).

Protein half-lives

Protein half-lives (listed in Supplementary information) were collected
from literature studies, which measured protein decay after adminis-
tration of the translation inhibitor cycloheximide or by pulse-chase
assays. In some cases, the amount of protein decreased by less than
50% within the measurement time, T. If the protein decayed to almost
50% within the measurement time, the half-life was classified as
t1/24T, and the value t1/2¼Tþ 2 h was used for further analyses. If the
protein hardly decayed within the measurement time, the half-life was
classified as t1/2bT, and the value t1/2¼Tþ 4 h was used for further
analyses. For those proteins whose half-lives were measured in
multiple literature studies, we used the median of all measured half-
lives to reduce the influence of outliers.

Some protein half-lives had been measured both under stimulated
and unstimulated conditions with different results. In this case, we
used the half-life under unstimulated conditions for uninduced
proteins, while the half-life upon stimulation was taken for tran-
scriptionally induced proteins. Our rationale follows: we assumed the
unstimulated state to be the default situation for the cell, and thus the
basal protein turnover rate should be relevant in our context. We also
hypothesized that rapid induction of feedback mediators requires
short mRNA/protein half-lives. Therefore, we took the protein half-life
upon stimulation for rapidly induced genes. In the light of our energy
hypothesis, these rapidly induced factors can contribute to free-energy
dissipation minimization if they are much more stable in the basal
state when compared to stimulation conditions. Qualitatively similar
results were obtained if the half-lives for stimulated cells were taken
for transcriptionally uninduced proteins.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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