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ABSTRACT: The rise of drug-resistant Mycobacterium tuber-
culosis lends urgency to the need for new drugs for the
treatment of tuberculosis (TB). The identification of a serine
protease, mycosin protease-1 (MycP1), as the crucial agent in
hydrolyzing the virulence factor, ESX-secretion-associated
protein B (EspB), potentially opens the door to new
tuberculosis treatment options. Using the crystal structure of
mycobacterial MycP1 in the apo form, we performed an
iterative ligand- and structure-based virtual screening (VS)
strategy to identify novel, nonpeptide, small-molecule
inhibitors against MycP1 protease. Screening of ∼485 000 ligands from databases at the Genomics Research Institute (GRI)
at the University of Cincinnati and the National Cancer Institute (NCI) using our VS approach, which integrated a
pharmacophore model and consensus molecular shape patterns of active ligands (4D fingerprints), identified 81 putative
inhibitors, and in vitro testing subsequently confirmed two of them as active inhibitors. Thereafter, the lead structures of each VS
round were used to generate a new 4D fingerprint that enabled virtual rescreening of the chemical libraries. Finally, the iterative
process identified a number of diverse scaffolds as lead compounds that were tested and found to have micromolar IC50 values
against the MycP1 target. This study validated the efficiency of the SABRE 4D fingerprints as a means of identifying novel lead
compounds in each screening round of the databases. Together, these results underscored the value of using a combination of in
silico iterative ligand- and structure-based virtual screening of chemical libraries with experimental validation for the identification
of promising structural scaffolds, such as the MycP1 inhibitors.

■ INTRODUCTION

Mycobacterium tuberculosis, the agent causing tuberculosis (TB),
is responsible for significant worldwide morbidity and mortality,
estimated at more than 1.3 million deaths in 2012 according to
the World Health Organization.1 This ancient but persistent
disease still lacks effective antimicrobial treatment regimens,
particularly in cases of multidrug-resistant tuberculosis.2,3 An
attractive target for development of new antimicrobials is the
recently identified mycobacterial protein-export machinery.4−6

M. tuberculosis relies on specialized ESX secretion systems, also
called Type VII Secretion (T7S) Systems, to evade the human
immune system and promote bacterial survival within host
cells,7,8 and it possesses five gene clusters that encode sets of
conserved proteins comprising the ESX systems.9 Each of these
gene clusters, called ESX-1 through ESX-5, includes essential
mycosin proteases, which are named MycP1 through MycP5,
respectively.
The mycosins are membrane-bound serine proteases

belonging to the subtilisin family of proteases.10,11 The crystal

structures of MycP1 and MycP3 revealed that these mycosins
are characterized by a relatively deep, broad, substrate-binding
groove and by the absence of an autoinhibitory propeptide,
making them the first subtilisins that do not undergo post-
translational processing.12−14 MycP1 is known to hydrolyze the
important virulence factor ESX secretion-associated protein B
(EspB).15−17 MycP1 cleaves the unstructured C-terminal part of
EspB, possibly activating EspB for phospholipid binding.18

Most importantly, inactivation of MycP1 leads to decreased
virulence of M. tuberculosis and increased survival in the mouse
model of TB.17 These data, combined with the availability of
MycP1 crystallographic structures, make MycP1 an attractive
target for development of antimicrobial compounds for the
treatment of TB.19,20 The structural characteristics of the
MycP1 substrate-binding pocket differ substantially from known
subtilisins whose structures were solved with bound inhib-
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itors,21 and the commercially available subtilisin inhibitors and
protease inhibitor cocktails displayed little or no inhibition of
MycP1 (Supporting Information Table 1).
In vitro High Throughput Screening (HTS) in conjunction

with in silico virtual screening represent complementary
methods for the identification of MycP1 inhibitors. Although
HTS alone has been used successfully to identify new leads in
drug discovery, it remains a costly and time-consuming process.
Various computational approaches are available at present to
complement HTS technologies, including the popular, virtual
screening (VS) techniques.22−25 VS consists of approaches that
either take the structure of the target protein into account
(structure-based screening) or rely solely on structures of
known bioactive molecules (ligand-based screening). The
ligand- and structure-based VS strategies are not mutually
exclusive and are often used in parallel. We and others have
reported the successful application of these VS methods for
lead structure identification,26−29 and many VS software
packages are available,30−32 as summarized by Reddy.33

Although the algorithms for these VS methods exploit different
types of structural “fingerprints” and scoring functions, their
performance varies significantly depending on the specific
targets.34−36

As part of an integrated, reiterative program of virtual in silico
lead identification, in vitro screening, and laboratory synthesis,
we developed two approaches that enhance the effectiveness of
the combined ligand- and structure-based VS and hold promise
for the development of new classes of MycP1 inhibitors.
Previously, we reported an efficient 3D shape-based similarity
algorithm including an effective 3D shape-fitting procedure and
a robust scoring function (HWZ score).37 We also improved
the VS algorithm using an enhanced molecular shape-density
model called Shape Approach Based Routines Enhanced
(SABRE),37 and we applied this algorithm to a number of
medically relevant proteins.38−42 SABRE is unique in that it
takes advantage of the structural features of known ligands to
generate a consensus molecular-shape pattern (i.e., a “4D
fingerprint”) that filters out unacceptable candidates and
identifies desired candidates that fit in the binding pocket.
The successful performance of SABRE37,43,44 in ranking

screened compounds for the 40 databases of the Directory of
Useful Decoys (DUD) prompted us to apply this method to
the challenging MycP1 target for which no inhibitors have been
thus far reported.
We now report the successful application of this ligand- and

structure-based virtual screening approach in the discovery of
inhibitors that target the active site of the MycP1 protease. Four
compounds were identified by SABRE that showed inhibitory
activity against MycP1 with IC50 values in the micromolar range
and that provide diverse scaffolds as starting points for the
development of small-molecule antagonists of MycP1. This
study further validated the SABRE 4D fingerprint algorithm as
a means of identifying potential inhibitors and providing
departure points for laboratory synthesis.

■ METHODS

To identify potential inhibitors of MycP1 protease, we
employed VS, according to the flowchart in Figure 1, using a
merged compound library from GRI and the NCI downloaded
from the ZINC database.45 The structure-based VS (docking)
study utilized the recently reported X-ray structure of M.
thermoresistibile MycP1 protease (PDB ID: 4HVL).12 We
generated multiple conformations of each ligand in the database
using OMEGA (OpenEye Scientific Software).46−48 Atom
typing, energy calculations, and geometry optimization in
OMEGA were performed using the Merck Molecular Force
Field (MMFF). The maximum allowed number of conforma-
tions per compound was 200, and the energy window, which
was the value used to discard high-energy conformations, was
set at 10 kcal/mol.

Ligand Shape-Based Virtual Screening. The ligand 3D-
shape-based similarity method of SABRE was used as the first
filter in the VS strategy.37,43,44 Briefly, the shape-based VS
method takes into account both the structural diversity of each
ligand and the HWZ scoring function. Thus, the super-
imposition of molecules A and B is scored according to the
shape-density overlap VAB between the query (molecule A)
with shape-density VA and testing structure (B) with shape-
density VB. Subsequently, the ligands are ranked according to a

Figure 1. Flowchart of the VS process.
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uniform scoring function, denoted by Hamza−Wei−Zhan
(HWZ) score for convenience.37
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The coefficients ak, bk, and ck have been recalibrated from the
previous version.
The VS approach includes two stages: the calculation of the

optimal coefficients of the shape-density function using a set of
known lead compounds and the utilization of these optimal
coefficients during the automated ligand/structure shape-based
screening of candidate structures. The active structures are
ranked according to how well they complement the shape of
the binding site and by the degree of differences in molecular
shape between the active ligand and inactive (decoy)
molecules. SABRE builds a consensus molecular-shape pattern
(i.e., a 4D fingerprint) defined by the coefficients [c1, c2, ....,cn]
using a set of active ligands, in which the maximum diversity of
pharmacophores is taken into account during the screening of
the compound library.43,44

Unlike other ligand based shape-overlapping methods,36,49,50

our approach efficiently detects the key pharmacophore groups
of the active ligands responsible for binding to the target. The
main improvement in our method lies with consideration of
“virtual” similar inactive structures (decoys) during the
consensus molecular shape pattern detection process. After
similarity scoring, the selected structures are further ranked
according to the shape complementarity of the receptor-
binding site.
In the SABRE algorithm, the shape-density model is

enhanced and defined as a linear combination of weighted
atomic Gaussian functions.37 Thus, the molecular shape-density
is the sum of all individual weighted pharmacophore densities,
and the molecular volume can be rewritten as

∑=V C V
k

k k
pharm

where Vk
pharm is the volume of the pharmacophore k.

The optimal coefficients Ck are determined by iteratively
adjusting the coefficients using the set of known active ligands
{Ai} and “virtual” decoy structures {Bi} (virtual decoys are
chemically possible compounds that are not necessarily synthetically
feasible) until they satisfy these two criteria: for A ∈ {Ai}

⟨ | ⟩ = ∈ ⟨ | ⟩ = ∈V V B A V V B Bmax if { } and min if { }i iA B A B

The algorithm builds an efficient consensus molecular-shape
pattern in which the optimal coefficients {Ck} define the 4D
f ingerprint of the entire set of active ligands and take into
account the structural similarity and chemical features of
inactive structures (decoys).37,44 Therefore, the “4D finger-
print” encodes the (3D) shapes of the known active ligand
structures in their multi conformational states (1D).
Structure Shape-Based Virtual Screening. The “docking

option” available within the SABRE program37,42,44 placed the
filtered conformations of each ligand into the binding cavity of
the MycP1 X-ray structure12 (PDB ID: 4HVL). During this
shape-fitting process, the specific conformation was placed into
a grid box encompassing all active-site atoms within the
receptor-binding site. The volume of the receptor-binding
pocket was calculated using a smooth Gaussian function.44 The
docking strategy exhaustively explored all possible positions of

each ligand in the binding site and generally focused upon two
parameters: shape-fitting and ligand-pose optimization, where
ligand-pose is defined as a specific ligand−receptor conforma-
tion. The ligand-pose ensemble was then filtered to reject
arrangements that did not have sufficient complementarity with
the active site of the protein and was next filtered to reject
those arrangements lacking significant van der Waals contacts
with nearby residues. For MycP1 protease, the ligands were
filtered based on van der Waals contacts with the Ser202,
Ala236, S334, and Thr333 side chains. Finally, the screened
ligands were ranked using the HWZ scoring function.37

Molecular Modeling of the Binding of the Octapep-
tide AVKAASLG with MycP1. We utilized reported
procedures for the docking and solvated molecular dynamics
(MD) simulations procedures of the MycP1−peptide com-
plex.27,42 The docking and MD simulations procedures are
described in the Supporting Information.

In Vitro Assay of MycP1mth Inhibitors. Recombinant M.
thermoresistibile MycP1 was expressed and purified as reported
previously.12 In quenched fluorescent peptide assays, MycP1 (1
μM) was used to digest 20 μM of a fluorescent peptide
substrate, AbzAVKAASLGK(Dnp)OH (GenScript Inc.). Po-
tential MycP1 inhibitors were dissolved in DMSO at 30 mM
final concentrations and subsequently diluted with a buffer (50
mM HEPES pH 7.5, 100 mM NaCl) to the desired
concentrations. Inhibitors were screened in duplicate in 96-
well format at 150 μM concentrations by adding compounds to
MycP1 immediately prior to the addition of the fluorescent
peptide. Hydrolysis of the fluorescent peptide was measured by
following the increase in fluorescence in a SpectraMaxGemini
XPS plate reader (Molecular Devices, LLC) with the following
settings: excitation = 319 nm, emission = 419 nm. The initial
rate for each inhibitor was calculated using the Softmax Pro
software (Molecular Devices, LLC). Inhibitors with high
intrinsic fluorescence at time zero were eliminated from further
consideration. Rates of the remaining compounds were
compared to controls (DMSO-buffer blank) in order to
estimate the percent inhibition of individual compounds.
The same in vitro assay was utilized to measure IC50 of

compounds that displayed at least 50% inhibition at 150 μM
concentrations. Inhibitors were added at 0, 5, 10, 50, 100, 200,
350, and 500 μM concentrations, and DMSO was added such
that the final DMSO concentration in each well was the same
(2% v/v). Initial rates of fluorescent peptide hydrolysis were
measured in triplicate and converted to percentages of baseline
activity. Dose−response curves were calculated using the
sigmoidal dose−response option in GraphPad Prism version
4.00 (GraphPad Software, Inc.). IC50 values were calculated
using GraphPad plotted rates of MycP1 activity as a function of
log([inhibitor]) and fitted to a sigmoidal curve constrained to
100% activity (top) and 0% activity (bottom) (Supporting
Information Figure 1).

■ RESULTS AND DISCUSSION
The MycP1 protease recognized the cleavage site sequence ...−
AVKAA358|SLG−... within an unstructured portion of EspB.12,13
Consequently, the MycP1 protease readily processed a
fluorescently labeled peptide analogue, AbzAVKAASLGK-
(Dnp)OH, that had a Km of 60 μM.12 Molecular docking of
the peptide revealed relatively few, low-energy MycP1−peptide
complexes. The MycP1−peptide complex that oriented the
expected peptide residues in positions P1 and P2, which lie
near the catalytic Ser334 side-chain, had the largest number of
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low-energy binding conformations or poses. The docked
peptide was further refined by performing MD simulations in
which the stability of the MD-simulated MycP1−peptide
complex was described by the time dependence of the root-
mean-square deviation (RMSD) values of the peptide backbone
(Supporting Information Figure 2). The refined MycP1−
peptide complex displayed a peptide backbone bound to the
catalytic active site of MycP1 through hydrogen bonds with the
backbone of the protein (Figure 2). These hydrogen bonds

included contacts between (H)AVKAASLGK(OH) with
Thr333, Ser202, Glu203, and Ala331. In addition, we observed
that the Lys side chain of the peptide was stabilized through H-
bonding and long-range, electrostatic interactions with the
Gln242 and Asp243 side-chains of the MycP1 binding pocket.
Finally, the interactions between the peptide and active site

amino acids were analyzed, and pharmacophore features, such
as hydrogen bond acceptors and donors, and hydrophobic areas
were mapped. Guided by this docking study, we generated a
primary topographical interaction model to guide the
subsequent VS process (Figure 2). We reasoned that inhibitors
that interacted with the MycP1 binding site in a fashion similar
to (H)AVKAASLGK(OH) should also compete effectively
with EspB in the active site. Because of our prior successes, we
utilized the SABRE program for the VS campaign and identified
potential inhibitors that occupied the active site of MycP1
(Figure 2) and displayed binding energies comparable or
superior to the peptide (H)AVKAASLGK(OH).
In the first stage of the VS protocol, we used the bound

peptide structure as a query to search collections of small
molecules for “hits” that exhibited 3D shapes similar to the

octapeptide (H)AVKAASLGK(OH) in Figure 2. To limit the
number of structures, we evaluated the multiconformational
states of each potential inhibitor from the GRI/NCI database
using the ligand shape-based similarity screening technique in
the SABRE program. In recent reports, we described the high
efficiency of the SABRE algorithm to identify active ligands at
different stages (0.1% to 10%) of the screened DUD
databases.43,44

We docked approximately the top 10% of the active ligands
into the MycP1 active site using the fast-and-rigid-docking
method of the SABRE program. All active ligands that passed
the receptor-shape-fitting filter were scored. Visual inspection
of the top 1000 structures (top ∼0.3% of the database) served
to exclude “false positives” resulting from protein side-chain
distortion and/or erroneous ligand binding that overestimated
the scoring value of an active ligand with the receptor site. As a
consequence, we selected molecular structures that fit into the
binding pocket (i.e., had shape complementarity to the
octapeptide substrate) and that adopted a conformation similar
to the octapeptide backbone in the active site of MycP1.
On the basis of these docking calculations, we tested 81

compounds (15 from NCI and 66 from GRI databases) for
their inhibitory activity against the recombinant MycP1. The in
vitro assays were performed with a single concentration (150
μM), and these assays disclosed a series of compounds with
∼10% to 60% inhibitory activity against MycP1. Finally, we
selected two of the best inhibitors, namely compounds 1 and 2
(2.5% of the hits; Figure 3), which inhibited more than 40% of

the MycP1 activity (Table 1). In comparing the binding of
compounds 1 and 2 to (H)AVKAASLGK(OH), we noted that
the octapeptide exploited the entire MycP1 binding site,
including a deep pocket containing subsite S1 into which the
side-chain of (H)AVKAA358SLGK(OH) inserted as well as a
long cavity where the backbone of (H)AVKAASLGK(OH)
fitted. Compounds 1 and 2 were predicted to use the same
deep subsite S1 cavity: the amide moiety in compound 1 was
crucial to its binding, and the methyl moiety in compound 2
was crucial to its binding in this deep cavity.
We observed that the compounds 1 and 2 were ranked at

positions 296 and 31 of the top 1000 selected ligands of the VS
and were ranked at positions 25 and 7 in the list of 81 tested

Figure 2. (Top) Preferred binding conformation of the peptide
substrate in the MycP1 active site. (Bottom) Pharmacophoric model
describing key interactions of the peptide with the MycP1 residues.

Figure 3. Binding mode of compound 1 (NSC-334943) in the MycP1
active site. For comparison, the docked peptide is represented in gray.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci500025r | J. Chem. Inf. Model. 2014, 54, 1166−11731169



structures. These results are encouraging and are in good
agreement with our previous studies in which the SABRE
program provided high enrichment factors (EF) at EF0.1% (top
100) and EF1% (top 1000) after screening a large database (95
000 ligands).44

To test whether our iterative VS scheme would successfully
identify novel inhibitors, the pharmacophore model was used
once again to screen the GRI/NCI database. Our approach is
distinct from other VS methods in that it uses a “consensus
molecular shape pattern” or what we call “4D fingerprints” of
active ligands to search out similar structures.43,44 A visual
depiction of this consensus molecular shape pattern is shown in
Figure 4. We recently reported that searches using this
consensus molecular shape pattern constituted an effective
procedure for searches for active compounds within data sets of
varying size and structural diversity.43,44 Using the consensus
molecular shape pattern derived from compounds 1 and 2
avoided the need to screen large databases using several
different queries and then to rank the ligands using time-

consuming, data-fusion methods that in the past often
produced false positives.35

We started the second round of virtual screening of the GRI/
NCI database using the structure of compound 1 as a query and
the computed 4D fingerprint from compounds 1 and 2. As
before, the top 1000 compounds that resulted from the VS
process were selected and visually inspected to eliminate those
that did not efficiently span the MycP1 binding site. Forty
compounds from the NCI database were then obtained and
tested experimentally at a dose of 150 μM in the high
throughput in vitro inhibition assay described previously. Four
compounds, 3 to 6 (Figure 5; 10% of the hits), showed more

than 40% inhibitory activity. At this stage, the query structure 1
permitted the identification of a similar scaffold (compound 3)
to compound 1 as well as highly diverse structural scaffolds
(compounds 4, 5, and 6). The resulting “hits” simultaneously
served as a means of validating the docking model (since
compounds 1 and 3 were similar) and assisted in the
identification of new putative compounds for the next iteration
of VS. As displayed in Figure 5 and as expected, the amide
moiety of compound 3 bound into the S1 site of the MycP1
cavity and formed two H-bonds with Thr333 and Ser202
residues. In addition, the ligand backbone was stabilized in the
binding cavity through H-bonding with Thr156 side-chain.
In the next stage of this process, the SABRE program utilized

the best structure identified in the previous step, namely
compound 3, as the query, and the 4D fingerprint generated
from compounds 1 to 6 for the screening of the GRI/NCI
database. From the final top 1000 structures, 25 compounds
were assayed for their inhibitory activity against MycP1
protease. As shown in Table 1, four compounds 7−10 (Figure
6; 16% of the hits) displayed inhibitory activity of more than
50% at the initial 150 μM concentration. Although the second-
query compound 3 displayed structural similarity to the first-
query compound 1, it permitted the identification of a more
diverse subset of compounds than those identified by
compound 1. Thus, the computed 4D fingerprint in the
second VS round increased the structural diversity of the
scaffolds over those seen in the first VS round (Table 1). The
predicted binding conformations of compounds 8 and 10 and

Table 1. Experimentally Determined Inhibitory Activity of
the 10 Compounds Selected from the Virtual Screening

compound
NSC or
UC/GRI

% inhibition
at 150 μM

IC50
(μM)a

hits
tested

% yield of active
compounds

1 NSC-
334943

61% 135 81 2.5%

2 UC-
521228

42% ND

3 NSC-
334344

67% 146 40 10%

4 NSC-
657705

43% ND

5 NSC-
112182

43% ND

6 NSC-
25812

41% ND

7 NSC-
176297

56% ND 25 16%

8 NSC-
106893

68% 95

9 NSC-
97914

59% ND

10 NSC-
357905

73% 48

aND: Not Determined.

Figure 4. Schematic description of the consensus molecular pattern or
4D fingerprint derived from compounds 1 and 2.

Figure 5. Binding mode of compound 3 (NSC-334344) in the MycP1
active site.
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the key interactions with MycP1 are shown in Figure 6. The
ligands make van der Waals contacts with the active site and
span the S1 subsite, thereby blocking access to the catalytic
Ser334−His123−Asp92 triad. Specifically, compound 8 formed
hydrogen bonds with the side-chain hydroxyl group of Ser334
and Thr333 in the S1 subsite while the methoxyphenyl moiety
of the structure formed hydrogen bonds with the hydroxyl
group of the Thr156 side chain and long-range electrostatic
interactions with the carboxylate group of the Glu203 residue.
Compound 10 interacted mainly via the hydrogen bonds
between the primary amino group of the ligand and the
Thr333, Ser202, and Thr156 side-chains of MycP1 as well as
with long-range electrostatic interactions with the Glu203 side-
chain. These interactions are accompanied by van der Waals
interactions between the scaffold of the ligand and the Thr156
side-chain. It is striking that compound 10 displays low scaffold

similarity to the reference compounds (query) while maintain-
ing a comparable binding mode with highest affinity to MycP1.
A superposition of the putative complex structure of
compounds (1, 3, 8, and 10) in the MycP1 active site is
displayed in Supporting Information Figure 4. Structural
scaffolds of MycP1 inhibitors identified during the VS campaign
are shown in Figure 7.
To highlight the structural diversity of the lead compounds, a

2D heat map of pairwise MACCS fingerprints among the 10
compounds was calculated using the babel program (Figure
8).51 The 2D heat map shows that most of the compounds
have a pairwise similarity ranging from 0.2 to 0.6 (red and green
colors), which indicates high structural diversity between the 10
lead compounds. It is interesting to note that the pairwise
similarities decrease going from compound 1 to 10 (the
pairwise values are reported in Supporting Information Table
2) suggesting the evolution of increasing structural diversity in
each VS round.
In summary, the application of the consensus molecular

shape pattern-based virtual screening approach, using the
SABRE program, identified diverse structural lead compounds
for inhibition of MycP1 protease. This study validated the
SABRE 4D fingerprint algorithm as a means of enriching
compound libraries for active compounds during the VS
campaign. The ligand- and structure-based virtual screening
approach allowed the utilization of relatively small compound
libraries while still discovering a number of interesting lead
compounds. These small libraries coupled with the high
throughput nature of the in vitro screening assay allowed

Figure 6. Binding mode of compounds 8 (NSC-106893) and 10
(NSC-357905) in the MycP1 active site.

Figure 7. Structural scaffolds of MycP1 inhibitors identified during the VS campaign.
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quick and efficient discovery of novel active scaffolds. These
initial scaffolds should prove useful for the development of
additional, more potent MycP1 antagonists than those
discussed here in a drug discovery process that is now
underway. Furthermore, the screening approach described here
can be applied for the identification of novel inhibitors to many
other proteins of known structure.
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