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Abstract: The complement system represents a crucial part of innate immunity. It contains a diverse
range of soluble activators, membrane-bound receptors, and regulators. Its principal function is
to eliminate pathogens via activation of three distinct pathways: classical, alternative, and lectin.
In the case of viruses, the complement activation results in effector functions such as virion op-
sonisation by complement components, phagocytosis induction, virolysis by the membrane attack
complex, and promotion of immune responses through anaphylatoxins and chemotactic factors.
Recent studies have shown that the addition of individual complement components can neutralise
viruses without requiring the activation of the complement cascade. While the complement-mediated
effector functions can neutralise a diverse range of viruses, numerous viruses have evolved mecha-
nisms to subvert complement recognition/activation by encoding several proteins that inhibit the
complement system, contributing to viral survival and pathogenesis. This review focuses on these
complement-dependent and -independent interactions of complement components (especially C1q,
C4b-binding protein, properdin, factor H, Mannose-binding lectin, and Ficolins) with several viruses
and their consequences.

Keywords: innate immunity; complement system; complement evasion; DNA viruses; RNA viruses;
retroviruses; cytokine storm

1. Introduction

The innate immune system is characterised by its ability to distinguish between
“self” and “non-Self”. The complement system plays a crucial part in the innate immune
surveillance against viruses through several mechanisms that prevent host viral infection.
It can be activated through three pathways: the classical, the alternative, and the lectin,
depending upon the recognition subcomponents and the ligand that trigger its activation.
The classical pathway is activated (Figure 1) by either direct binding of complement
component C1q to the invading pathogen’s surface, or the binding of IgM, IgG1, and IgG3
to the antigen’s surface and the subsequent binding of C1q to this immune complex. The
binding of C1q to either antibodies or pathogen surface triggers the autoactivation of serine
protease, C1r, which subsequently cleaves and activates another serine protease, C1s [1].
This generates a C1-complex consisting of one molecule of C1q and two molecules each of
C1r and C1s. The C1 complex then cleaves C4 and C2, generating C4a, C4b, C2a, and C2b.
The C4b and C2a bind to form the C4b2a complex, the C3-convertase [2–4].
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Figure 1. Activation and regulation of the classical and lectin pathways and their targeting by virally encoded molecules. 
In the classical pathway (CP), C1 complex recognizes the antigen-antibody complexes present on the viral surface (1). In 
the lectin pathway (LP), MBL/ficolin-MASP complexes can recognise other carbohydrate patterns on the surfaces of vi-
ruses (2). Upon activation, these complexes can cleave C4 and C2 (3a) that can lead to the formation of C4bC2a (CP/LP C3 
convertase) (3b). The C3 convertase further cleaves C3 into C3b and C3a; C3b is known to opsonise the viral surfaces, 
whereas C3a can lead to an enhanced acquired immune responses (4). C3b-C3 convertase interaction can generate C5 
convertase (5), which cleaves C5 into C5b and C5a (6). C5b further interacts with C6 and C7 (C5b-7) (7) that can bind to 
the viral surface, while C5a induces further infiltration. C5b-7 then binds to C8, which can generate C5b-8 that penetrates 
the membrane (8). Finally, the C9 binds to the C5b-8 and results in MAC formation leading to the virolysis (10). These 
activation pathways are regulated at different steps by host complement regulators such as C1 inhibitor, C4b-binding 
protein (C4BP), complement receptor 1 (CR1; CD35), membrane cofactor protein (MCP; CD46), decay-accelerating factor 
(DAF; CD55), and CD59. Viral proteins that target these pathways are: Vaccinia virus complement control protein (VCP), 
Smallpox inhibitor of complement enzymes (SPICE), Monkeypox inhibitor of complement enzymes (MOPICE), Kaposi’s 
sarcoma-associated herpesvirus inhibitor of complement activation (KCP), Murine gamma-herpesvirus 68 regulator of 
complement activation (γ-HV68 RCA), Herpesvirus saimiri complement control protein homologue (CCPH), Herpesvirus 
saimiri CD59 homologue (HVS CD59), Flavivirus non-structural protein 1 (NS1), HSV-1 glycoprotein C (gC-1), human 
astrovirus coat protein (CoPt), and Influenza virus matrix protein 1 (M1). These are identified as black/grey protein with 
white text, and pink inhibitory arrows mark the regulator they inhibit. 

The lectin pathway is a homologue of the classical pathway. It is triggered by the 
binding of mannan-binding lectin (MBL) and ficolins to carbohydrate patterns on the 
pathogen surface or carbohydrate structures on antibodies, including the common IgG 
glycosylation variant IgG-G0 and polymeric IgA [1,5–8]. In serum, MBL is found com-
plexed with homologues of C1r and C1s, called MBL-associated serine proteases (MASPs) 
[1,9]. Upon MBL binding to a target, MASP-1 and MASP-2 autoactivate independently. 
MASP-2 cleaves C4 and C2, triggering the formation of the C3-convertase similar to the 
classical pathway. 

Figure 1. Activation and regulation of the classical and lectin pathways and their targeting by virally encoded molecules. In
the classical pathway (CP), C1 complex recognizes the antigen-antibody complexes present on the viral surface (1). In the
lectin pathway (LP), MBL/ficolin-MASP complexes can recognise other carbohydrate patterns on the surfaces of viruses
(2). Upon activation, these complexes can cleave C4 and C2 (3a) that can lead to the formation of C4bC2a (CP/LP C3
convertase) (3b). The C3 convertase further cleaves C3 into C3b and C3a; C3b is known to opsonise the viral surfaces,
whereas C3a can lead to an enhanced acquired immune responses (4). C3b-C3 convertase interaction can generate C5
convertase (5), which cleaves C5 into C5b and C5a (6). C5b further interacts with C6 and C7 (C5b-7) (7) that can bind to the
viral surface, while C5a induces further infiltration. C5b-7 then binds to C8, which can generate C5b-8 that penetrates the
membrane (8). Finally, the C9 binds to the C5b-8 and results in MAC formation leading to the virolysis (10). These activation
pathways are regulated at different steps by host complement regulators such as C1 inhibitor, C4b-binding protein (C4BP),
complement receptor 1 (CR1; CD35), membrane cofactor protein (MCP; CD46), decay-accelerating factor (DAF; CD55), and
CD59. Viral proteins that target these pathways are: Vaccinia virus complement control protein (VCP), Smallpox inhibitor
of complement enzymes (SPICE), Monkeypox inhibitor of complement enzymes (MOPICE), Kaposi’s sarcoma-associated
herpesvirus inhibitor of complement activation (KCP), Murine gamma-herpesvirus 68 regulator of complement activation
(γ-HV68 RCA), Herpesvirus saimiri complement control protein homologue (CCPH), Herpesvirus saimiri CD59 homologue
(HVS CD59), Flavivirus non-structural protein 1 (NS1), HSV-1 glycoprotein C (gC-1), human astrovirus coat protein (CoPt),
and Influenza virus matrix protein 1 (M1). These are identified as black/grey protein with white text, and pink inhibitory
arrows mark the regulator they inhibit.

The lectin pathway is a homologue of the classical pathway. It is triggered by the bind-
ing of mannan-binding lectin (MBL) and ficolins to carbohydrate patterns on the pathogen
surface or carbohydrate structures on antibodies, including the common IgG glycosylation
variant IgG-G0 and polymeric IgA [1,5–8]. In serum, MBL is found complexed with homo-
logues of C1r and C1s, called MBL-associated serine proteases (MASPs) [1,9]. Upon MBL
binding to a target, MASP-1 and MASP-2 autoactivate independently. MASP-2 cleaves C4
and C2, triggering the formation of the C3-convertase similar to the classical pathway.

A distinct mechanism (Figure 2) activates the alternative pathway. It has both antibody-
dependent (IgG) and antibody-independent modes of activation. It is continuously acti-
vated by the spontaneous hydrolysis of C3 into C3(H2O) (also known as C3i). C3i binds
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with factor B, a serine protease, forming a complex, called C3iB. C3iB enables factor D to
cleave factor B to Bb, forming C3iBb. This newly formed C3iBb cleaves C3 to form C3b and
C3a. The C3b formed binds to the pathogen surface where they further bind more factor B,
which are then cleaved by factor D to form C3bBb, similar to the C3 convertase of the other
two pathways.
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Figure 2. The activation and regulation of the alternative pathway and its targeting by virally encoded molecules. During
the process of alternative pathway (AP), native C3 by H2O is spontaneously hydrolysed, resulting in the formation of C3b
like C3 [C3(H2O)] (1). C3(H2O) can bind to factor B (FB), and upon cleavage by factor D (FD), which forms the initial
AP-derived C3 convertase (2). The C3 convertase can cleave C3 into C3b and C3a (3). The C3b then binds to the viral
surfaces, and trigger the formation of surface bound C3bBb, with the involvement of FB and FD (4). The surface bound
C3bBb can then initiate the amplification loop of the AP (5), causing deposition of C3b molecules on to viral surfaces. C3b
can combine with pre-existing AP-derived C3 convertase, which leads to the formation of C5 convertase (6). C5 convertase
cleaves C5 into C5b and C5a (7). C5b further interacts with C6 and C7 to form C5b-7 (8), which can bind to the surfaces
of viruses, while C5a acts as an anaphylatoxins. C5b-7 then binds to C8 which can generate C5b-8 that penetrates the
membrane (9). Finally, the C9 binds to C5b-8, resulting in MAC formation (10). The activation steps are regulated at
different steps by host complement regulators such as complement receptor 1 (CR1; CD35), membrane cofactor protein
(MCP, CD46), decay-accelerating factor (DAF; CD55), factor H (FH), and CD59. Viral proteins that target these pathways
are: Vaccinia virus complement control protein (VCP), Smallpox inhibitor of complement enzymes (SPICE), Monkeypox
inhibitor of complement enzymes (MOPICE), Kaposi’s sarcoma-associated herpesvirus inhibitor of complement activation
(KCP), Murine gamma-herpesvirus 68 regulator of complement activation (γ-HV68 RCA), Herpesvirus saimiri complement
control protein homologue (CCPH), Herpesvirus saimiri CD59 homologue (HVS CD59), Flavivirus non-structural protein 1
(NS1), and HSV-1 glycoprotein C (gC-1). These viral proteins are identified as black/grey proteins with white text, and pink
inhibitory arrows mark the regulator they inhibit.

The three complement pathways converge on C3 convertase, which is considered the
complement system’s central component [10]. The C3 convertase promotes the cleavage
of C3 into C3a and C3b. C3b then binds with C4b2a (of the classical and lectin pathways)
complex or C3bBb (of the alternative pathway) converting them into classical/lectin or
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alternative pathway C5 convertase, respectively. C5 is the initiator of the complement
system’s effector terminal phase, which is similar for all three pathways. The C5 convertases
cleave C5 at the position Arg751-Leu752 on the α chain to form C5a and C5b [11]. The C5b
produced acts as a nucleus for the assembly of the membrane attack complex (MAC) [12].
The C5b interacts with C6, and the C5b6 complex is further stabilised by binding to C7.
The binding of C7 also exposes transient lipid-binding sites, which allow the complex to
bind to the cell membrane. This binding does not harm the cell but marks it for further
assault. The C5b-7 complex then interacts with C8, which forms the tetrameric complex
C5b-8, promoting binding and polymerization of 10 to 16 molecules of C9. The complement
system’s terminal phase concludes with the insertion of this C5b-9 complex to the microbial
surface. This leads to the opsonisation and subsequent lysis of the microbe.

The C3a and C5a generated during complement activation are anaphylatoxins. C5a
is known to bind to cells expressing C5aR and C5L2, while C3a is known to bind to cells
expressing C3aR [11,13,14]. By interacting with C5aR and C3aR, these anaphylatoxins
induce smooth muscle contraction and increase vascular permeability [15,16]. C3a and
C5a have been reported to trigger oxidative burst in macrophages, neutrophils, and
eosinophils [17–19]. These anaphylatoxins can also induce the release of histamine from
basophils and mast cells [20,21]. In B cells and monocytes, C3a modulates the production
of IL-6 and TNF-α. C3a can also act as a chemoattractant for mast cells [22–24]. C5a is
known to act as a chemoattractant for macrophages, neutrophils, activated B and T cells,
basophils, and mast cells [15]. These actions make the anaphylatoxins potent mediators
of inflammation [25].

Dysregulated activation of the classical and lectin pathways during ischemia-reperfusion
injury is known to cause necrosis, apoptosis, and possibly autophagy of the tissue, thus
potentially causing permanent tissue or organ damage [26]. Common effector mechanisms
that depend on C5a and C5b-9 are responsible for the tissue damage [27]. Similarly,
the dysregulation of the non-discriminatory C3b deposition and amplification by the
alternative pathway and anaphylatoxin production can damage host cells rapidly [28].
Hence, the complement system is kept in check by various regulatory proteins to reduce
such undesired inflammatory responses and tissue damage. In the alternative pathway, the
spontaneously generated C3b in the absence of an antigen is sequestered by factor H and
factor I [29] (Figure 2). The covalent binding of C3b to the microbial surface protects the
C3b from factor H-mediated inactivation [29]. Factor H also promotes the decay of C3bBb
convertases by dissociating Bb from the proconvertase [30,31]. It also acts as a co-factor for
factor I (fI)-mediated cleavage of C3b, preventing the formation of new convertase [6,32].
C4b-binding protein (C4BP) and C1 inhibitor (C1-INH) regulate the classical and lectin
pathways. C4BP regulates complement activation by controlling C4b-mediated reactions.
These include promoting the dissociation of C4bC2a convertases, inhibiting the formation
of C3 and C5 convertases, and acting as a co-factor for fI-mediated cleavage of C4b [33–35].
C1-INH is a serine protease inhibitor that inhibits C1r and C1s of the classical pathway and
MASPs of the lectin pathway [9] (Figure 1). Other regulators of the complement system
(Figures 1 and 2) include intrinsic membrane proteins found on host cells, such as decay-
accelerating factor (DAF/CD55), membrane co-factor protein (MCP/CD46), complement
receptor 1 (CR1/CD35), and CD59 (protectin) [29]. The DAF regulates the classical and
alternative pathways by destabilizing their C3/C5 convertases (termed decay-accelerating
activity) [36], while the MCP functions as a cofactor for fI–mediated cleavage of C3b
and C4b (termed cofactor activity) [37]. CR1 is known to have both decay-accelerating
and cofactor activities, while CD59 blocks the C9 association with C5b-8, preventing the
formation of the MAC on host cells [38,39].

This review focuses on the complement activation-dependent and independent func-
tions of complement components (especially C1q, C4BP, properdin, factor H, MBL and
Ficolins) as soluble pattern recognition receptors for several viruses (Table 1).
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Table 1. Interaction of complement proteins to viruses, and biological consequences.

Virus C1q Binding
Consequences

of C1q
Binding

MBL Binding
Consequences

of MBL
Binding

C4BP Binding
Consequences

of C4BP
Binding

Properdin
Binding

Consequences
of Properdin

Binding

Factor H
Binding

Consequences
of Factor H

Binding

Murine
Leukaemia

Virus (MuLV)
+

Complement
activation

Viral lysis by
human serum

?

Human
Immunodefi-

ciency
Virus (HIV-1,

2)

+

Complement
activation

No virolysis
by human

serum
Enhancement
of infection of

C receptor-
bearing

cells

+

In vitro
inhibition of

the virus
Complement

activation
Enhancement

of infection
Virus uptake

by
macrophages

? + +
Escape

complement
destruction

Human T
Lymphotropic
Virus (HTLV)

+

In vitro
inhibition of

the virus
complement

activation
No virolysis
by human

serum

+

Herpes
Simplex Virus

1 (HSV-1)
+

Neutralisation
of a gC null
virus by a

C1–C5
dependent
mechanism

?

Herpes
Simplex Virus

2 (HSV-2)
? +

Enhancement
of infection in

a murine
model
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Table 1. Cont.

Virus C1q
Binding

Consequences
of C1q

Binding
MBL Binding

Consequences
of MBL
Binding

C4BP Binding
Consequences

of C4BP
Binding

Properdin
Binding

Consequences
of Properdin

Binding

Factor H
Binding

Consequences
of Factor H

Binding

Human
gamma-

herpesvirus
8

+

Induces
complement

activation
during de

novo KSHV
infection

Epstein-Barr
Virus (EBV) +

Classical
pathway
activation

No
neutralisation

of the virus
Opsonisation
of the virus

?

Cytomegalovirus
(CMV) +

Classical
pathway
activation
No lysis of

infected cells

-

Influenza A
Virus (IAV) + +

C-
independent

virus
inactivation

Complement
activation

(guinea pig)

+

Differentially
modulates the
efficacy of viral

entry and
replication in a

strain-
dependent

manner

+

Differentially
modulates the

efficacy of
viral entry and
replication in a

strain-
dependent

manner

+

Differentially
modulates the

efficacy of
viral entry and
replication in a

strain-
dependent

manner

Flavivirus +

Viral NS1 limits
complement
activation by
binding C4BP

+
Enhance

complement
activation

Enables
immune
evasion
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Table 1. Cont.

Virus C1q
Binding

Consequences
of C1q

Binding
MBL Binding

Consequences
of MBL
Binding

C4BP Binding
Consequences

of C4BP
Binding

Properdin
Binding

Consequences
of Properdin

Binding

Factor H
Binding

Consequences
of Factor H

Binding

Hepatitis B
virus +

Upregulates
C4BPα through

transcription
factor Sp1
inhibiting

complement
activation

Adenovirus +

Increased
uptake by

hepatocytes
Reduced hepatic

and innate
toxicity after

systemic
application of
adenoviruses

vector

Sindbis virus +

Reduced
alternative
pathway
activation

SARS CoV 2 ?

Lower C1q
levels in the

blood of
severely ill

patients
Localised

deposits of
C1q in lungs
suggesting

classical
pathway
activation

?

N-protein of
SARS-CoV-2

has been
shown to

interact with
(MASP2)

? ? ?

The addition
of factor H

help mitigate
damages
caused by

uncontrolled
alternative
pathway

activation by
viral S1/S2

protein
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2. Role of the Complement System during Viral Infection: Viral Evasion Mechanisms

The complement system employs multiple mechanisms that inhibit the viral infection
of the host. Complement activation neutralises viruses via (a) viral opsonisation by comple-
ment components; (b) virolysis, which occurs when the MAC produces holes on the viral
membrane; and (c) the production of anaphylatoxin [40–42]. The viral neutralisation occurs
due to the deposition of complement proteins on viral surfaces, which can block virus–host
receptor interactions. It can further cause aggregation of viral particles, and trigger an
anti-viral state, as well as by enhancing phagocytosis [43–45]. Enveloped viruses such as
alphaviruses, coronaviruses, herpesviruses, and retroviruses are susceptible to lysis by the
MAC [46]. In addition, the anaphylatoxins produced during the complement activation
lead to pro-inflammatory responses and enhanced phagocytosis [25]. Complement activa-
tion is also known to induce a Th1 response, modulate Treg and Th17 responses, prolong
B-cell memory, and significantly increase antigen-specific antibody titres [47–49]. Thus,
complement activation also enhances an adaptive immune response against the virus.

The complement system’s importance against pathogens is best exhibited by the
coevolution of the pathogens with the hosts. Viruses mainly achieve complement eva-
sion (Figures 1 and 2) by either binding to complement proteins (Table 1) or expressing
homologues of host complement control proteins (Table 2).

Table 2. Viral complement evasion proteins, their homologues and evasion mechanisms.

Virus Name Viral Protein Host Homologue Targets Evasion Mechanism

Herpesvirus Saimiri
Complement Control
Protein Homologue

(CCPH)
DAF, MCP CP/LP; AP C3

convertase

Decay
AccelerationCofactor

Activity

Herpesvirus Saimiri HVSCD59 CD59 C5b-8 and C5b-9 MAC Complex
Inhibition

Kaposi’s
Sarcoma-Associated

Herpesvirus

KSHV Complement
Control Protein (KCP) DAF, MCP CP/LP and AP C3

convertase

Decay
AccelerationCofactor

Activity

Murine
Gamma-herpesvirus 68 γ-hv68 RCA Protein DAF, MCP CP/LP and AP C3

convertase

Exact mechanism
unknown; Effect

possibly mediated
through C3 interaction

Variola Virus
Variola Virus Inhibitor

Of Complement
Enzymes (SPICE)

MCP CP/LP and AP C3/C5
convertase

Decay
AccelerationCofactor

Activity

Vaccinia Virus
Vaccinia Virus

Complement Control
Protein (VCP)

MCP CP/LP and AP C3/C5
convertase

Decay
AccelerationCofactor

Activity

Monkeypox Virus

Monkeypox Virus
Inhibitor Of

Complement Enzymes
(MOPICE)

MCP CP/LP C3 convertase Cofactor Activity

Astrovirus Coat Protein Human Neutrophil
Defensin-1 C1q and MBL

Classical Pathway
Inactivation:

Disassociates C1s from
C1q

Lectin Pathway
Inactivation:

Blocks Masp-2
interaction with MBL

Herpes Simplex Virus Envelope Surface
Glycoprotein C N/A AP C3 convertase and

C3b

Blocks C3b interaction
with properdin and C5

Accelerates decay of
alternative pathway

C3 Convertase



Viruses 2021, 13, 824 9 of 29

Table 2. Cont.

Virus Name Viral Protein Host Homologue Targets Evasion Mechanism

Hepatitis B virus HBx protein N/A CD46, CD59 and C4BP
α

MAC Complex
Inhibition

CP/LP C3 convertase

Influenza virus Matrix Protein 1 N/A C1q

Classical Pathway
Inactivation: Inhibits
C1q interaction with

IgG antibodies

Dengue (DENV), West
Nile Virus, And Yellow

Fever (YFV)

Non-Structural Protein
1 (NS1) N/A C1s, C4, C9

Bind Factor H/C4BP→
Cofactor Activity

Decreases deposition of
C3b and MAC

Interacts with C4 And
C1s→ Reduces

classical C3 convertase
and reduced deposition

of C4b And C3b
Binds Clusterin &

Vitronectin→MAC
Complex Inhibition

Gamma herpesviruses such as Murine gamma-herpesvirus 68 (γ-HV68), Herpesvirus
saimiri (HVS), and Kaposi’s sarcoma-associated herpesvirus (KSHV) are known to encode
homologues of regulator of complement activation (RCA). The complement control protein
homologue (CCPH) produced by the HVS shares a similar global structural layout with
DAF and MCP. CCPH is known to inhibit complement activation by accelerating decay
of the C3 convertase and by its FI cofactor activity for the cleavage of C4b and C3b, thus
inhibiting all three complement pathways [50,51]. In addition to the RCA homologue, HVS
is also known to encode a homologue of CD59, the inhibitor for the MAC complex [52]. The
KSHV encoded KSHV complement control protein (KCP), another RCA homologue of DAF
and MCP, inhibits complement activation by accelerating the decay of the classical pathway
C3-convertase, but not the C3 convertase of the alternative pathway, and inactivating C3b
and C4b through FI-mediated cleavage activity [53–56]. In vitro analysis of the γ-HV68
RCA, which is also a homologue of DAF and MCP, has revealed that it blocks the deposition
of C3 on zymosan beads, suggesting it acts on the C3 convertase to block the complement
system [57,58].Poxviruses also encode complement regulatory proteins such as variola
virus inhibitor of complement enzymes (SPICE), the vaccinia virus complement control
protein (VCP), the monkey pox virus inhibitor of complement enzymes (MOPICE), and
the ectromelia virus inhibitor of complement enzymes (EMICE) [9]. VCP produced by the
vaccina virus and the SPICE protein, an orthologue of VCP, produced by smallpox causing
variola virus, share homology with MCP and are shown to have decay-accelerating activity
against and cofactor activity, helping the viruses evade the complement system [59–63]. In
addition to expressing VCP, extracellular enveloped vaccinia virus is also known to incor-
porate host complement regulators CD46, CD55, and CD59 into their outer envelope [64].
Another VCP orthologue, MOPICE that is produced by the monkey pox virus, has been
shown to possess the cofactor activity but it lacks the decay-accelerating activity.

The coat protein of astrovirus (CoPt) inhibits the activation of the classical and lectin
pathways by binding C1q and MBL [65,66]. CoPt is shown to share limited sequence
homology with human neutrophil defensin-1, a known inactivator of the classical and
lectin pathways [67]. CoPt helps the virus evade the classical pathway by disassociating
C1s from C1q and preventing the cleavage of C1s to its active form, thereby inhibiting C1
activation [65,66]. CoPt also inhibits the lectin pathway in a similar manner by binding to
MBL using residues critical for MASP-2 binding [66]. Furthermore, CoPt can also inhibit
C5a production [66].
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Another complement evasion mechanism used by viruses (Figures 1 and 2) involves
production of non-homologous viral proteins that can interact with or recruit host com-
plement regulators (Table 2). Alpha-herpesviruses such as Herpes Simplex Virus (HSV)
Type 1 and HSV Type 2 are known to encode envelope surface glycoprotein C (gC) that
protects them against complement activation [58]. gC-1, produced by HSV-1, has two
complement-interacting domains, a C3-binding region in the centre of the molecule and
an amino-terminal domain that interferes with C5 and properdin binding to C3b [68–70].
In vivo studies in murine models have demonstrated that the C3 binding domain plays a
more critical role in HSV virulence [68]. While both the domains contribute to virulence,
the deletion of the C3 domain attenuates the virus infection ability to levels similar to
viral mutants lacking both the domains [68]. gC-2, produced by HSV type 2, and gC-1
have been reported to bind to native C3, C3b, iC3b, and C3c [70–73]. gC-1 is known to
inhibit complement activation by blocking the interaction of C3b with properdin and C5,
accelerating the decay of the alternative pathway C3 convertase [69]. However, gC-2 lacks
the domain that blocks properdin and C5 interaction with C3b [70]. This suggests that the
mechanism of complement subversion by gC-2 is different compared to that of gC-1 [70].

Flaviviruses, which cause diseases such as Dengue (DENV), Zika, and Yellow fever
(YFV), produce a non-structural protein 1 (NS1), which is a secreted non-structural glyco-
protein that accumulates in the blood and is displayed on the surface of infected cells. The
West Nile Virus (WNV) NS1 has been shown to bind factor H, which retains its co-factor
activity [74]. Simultaneously, cell surface-associated NS1 reduces the deposition of C3b
and the C5b–C9 membrane attack complex [74–76]. NS1 of DENV, WNV, and YFV also
helps the viruses evade neutralisation by the complement system by interacting with C4
and C1s [77]. The NS1-C4 interaction reduces the classical C3 convertase formation as
well as the deposition of C4b and C3b on cell surfaces [77]. Similarly, NS1 regulates both
the classical and the lectin pathways by recruiting C4BP [78]. This is accomplished by
C4BP acting as a cofactor for FI, mediating the inactivation of C4b in solution as well as on
the plasma membrane of infected cells [78]. DENV NS1 has also been shown to bind to
clusterin [79] (and vitronectin), a regulatory protein that hinders the insertion of the MAC
into membranes and binds the terminal complement proteins [80]. This interaction protects
the virus from virolysis by inhibiting C9 polymerization [80].

3. C1q Exploiting Viral Evasion Mechanisms

Human C1q can recognise and bind a variety of self and non-self ligands and regulate a
range of homeostatic functions such as clearance of immune complexes, pathogens (includ-
ing viruses, bacteria, and fungi), and necrotic and apoptotic cells [81]. C1q is a primordial
innate immune molecule and a first subcomponent of the C1 complex that recognises the
IgG-or IgM containing immune complexes [82]. C1q is a 460 kDa protein, comprising of
18 polypeptides chains (including 6A, 6B, and 6C), where each C1q chain is composed
of a short N-terminal region, a triple-helical collagen region, and a C-terminal globular
(gC1q) domain [81,83]. Although the liver secretes most of the C1q, production of C1q by
macrophages, adherent monocytes, and immature DCs has also been reported [84–86]. In
addition, C1q is also abundant in the microenvironment of various tumour tissues, where
it is considered to be tumorigenic on its own, without recruiting classical complement
cascade [87].

The viral neutralizing activity of C1q against Influenza A Virus (IAV) has been studied
using in vitro models. C1q was found to enhance haemagglutinin (HA)-specific monoclonal
antibody-mediated inhibition of IAV attachment to host cells (>100-fold) at the cell-binding
stage [88]. Furthermore, matrix protein 1 (M1), a conserved multifunctional protein of IAV,
was found to interact with the globular region of C1q A chain [89]. This interaction between
M1 and C1qA takes place through the N-terminal domain of the M1 protein [89]. The
M1 protein was able to block C1q A chain interaction with heat-aggregated IgG, thereby
inhibiting haemolysis as well as preventing the complement-mediated neutralization of
IAV in vitro [89].
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C1q interaction with retroviruses involves the globular region of C1q and envelope
glycoproteins of several viruses, including gp41 and gp120 of HIV-1, p15E of murine
leukaemia virus (MuLV), and gp21 of human T lymphotropic virus (HTLV)-1 [90]. C1q via
its gC1q domain, as well as its globular head receptor, gC1qR, can interact with gp41 of
HIV-1 [91–93], primarily via the C1q A chain [94], in a similar way to C1q interaction with
IgG [90,95]. Similar to IgG, aggregates formed by gp41 [92] can further lead to an increased
C1 complex activation. Thus, gp41 can trigger the classical pathway on the surface of virus-
infected cells in an antibody-independent manner [96]. Furthermore, gp120 of HIV-1 can
also enhance antibody-mediated complement activation through binding C1q or mannan-
binding lectin (MBL) of the lectin pathway [97–99]. Additionally, C1q- or C3-deficient
human serum from uninfected individuals as a source of complement does not trigger any
anti-viral activity against HIV-1, suggesting that the classical pathway contributes mainly
to the complement activation against HIV-1 [100].

C1q can suppress DC-SIGN-mediated transfer of HIV-1 to activated peripheral blood
mononuclear cells; however, the recombinant form of globular head A, B, and C modules
of C1q do not [101]. The protective activity of C1q was negated by the addition of gC1qR
by enhancing DC-SIGN mediated HIV-1 transfer. It is possible that C1q presence can
play a protective role by blocking access of gp120 to DC-SIGN. Furthermore, gC1qR, as
an inhibitor of HIV-1 infection on its own, can block the CD4-gp120 interaction, thus,
preventing viral entry ([102]. However, other studies have suggested that soluble gC1qR
alone can also suppress HIV-1 production in MT-4/H9 human T cell lines and macrophages
infected with HIV-1Ba-L or HIV-1IIIB [102]. Thus, suppression of HIV-1 production was
enhanced following pre-incubation of gC1qR with the target cell lines before viral chal-
lenge, indicating that the ability of gC1qR to interfere with viral entry occurs through the
interaction between CD4 and gp120 of HIV-1 [102]. Furthermore, binding interactions
of gC1qR with several viral ligands, such as HCV core protein [103], rubella viral capsid
protein [104], adenovirus core protein V [105], and EBNA-1 of Epstein-Barr virus [106],
have also been reported. The gp41 of HIV-1 can also engage with gC1qR on CD4+ T cells
to trigger an NK ligand expression through PI3K/PIP3 pathway, suggesting that gC1qR
can act as a receptor for HIV-1 [91]. Fausther-Bovendo et al. have reported that gC1qR can
serve as a receptor for a specific motif of HIV-1 gp41, known as 3S. 3S is highly conserved
in HIV-1 isolates, which plays a crucial role in inducing cell surface-expression of NKp44L
on CD4+ T cells [107]. NKp44L is a known cellular ligand for the natural cytotoxicity
receptor NKp44 [108], and it can render CD4+ T cells susceptible to autologous NK lysis.
In addition, NKp44L expression is significantly correlated with an enhanced viral load as
well as declined CD4 cell count [107]. Furthermore, the 3S motif can trigger PI3K/PIP3
pathway, which is crucial for the 3S-mediated signalling that results in the translocation of
NKp44L to the cell surface [91]. Braun et al. have previously reported that the binding of
internalin B of Listeria monocytogenes to gC1qR activates PI3K signalling [109].

Co-infecting MT4 or SLB1 cells with HIV-1 and HTLV-I can recruit C1q and form
active C1 on the cell surface [110], leading to complement activation [110]. C1q binding
to HTLV-1 has also been confirmed by another study using the cell-free virus HTLV-
1 lysates. C1q was able to inhibit the infectivity of cell-free HTLV-1 [111]. The same
study has also reported that C1q can bind an extramembrane region of the HTLV-I gp21
(residues 400–429) [111], a region that is crucial for syncytium formation [112]. C1q can
also bind MuLV p15E directly and activate the classical pathway, resulting in virolysis
without the involvement of antibodies [113]. Furthermore, purified C1q can directly bind
to Chandipura virus (CHPV) but the binding interaction does not affect the viral infectivity;
CHPV neutralisation requires C1q-reconstituted serum [114].

4. Viral Evasion Strategies Exploiting C4b Binding Protein

C4BP is a 570 kDa spider-like glycoprotein, made up of 7 identical 70 kDa α-chains
and a 45 kDa β-chain, linked together by a central core [115]. The α- chains and β-chain
contain eight and three Complement Control Protein (CCP) domains, respectively [33].
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These CCP modules are composed of ~60 amino acids and form a compact hydrophobic
core surrounded by five or more β-strands organized into β-sheets [116]. C4BP functions as
a regulator of the classical and lectin pathways by controlling C4b-mediated reactions [117],
inhibiting the formation of C3 and C5 convertases, accelerating the decay of the convertases,
and by acting as a co-factor for FI, which cleaves and thereby inactivates fluid phase and
cell-bound C4b [34,35,116,118].

Flaviviruses are known to limit complement activation by binding C4BP through
their NS1 protein; the bound C4BP inactivates soluble or membrane-bound C4b [78]. The
binding of flavivirus NS1 to C4BP is mediated through multiple CCP domains (CCP2-5 and
CCP8) of the C4BP α-chain [78]. Furthermore, the involvement of CCP domain 8, which
is near the C-terminal oligomerisation domain of C4BP, could affect the conformational
structure of C4BP. Hence, the absence of CCP8 (via recombinant deletion) could affect the
accessibility of CCP2-5 for flavivirus NS1 [78].

The Hepatitis B virus is known to cause hepatocarcinogenesis via its X protein
(HBx) [119]. It has been reported that HBx protects hepatoma cells from complement
attack by increasing the surface expression of complement regulatory proteins such as
CD46 and CD59 [120,121]. It is also known to up-regulate C4BPα through transcription
factor Sp1 in hepatoma cells, thereby inhibiting complement activation [119].

C4BP can also interact directly with pathogens without needing to deal with C4b depo-
sition. For example, C4BP is known to facilitate the uptake of adenoviruses by hepatocytes
via its interaction with cell surface heparin–sulphate proteoglycans (16). C4BP was also
found to reduce hepatic toxicity after systemic application of adenoviruses vector [122].
A chimeric disulphide-bound homo-octameric protein, sCD46-C4BPα (generated by the
fusion of the C4BPα bundle domain ectodomain of CD46), has been shown to control
measles virus infection in vitro as well as in CD46 expressing transgenic mice [123]. A
2-fold increase in anti-viral activity was observed by the fusion protein when compared
to monomeric sCD46. The mechanism probably involves: (i) the competition between
cell surface CD46 receptor, which is needed for the binding and fusion of measles virus
and sCD46-C4BPα; and (ii) the irreversible conformational change of the fusion protein
induced by the simultaneous binding to multiple measles virus envelope glycoprotein,
hemagglutinin [123].

Recently, C4BP has been shown to differentially modulate the efficacy of IAV entry
and replication in human adenocarcinoma alveolar basal epithelial cells, A549, in a strain-
dependent and complement-independent manner (Figure 3) [124]. C4BP can bind IAV
envelope proteins: Haemagglutinin, Neuraminidase, and Matrix protein 1 via multiple
sites in CCP domains 1–2, 4–5, and 7–8 of its α-chain. In the case of the H1N1 subtype of
IAV, C4BP was found to restrict viral entry and infection in A549 cells. However, C4BP
promoted viral entry and infection in the case of the H3N2 subtype. Furthermore, C4BP
downregulated mRNA levels of pro-inflammatory IFN-α and IL-12 (and NF-κB) in the case
of H1N1. However, it promoted a pro-inflammatory immune response by upregulating
IFN-α, TNF-α, RANTES, and IL-6 in the case of H3N2 [124].
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Figure 3. Complement Independent functions of Complement Regulators. Viral infection begins with the attachment of the
virus to the epithelial cell surface via cell surface receptors (1) and the internalisation of the virion through endocytosis and
fusion (2). Post endocytosis, viral RNA is released into the cytoplasm (3,4), from where it is transported into the nucleus.
In the nucleus, the viral RNA undergoes replication and transcription (5). The transcribed mRNA is translated to viral
proteins (6). This is followed by the assembly of the virion and subsequent release of the virion from the cell (7,8,9). C1q,
C4BP, Properdin, factor H, and VCP have individually been shown to inhibit the entry of viruses, such as the H1N1 subtype
of the Influenza A Virus (IAV), (represented by red virion) into the cell and downregulate inflammatory cytokines and
chemokines (TNF-α, IL-6, IL-12, NF-κB, RANTES). However, these complement regulators individually have also been
implicated in promoting viral entry, as seen in the case of H3N2 subtype of IAV, and promoting the inflammatory response
by upregulating cytokine and chemokines (TNF-α, IL-6, IL-12, NF-κB, and RANTES). These mechanisms of modulating
viral entry in a subtype specific manner, occur in the absence of other complement factors and immune cells, suggesting
complement independent viral infection modulating activity for these complement regulatory proteins.

5. Involvement of Properdin in Anti-Viral Immune Response and Viral Evasion

The human properdin gene CFP (Complement factor P) encodes for properdin pro-
tein [125], which circulates in serum as cyclic polymers formed by head-to-tail association
in cyclic dimers, trimers, and tetramer structures in a 26:54:20 ratio, respectively, with
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plasma concentration of 22–25 µg/mL [126–128]. An aglycosylated monomer of properdin
has a mass of 53 KDa on an SDS-PAGE gel under reducing conditions [126]. Properdin is
composed of seven repetitive, non-identical motifs of 60 amino acids, each of which are
called thrombospondin repeats (TSR), which are TSR0 to TSR6; the N terminal module,
TSR0, is truncated while TSR4 and 5 are crucial for binding to C3bBb, and hence, stabi-
lizing C3 convertase [129,130]. Properdin is the only positive regulator of the alternative
pathway [131]. It prevents the dissociation of Bb from C3b by increasing the half-life of this
complex (C3bBb) from 90 s up to 10-fold [30]. Properdin is synthesized and/or secreted
by a wide range of immune cells, including mast cells, macrophages, monocytes, T cells,
dendritic cells, and neutrophils [132–136]. Deficiency of human properdin increases the
risk of Neisseria meningitidis infection [137].

Properdin can exert immune functions in a complement-independent manner, includ-
ing its ability to bind to microbial targets Neisseria meningitidis lipopolysaccharide and
Chlamydia pneumonia [138]. Properdin ligands include DNA, sulfatides and glycosaminogly-
cans; these interactions are crucial in phagocytosis-driven removal of unwanted debris and
in avoiding harmful inflammation via elimination of apoptotic/necrotic cells [139] via direct
binding as an opsonin [140,141]. In addition, properdin can act as a PRR molecule against
infectious agents such as Neisseria by binding to lipo-oligosaccharide (LOS) [138,142].

Kaposi’s sarcoma-associated herpesvirus (KSHV) infection induces cell surface ex-
pression of properdin in the infected endothelial cells, which is essential for complement
activation during de novo KSHV infection [143]. Dengue virus-infected endothelial cells
were found to have a high-level induction of properdin and factor B, providing a direct
means for dengue virus-infected endothelial cells to enhance complement activation and
C3a and C5a production [144]. Properdin is also known to bind gp41 and gp 120, sub-
units of the HIV-1 envelope [145]. Sites in gp120 seem to be involved around amino acid
100–129 in properdin interaction. Thus, properdin may contribute to inhibiting HIV-1
from binding to CD4 receptor as well as the fusion of viral envelope with the cell mem-
brane [145]. Properdin has been shown to act as a ligand for the NKp46 receptor on NK
cells, resulting in up-regulation of the XCL1 chemokine gene, the chemokine (also known
as lymphotactin), leading to antiviral activity such as blocking HIV-1 attachment and entry
into host cells [146–149]. Properdin is expressed by CD8+-T cells, which play a significant
role in the elimination and clearance of viral infection [134,150]. Additionally, it has been
shown that neutrophils are among the first responder to IAV infection in the lung, which
can cause the release of properdin due to pro-inflammatory cytokines such as IFN type
1 [133,135,151]. Furthermore, neutralisation assays conducted on pseudotyped lentiviral
particles expressing IAV envelope proteins (matched H1+N1 or unmatched H3+N2) and
replication kinetic analysis on H1N1 or H3N2 infected A549 cells revealed that properdin
treatment modulated IAV entry and subsequently IAV replication in a subtype-dependent
manner (Figure 3) (Varghese et al., Unpublished Data). However, better insights into the
role of properdin for various common human viral infections are still poorly studied.

6. Factor H

The alternative pathway plays an important role in the protection against viruses.
Activation of the alternative pathway is limited on the self-cells by various negative
regulators, including FH, the primary soluble regulator. In the presence of sialic acid
found on self-cells, the affinity of FH for surface-bound C3b is increased and allows FH
to differentiate between self and non-self-cells [58,152,153]. FH can block activation of the
alternative pathway by accelerating the decay of the alternative pathway C3 convertase
(C3bBb), acting as a co-factor for factor I mediated cleavage of C3b, and competing with
factor B for C3b binding [154–156]. FH is composed of 20 complement control protein
(CCP) domains with CCP 1-4 encompassing functional activity and the ability to bind C3b
has been mapped to CCP 19-20, 7-15, and 1-4 regions [31].

FH is part of the FH family, a group of highly related multifunctional protein primarily
synthesised in the liver, and include FH, the spliced variant FH-like protein 1 (FHL-1)
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and FH-related proteins (FHR) 1–5 [157,158]. These proteins share conserved common
structural elements and display overlapping roles in complement regulation, particularly
FHL-1 and FHR-5 [157–159]. Given the FH family proteins’ ability to act as negative
regulators (with a few exceptions) of the alternative pathway, it is likely that they play
an important role during viral infections. Over time, some viruses have developed the
ability to manipulate the function of FH as an inhibitor of the alternative pathway to enable
them to escape complement destruction [31]. Sindbis virus is an enveloped Alphavirus
from the Togaviruses family. The Sindbis fever is characterised by arthralgia, rash, and
malaise. It can acquire sialic acid during the process of budding off the host cells, which
inversely correlates with the activation of the alternative pathway. FH recognises the virus
as a host cell due to the increased presence of sialic acid and blocks complement-mediated
virolysis [31]. The ability of FH to recognise sialic acid from the virus is crucial in Sindbis
virus resistance to the alternative pathway [152,160]. HIV-1 exploits the complement
regulatory role of FH for its benefit. FH is recruited on to the surface of HIV-1, providing
a mechanism for the virus to escape complement activation [161]. HIV-1 virions treated
with FH-deficient serum and anti-HIV-1 antibodies were lysed in a complement-dependent
manner. FH binding to gp120 and gp41 of HIV-1 at high local concentrations protects the
virus from complement destruction [161,162].

West Nile virus (WNV) is an enveloped RNA Flavivirus; the RNA is translated in the
host cytoplasm as a polyprotein and then cleaved into structural and non-structural (NS)
proteins by the virus- and host-encoded proteases [163,164]. WNV NS-1, secreted at high
levels in infected patients, binds to FH evasion [58,74], and promotes FH to act as a co-factor
for FI-mediated cleavage of C3b, preventing activation of the alternative pathway [74].
Recently, Murugaiah et al. have reported complement-independent modulation of IAV
infection by FH in a subtype-dependent manner (Figure 3) [165]. FH accomplished the
IAV subtype dependent entry modulation via interaction with glycoproteins HA, NA, and
M1. Modulation of viral entry by r FH was evident by downregulation (−4 log10) of M1 of
IAV in H1N1 subtype infected A549 cells, while upregulation (2 log10) was seen in H3N2-
infected cells. FH was found to trigger anti-inflammatory responses in H1N1 infected A549
cells while provoking pro-inflammatory responses in the case of the H3N2 subtype. mRNA
expression levels of TNF-α, IL-12, IL-6, and IFN-α were upregulated, while RANTES was
downregulated in H1N1-infected A549 cells treated with FH at 6 h post-infection. In the
case of the H3N2 subtype, enhanced mRNA levels of these pro-inflammatory cytokines
were observed. The same study also revealed that FH could act as an entry inhibitor for
the H1N1 subtype, as evident by a reduction in luciferase reporter activity in MDCK cells
transduced with H1N1 pseudotyped lentiviral particles [165].

7. Human Mannan-Binding Lectin (MBL)

Human mannan-binding lectin (MBL) is a soluble, Ca2+-dependent pattern recognition
innate immune molecule, which acts as a potent opsonin against invading pathogens [166].
MBL is the recognition subcomponent of the lectin pathway through association with MBL-
associated serine proteases (MASPs) [167,168]. The overall structure of MBL comprises of
oligomers of trimeric subunits, composed of an N-terminal cysteine-rich domain, triple-
helical collagenous region (made up of Gly-X-Y repeats), α-helical coiled-coil trimerizing
neck region, and a carbohydrate recognition domain (CRD) [169–171]. Human MBL is
primarily produced by hepatocytes and secreted into the bloodstream [172–174]. How-
ever, a reduced MBL expression has been reported in mammalian muscle tissues and the
brain [175]. Humans and chimpanzees present with only one form of MBL [176], but two
forms of MBL (MBL-A and MBL-C) were reported in rodents [172,177] and rhesus mon-
keys [176]. MBL-A and MBL-C deficient mice were found to be more susceptible to S. aureus
infection [178]. Similar oligomerisation profiles and circulating concentrations of MBL-A
and MBL-C (5 to 40µg/mL) were observed in murine laboratory strains [172]. However,
MBL-C was found to be approximately one-fifth less functional than MBL-A in triggering
complement activation in vitro [172]. Furthermore, MBL-A showed a greater affinity for
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alpha-methyl-d -glucose and d -glucose when compared to MBL-C [172]. MBL can interact
with a wide range of viral pathogens in a complement-activation dependent as well as inde-
pendent manner [170,179]. MBL can bind directly to retroviruses and influenza viruses via
its CRD region [180–182]. Enhanced MBL levels in the lungs during IAV infection appear
to have a protective role against IAV [180,183] through inhibition of viral hemagglutination,
aggregation, and opsonisation of the viral particles in either a complement-dependent or
independent manner [181,184,185]. The complement-independent effects of MBL against
IAV are shared by other mammalian C-type lectins, like conglutinin, surfactant protein A
(SP-A) and SP-D [181,186–190]. MBL directly binds HA and NA of IAV, thus, neutralising
the viral particles [184]. However, certain IAV subtypes are resistant to MBL, which is pri-
marily dependent on the degree of glycosylation on the HA globular region [180,191,192].
MBL−/− mice show increased susceptibility to IAV infection from highly glycosylated
viral strains of IAV compared to wild-type (WT) mice [193]. However, H1N1 and avian
influenza A H9N2 strain showed enhanced production of pro-inflammatory response in
WT mice compared to MBL−/− mice, suggesting that MBL may also have an adverse effect
against some strains of IAV infection [194].

MBL interacts with HIV-1 via its N-linked glycosylated envelope glycoprotein, gp120 [195].
HIV-1 can also evade adaptive immune responses through ‘glycan shielding’ in which
mutations found in the gp120 glycosylation site can restrict the binding of neutralising
antibody but can maintain its attachment with its cellular receptors [196]. Additionally,
in vivo studies have suggested that MBL can interact with primary isolates of HIV-1 via
carbohydrates structures found on gp120 or gp41 viral glycoproteins [195]. Saifuddin
et al. have produced HIV-1 viral particles containing no gp120/gp41 and determined
their respective binding with MBL by comparing them with gp120/gp41 positive viral
particles. It was found that approximately five times HIV virions bound to MBL in the
presence of gp120/gp41, indicating the importance of carbohydrates for binding of HIV-1
to MBL [195]. In addition, in HIV-1-infected patients, it was shown that antibodies were
capable of neutralising viral load, but mutation at N-linked glycosylation sites in the env
gene led viral particles to escape from viral neutralisation [196]. In vivo studies using
macaque models of HIV-1 infection have also supported the idea that N-linked glycans are
crucial in viral escape from neutralisation [197–199].

Neutralisation of HIV-1 by MBL can be complement-independent, involving opsoni-
sation to enhance phagocytosis by macrophages and dendritic cells (DCs) [200]. Interest-
ingly, even at normal physiological serum levels, MBL does not neutralise HIV-1 infection
through complement activation [201,202], suggesting greater importance of complement-
independent mechanisms via MBL. Moreover, lower MBL levels have been associated with
an increased risk of HIV-1 transmission, or progression to Acquired immunodeficiency
syndrome (AIDS) [203–205].

MBL also employs viral glycoprotein-mediated complement-dependent or indepen-
dent mechanisms, as seen in the case of IAV [184,193], severe acute respiratory syndrome
coronavirus (SARS-CoV) [206,207], Dengue virus (DV), West Nile virus (WNV) [208,209],
and hepatitis C virus (HCV) [210]. Curiously, the ability of MBL to contribute to the
pathogenesis of HIV-1 has been supported by the data showing that MBL can mediate
enhancement of HIV-1 dissemination to the brain by gp120 via the chemokine receptor,
CXCR4 [211,212]. Furthermore, increased MBL expression in HIV-1 infected brain can pos-
sibly suggest that MBL may cause neuroinflammation and neuronal injury via activation
of MBL-mediated lectin pathway [175].

Genetic polymorphisms found in the MBL gene are associated with the progression
of liver disease as a cause of chronic HBV and HCV infection [213–217]. However, this
data conflicts with another study that suggests no link between MBL mutations and HBV
infection [218]. MBL can directly bind E1 and E2 glycoproteins of HCV and trigger comple-
ment activation via MASP-2, causing neutralisation of HCV particles [210]. Furthermore,
MBL-HCV binding was found to be sufficient to trigger the complement system via C4b
deposition. Moreover, complement was reported to enhance antibody neutralisation of
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HCV particles [219], possibly indicating that MBL-mediated deposition of complement
may be involved in the elimination of viral particles. MBL can also bind HBsAg (hepatitis
B surface antigen) or N-linked glycosylated forms [210], but it is poorly studied whether
this interaction neutralises the viral infectivity. MBL-HBsAg interaction can also result
in complement activation, as well as enhanced C4 deposition [220]. In vivo studies using
mice have reported that MBL seems to modulate immune responses to herpes simplex
virus 2 (HSV-2) [221], as evident from the induction of type 1 INF-α and IFN-β [222].
Additionally, in vivo studies have suggested that certain immune cells were found to
contribute to the innate immune responses to HSV infection [222]. NK cells were involved
in anti-HSV immunity by triggering cytokine production, recognition, and killing infected
cells [223,224]. Plasmacytoid dendritic cells (pDCs) were involved in type I IFN production
in vivo [223,225]. Mice with MBL deficiency appear to be susceptible to recurrent infection
of Staphylococcus aureus [178] and HSV-2 [226].

Higher susceptibility to SARS infection is reported in MBL-deficient individuals.
Reduced serum levels of MBL were observed in patients infected with SARS-CoV in-
fection [206,207]. MBL can bind and inhibit SARS-CoV through its CRD region in a
complement-independent manner [207]. Previous studies have reported that spike protein
(S) of SARS-CoV binds to DC-SIGN and DC-SIGNR [227,228], leading to enhanced viral
infectivity; this can be inhibited by MBL binding with S protein SARS-CoV, and thereby
blocking viral interaction with DC-SIGN [206]. DC-SIGN-R, also known as L-SIGN, a
DC-SIGN homologue, has also been suggested to act as a direct receptor for SARS-CoV
entry into its host cells, including type II alveolar and endothelial cells [229]. Therefore,
the ability of MBL to interfere with SARS-CoV interaction with surface-bound C-type
lectin receptors on these cells may restrict viral spread and pathogenicity. Both DC-SIGN
and DC-SIGNR can bind to the receptor-binding domain (RBD) of the SARS-CoV-2 spike
protein and mediate viral entry in endothelial cells [230]. Furthermore, DC-SIGNR can
also interact with angiotensin-converting enzyme 2 (ACE2), a known cellular receptor for
SARS-CoV-2 infection, suggesting a possible role for heterodimerization DC-SIGNR and
ACE2 in SARS-CoV-2 entry and infection in cell types where both are present [230]. MBL
can interact with Zaire Ebola Virus (EBOV) glycoprotein and prevent binding of Ebola and
Marburg viruses to DC-SIGN, thus blocking its attachment to host cells [45]. In addition,
using pseudotyped viral particles containing Ebola and Marburg (Musoke) glycoproteins,
it was observed that MBL interaction with Ebola and Marburg viruses partially caused
viral neutralisation via the lectin pathway [45]. Human serum deficient in MBL resulted in
reduced neutralisation of pseudotyped viral particles with filoviruses, while the addition
of MBL caused an enhanced neutralisation [45]. Furthermore, MBL induced cytokine storm
by negating the activity of soluble glycoprotein [231]. MBL can potentially be involved in
protection against enhanced vascular permeability, which is a known characteristic of Ebola
haemorrhagic disease [231]. Mice administered with recombinant human MBL (rhMBL)
showed a higher survival rate during fatal Ebola viral infection and became immune to
viral re-infection [232]. Mice deficient in MBL-A, MBL-C, or MASP-2 were more vulnerable
to WNV infection than wild-type mice, suggesting that MBL-mediated recognition and
lectin pathway activation is vital for protection against WNV infection [233].

8. Ficolins

Ficolins are important innate immune PRRs, belonging to a group of oligomeric
lectins, composed of N-terminal rich in cysteine residues, a collagen-like domain (CLD;
composed of glycine-Xaa-Yaa repeats), and a neck region [234]. Like collectins, ficolins
do not contain a CRD region, where it is replaced by a C-terminal fibrinogen-like (FBG)
domain [235]. Like CRDs, the ficolins-derived FBG domain can also recognise specific
pathogen-associated carbohydrates. Like MBL, homotrimers of ficolin are stabilised by
the interactions between hydrophobic residues found in the CLD region [236,237] and
oligomerise via both intermonomer and trimer disulphide bridges between the N-terminal
cysteine residues [234,238].
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In humans, three ficolins have been identified: M (ficolin-1), L (ficolin-2), and H-
ficolin (ficolin-3) [239]. Only two ficolins have been identified in rodents, ficolin-A and
ficolin-B, which are the orthologues of human L- and M-ficolin [130]. Both human L-
and H-ficolins are expressed and secreted mainly by the hepatocytes [235,240], although
type II alveolar and bronchial epithelial cells are also known to express higher levels of
H-ficolins [240]. The crucial role of ficolins within the innate immunity is the recognition
of pathogen-associated molecular patterns (PAMPs) on microbial pathogens by binding
to acetylated polysaccharides (N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine
(GalNAc)) on microbial pathogens [241,242]. This is a common characteristic shared
amongst all the ficolins discovered [243,244]. Furthermore, ficolins can bind to sialic acid,
lipopolysaccharides, fungal 1,3-β-D-glucan, and bacterial peptidoglycan [245–249].

Like MBL, all ficolins can trigger the lectin pathway via MASP, induce phagocytosis
via opsonisation, and stimulate the secretion of pro-inflammatory cytokines and nitric
oxide by macrophages [250]. Human L-ficolin can bind HA and NA glycoproteins of IAV,
and, neutralise viral infection and replication [251]. An in vitro study has reported that
porcine plasma ficolin reduces the cytopathic effect and replication of porcine reproductive
and respiratory syndrome virus in a GlcNAc-dependent manner [252]. Direct inhibition of
IAV entry by L-ficolin has also been reported; it can promote complement-mediated lysis
of IAV viral particles and of infected cells [251]. H-ficolin, purified from human serum and
bronchoalveolar lavage fluid, can bind to IAV, thus blocking viral infectivity by inhibit-
ing hemagglutination activity and viral aggregation and direct blocking of complement
activation [253].

Interaction between L-ficolin and HCV triggers lysis of HCV infected cells via de-
position of C4. However, L-ficolin interaction can be abrogated if the E2 glycoprotein
of the HCV is not glycosylated [254]. Furthermore, a recombinant oligomeric L-ficolin
was found to neutralise HCV entry in a human liver cell line, Huh7, in a dose-dependent
manner [254,255]. This neutralisation was mediated by restricting E2 interaction with its
cellular cell surface receptor, lipoprotein receptor and scavenger receptor B1, which are
crucial for HCV entry into the host cells [254,255]. L-ficolin’s monomeric form is reported
to activate complement [254] but cannot prevent HCV entry [256]. Furthermore, Ren et al.
have suggested that L-ficolin can mediate complement activation following its interaction
with gp120 of HIV-1 [241]. Human M-ficolin was also found to interact with pentraxin 3
(PTX3), which could potentiate immune responses against invading pathogens. M-ficolin
interaction with long pentraxin, PTX3, was attributed to sialic acid, which triggers the
lectin pathway [257]. In contrast, no complement activation was observed using the Y271F
M-ficolin mutant. Interaction between M-ficolin and PTX3 was found to reduce the infec-
tivity of IAV strains, PR-8, and Phil82 [253]. However, M-ficolin interaction with the Zaire
Ebola virus glycoprotein’s mucin-like domain leads to increased viral infectivity of the host
cells [258].

9. Conclusions

The important role of the complement system during viral infection cannot be over-
stated. It plays a critical role in determining the outcome of many viral infections. Further
research in this area will help elucidate the complex mechanisms involved in the viral-host
interaction and help develop improved therapeutics to combat viral infections. Further-
more, understanding the immune suppression mechanisms employed by viruses can help
develop therapeutics.The complement-activation independent functions of several comple-
ment components against viral entry and cytokine storm appear to suggest the possibility
of using recombinant form and fragments of complement inhibitors, as anti-viral therapy.
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