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Increased gene expression noise in human cancers is correlated 
with low p53 and immune activities as well as late stage cancer 
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ABSTRACT
Gene expression in metazoans is delicately organized. As genetic information 

transmits from DNA to RNA and protein, expression noise is inevitably generated. 
Recent studies begin to unveil the mechanisms of gene expression noise control, but 
the changes of gene expression precision in pathologic conditions  like cancers are 
unknown. Here we analyzed the transcriptomic data of human breast, liver, lung and 
colon cancers, and found that the expression noise of more than 74.9% genes was 
increased in cancer tissues as compared to adjacent normal tissues. This suggested 
that gene expression precision controlling collapsed during cancer development.  A set 
of 269 genes with noise increased more than 2-fold were identified across different 
cancer types. These genes were involved in cell adhesion, catalytic and metabolic 
functions, implying the vulnerability of deregulation of these processes in cancers. 
We also observed a tendency of increased expression noise in patients with low p53 
and immune activity in breast, liver and lung caners but not in colon cancers, which 
indicated the contributions of p53 signaling and host immune surveillance to gene 
expression noise in cancers. Moreover, more than 53.7% genes had increased noise 
in patients with late stage than early stage cancers, suggesting that gene expression 
precision was associated with cancer outcome. Together, these results provided 
genomic scale explorations of gene expression noise control in human cancers. 

INTRODUCTION

All the processes of life depend on spatially and 
temporally controlled gene expression. In individual 
cells, transcription is a process that often occurs in a 
bursty, intermittent manner [1, 2]. The frequency and 
size of these bursts affect the magnitude of temporal 
fluctuations in messenger RNA and protein content within 
a cell, creating variation or noise in gene expression  [3]. 
Even in genetically identical cells, gene expression noise 
exists due to intrinsic and extrinsic factors. Intrinsic noise 
is generated as the inherent consequence of stochastic 
fluctuations in biochemical reactions whereas extrinsic 

noise is from extrinsic sources such as cell-to-cell 
fluctuations of transcription factors or from environmental 
diversity [4–7]. For example, nuclear architecture, 
chromatin modification, transcriptional dynamics at a 
promoter site, translation rates, mRNA degradation and 
protein degradation are sources of intrinsic noise [8].
Extrinsic noise may generate from availability of gene 
expression machineries, micro-fluctuations in cellular 
environment, cell division or asymmetric partitioning [8].

Expression noise can give rise to sub-populations 
of cells that rapidly respond to changing environmental 
stimuli. Such division of labor may be advantageous to 
modulate their function on a rapid time-scale. On the other 
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hand, noise in gene expression may fundamentally limit 
the accuracy of cellular processes, and thus should be 
minimized and compensated [9]. Several mechanisms of 
buffering noise in mammalian gene expression have been 
proposed, mostly involving gene-specific solutions such 
as feedback or feed-forward motifs in their transcriptional 
regulation [10, 11]. Recently, Halpern et al. [12] combined 
deep sequencing of nuclear and cytoplasmic RNA fractions 
with single-molecule transcript imaging in mammalian 
cells and demonstrated that nuclear retention of mRNA 
could efficiently buffer cytoplasmic transcript levels from 
noise that emanated from transcriptional bursts. By using 
single-cell reporter assays, Schmiedel et al. [13] showed 
that  microRNAs decreased protein expression noise for 
lowly expressed genes but increased noise for highly 
expressed genes. The authors estimated that hundreds of   
(lowly expressed) genes in mouse embryonic stem cells 
had reduced noise due to substantial miRNA regulation. 
Their findings suggested that microRNAs conferred 
precision to protein expression. However, studies on the 
control of gene expression noise at population level were 
relatively lack. 

It is well recognized that human cancer is 
heterogenous [14, 15]. Numerous genetic lesions 
are involved in cancer development, together with  
abnormalities in DNA methylation, histone modification, 
promoter accessibility and other genome-wide rewirings, 
which result in expression deregulation of many genes  
[16–18]. Even in the same tumor,  intra-tumoral genetic 
heterogeneity has been revealed by sequencing of the 
genomes of cancer cells from different sectors [19, 20]. 
In addition to this, tumor infiltrated endothelial, stromal 
and immune cells add more complex to gene expression 
variability in human cancers [21]. On the other hand, gene 
expression noise gives cell the environmental adaptation 
and evolution advantages under adverse conditions [22]. 
However, the regulation/deregulation of gene expression 
noise in human cancers and its underlying mechanism (s) 
were not determined. The Cancer Genome Atlas  project 
sequenced mRNA transcripts of ample human cancer 
patients, which offered us the opportunity to probe the 
gene expression noise change between matched tumor-
normal tissues at population level and its significance in 
cancer development.

RESULTS

Gene expression noise was increased in human 
cancers

We took breast invasive carcinoma  (BRCA), liver 
hepatocellular carcinoma  (LIHC), lung adenocarcinoma  
(LUAD), lung squamous cell carcinoma  (LUSC) and 
colon adenocarcinoma  (COAD) as our research objects 
due to their high incidence worldwide. For each of a 

total of 16,424 genes, we calculated its expression noise 
(defined as Standard Deviation divided by Average  [13]) 
in tumor and paired normal tissues of different cancer types 
(Supplementary Table S1), and found that 87.2%, 95.3%, 
93.0% and 93.8% of the 16,424 genes had increased 
expression noise in tumor tissues in BRCA, LIHC, LUAD 
and LUSC respectively (Figure 1A–1D, left). To a lesser 
extent, the ratio of genes with increased expression noise 
in tumor tissues was 74.9% in COAD (Figure 1E, left). We 
calculated the Log (Noise_Tumor/Noise_Normal) value of 
each gene in different cancer types, and plotted the frequency 
at the values in contrast to random distribution. Wilcoxon’s 
signed rank test showed that the median of Log (Noise_
Tumor/Noise_Normal) was significantly larger than zero in 
BRCA, LIHC, LUAD, LUSC and COAD (Figure 1A–1E,  
right), demonstrating that the gene expression noise was 
significantly increased in tumors when compared to normal 
tissues. 

One  possibility was that the increased noise arise 
from a mixture of tumor and infiltrated non-tumor cells. 
Therefore, we selected breast cancer patient for tumor 
cell purity larger than 80% or 90% according to their 
clinical data. Each subgroup contained 51 or 25 cases 
(Supplementary Table S2). In these two ultra-pure patient 
subgroups, there were still more than 80% genes with 
increased expression noise in cancer tissues (Figure 2A 
and 2B, Wilcoxon’s signed rank test p < 0.0001), although 
we noticed a tendency of greater expression noise in 
patients with less tumor purity. Thus, the increased 
expression noise in tumor tissues was not caused by 
mixture of non-tumor cells. 

A common gene set with increased expression 
noise existed across different cancer types

We next took a closer look at the gene expression 
noise in cancers. There were 9,160 genes with increased 
expression noise shared by BRAC, LIHC, LUAD, LUSC 
and COAD. When we set the threshold of noise fold 
change (Noise_Tumor/Noise_Normal)  > 1.5 or > 2, we 
retrieved 1,988 and 269 genes respectively (Supplementary 
Table S3). We performed Gene Ontology analysis of this 
set of 269 genes on PANTHER Classification System  
(http://pantherdb.org/), and found that they were clustered 
in cell adhesion, catalytic, metabolic and other functions, 
reflecting that these processes were most easily loss of 
control among cancer patients (Figure 3). We also tried to 
find the common genes that had decreased expression noise 
in tumor tissues of different cancer types. However, there 
were only 24 genes with decreased expression noise in 
BRCA, LIHC, LUAD, LUSC and COAD simultaneously, 
and 9 genes with expression noise decreased above 10%  
(Supplementary Table S3). The result further suggested 
that increased rather than decreased gene expression noise 
were much more frequent events in human cancers.   
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Gene expression noise was inversely correlated 
with p53 status

The p53 signal pathway is pivotal in maintaining 
genome stability, and is one of the most frequently 
mutated targets in cancer development [23]. We next 
investigated the contribution of p53 status to gene 
expression noise. Patient cohorts of different cancer types 
were sorted into the top and bottom quartiles of tumor p53 
activity  (Supplementary Figure S1 and Supplementary 
Table S4). We compared the expression noise of each of 
the 16,424 genes in lower and higher p53 activity groups,  
and observed that 65.5%, 60.6%, 72.3%, and 67.4% 
genes had increased expression noise in patient groups 
of lower p53 activity groups in BRCA, LIHC,LUAD 
and LUSC respectively (Figure 4A–4D, Wilcoxon’s 

signed rank test p < 0.0001). These results suggested an 
inverse correlation between gene expression noise and 
p53 activity. But in COAD, less than a half (46.2%) of 
genes had increased expression noise in lower p53 activity 
group when compared to higher p53 activity group. 
(Figure 4E), suggested a different role of p53 pathway in 
gene expression noise control in COAD.

Gene expression noise was inversely correlated 
with local immune activity

Host immune system has the potential to eliminate 
neoplastic cells. But its contribution in modulating gene 
expression noise in cancer is unknown. To address this 
issue,  we sorted the patients of each cancer type into 
the top and bottom quartiles according to local immune 

Figure 1: Gene expression noise was increased in human cancers. (A–E) The expression noise was calculated as STDEV/
AVERAGE in tumor or normal tissues for each of a total of 16,424 genes. The frequency of Log (Noise_Tumor/Noise_Normal) was plotted 
in contrast to random distribution. Wilcoxon’s signed rank test was used to test whether the median of Log (Noise_Tumor/Noise_Normal) 
equals to 0. BRCA, breast invasive carcinoma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous 
cell carcinoma; COAD, colon adenocarcinoma.
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Figure 2: Gene expression noise increased in ultra-pure breast cancer samples. Expression noise of each gene in tumor and 
normal tissues from breast cancer patients with  tumor cell purity larger than 80% (A) or 90% (B) was shown as scatter plots. The frequency 
of Log (Noise_Tumor/Noise_Normal) was plotted in contrast to random distribution. Wilcoxon’s signed rank test was used to test whether 
the median of Log (Noise_Tumor/Noise_Normal) equals to 0.

Figure 3: Gene ontology analysis of the 269 genes that had 2-fold increase of expression noise  in BRCA, LIHC, LUAD, 
LUSC and COAD.
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activity in tumors  (Supplementary Figure S2 and 
Supplementary Table S5), and compared the expression 
noise in lower and higher immune activity patient groups. 
As shown in Figure 5A–5D, 70.1% genes had increased 
noise in patient group of lower local immune activity in 
BRCA, followed by LIHC (61.0%), LUAD (65.6% ) and 
LUSC (51.0%)  (Wilcoxon’s signed rank test p < 0.0001), 
with an exception in COAD (48.3%)  (Figure 5E). Thus, 
gene expression noise was inversely correlated to local 
immune activity in BRCA, LIHC, LUAD and LUSC, but 
not in COAD. 

Smaller gene expression noise was associated 
with better patient prognosis

p53 status and host immune activity are predictors 
of cancer prognosis [24]. Hence, gene expression noise 
may associate with disease outcome. To verify this 
hypothesis, we divided patients of each cancer type into 

two groups, one include stage I (early), the other include 
III or IV (late) at diagnosis (Supplementary Table S6), 
and compared gene expression noise between these two 
groups. Our data showed that 55.6%, 72.6%, 60.2%, 
53.7% and 60.1% genes had increased expression noise 
in late stage as compared to early stage patients of 
BRCA, LIHC, LUAD, LUSC and COAD respectively 
(Figure 6A–6E, Wilcoxon’s signed rank test p < 0.0001), 
suggesting that patient groups with better prognosis (early 
stage at diagnosis) tend to have smaller expression noise.  

Gene expression noise was positively correlated 
with p53 status in normal tissues

We next asked whether p53 pathway played a role in 
the expression noise control in normal tissues. To answer 
this question, the RNA-seq data of the normal tissues 
of breast and lung cancer patients was used. We sorted 
patients into the top and bottom quartiles according to the 

Figure 4: Gene expression noise was inversely correlated to p53 status in cancers. Patient cohorts of  BRCA (A), LIHC (B), 
LUAD (C), LUSC (D) and COAD (E) were sorted into the top and bottom quartiles of p53 activity in tumors. The gene expression noise 
in tumors was calculated in each quartiles. The frequency of Log (Noise_p53Low/Noise_p53High) was plotted in contrast to random 
distribution. Wilcoxon’s signed rank test was used to test whether the median of Log (Noise_Tumor/Noise_Normal) equals to 0.
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p53 activity (Supplementary Table S7) and surprisingly 
found that there were only 46.1% and 45.8% genes had 
increased noise in breast and lung tissues of lower p53 
activity groups when compared to higher p53 activity 
groups  (Figure 7A and 7B, Wilcoxon’s signed rank test 
p < 0.0001). Hence, in contrast to cancer tissues, gene 
expression noise was positively correlated to p53 status 
in normal tissues.

DISCUSSION

Expression noise has been studied experimentally 
in a variety of cells, ranging from bacteria to mammalian 
cells with most of the attention has been restricted to 
intracellular noise in simple systems, such as genetic 
circuits, or a connected set of cellular reactions [25, 26]. 
At population level, gene expression noise study is 

relatively lack. In this work,  by using the RNA-seq data 
we studied the change of gene expression noise in different 
human cancer types at whole genomic level.     Genome 
instability is recognized as one of the hallmarks of cancer 
and multiple levels of gene regulations are dysfunctional 
due to genetic and epigenetic changes [21], which may 
increase the intrinsic noise of gene expression in cancers. 
Indeed, we found that expression noise of most genes 
was increased in cancers as compared to adjacent normal 
tissues in BRCA, LIHC, LUAD and LUSC, and to a lesser 
extent in COAD. Moreover, the gene expression noise 
was significantly increased in advanced stage cancers 
when compared to early stage cancers. These results 
showed a dynamic loss of expression control as disease 
progressing. Based on these findings, we suggested that 
cancer patient may benefit from therapies aimed to reduce 
gene expression noise.

Figure 5: Gene expression noise was inversely correlated to local immune activity in cancers. Patient cohorts of  BRCA (A),  
LIHC (B), LUAD (C), LUSC (D) and COAD (E) were sorted into the top and bottom quartiles of immune activity in tumors. The gene 
expression noise in tumors was calculated in each quartiles. The frequency of Log (Noise_immuLow/Noise_immuHigh) was plotted in 
contrast to random distribution. Wilcoxon’s signed rank test was used to test whether the median of Log (Noise_Tumor/Noise_Normal) 
equals to 0.
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Tumor suppressor p53  plays an important role in 
DNA damage response and genome stability surveillance. 
We showed that more than 60% genes had increased 
expression noise in  patients with lower p53 activity in 
breast, liver, and lung cancers, implying that loss of 
p53 function could increase gene expression noise. The 
mechanism that p53 inhibit gene expression noise is not 
completely known in so far. While inducing cell cycle 
arrest, Demidenko and other researchers showed that 
p53 simultaneously suppressed cell senescence program 
[27–30]. Senescence was an integrated and widespread 
component of  cancer development [31]. Insterestingly, 
increased gene expression noise was observed in aged 
mouse cardiomyocytes [32]. Thus,  p53 may inhibit 
gene expression noise in cancers partly through its anti-
senescence function. However, the relationship between 
p53 activity and expression noise in cancer was not 
observed in normal breast and lung tissues. One possible 

explanation for the difference is that DNA repair apparatus 
like p53 pathway remains at extremely low levels in 
physiological conditions [33]; and elevated p53 activity 
may implicate pathological changes in the peri-tumor 
tissues. 

Tumor-infiltrated immune cells are frequently 
observed in cancers. Depending on the type of the immune 
cells, they exert supportive or suppressive roles in cancer 
development. Anti-tumor immune activity was mainly 
mediated by infiltrated cytotoxic T lymphocytes  and 
natural killer cells through secretion of Granzyme and 
Perforin [34, 35]. We found that higher local immune 
activity (as measured by the mRNA levels of Granzyme 
A and Perforin-1) predicted smaller expression noise in 
cancers. Effectively mobilized immune activity imposes 
selection pressure on cancer cells, results in elimination 
of cancer heterogeneity and may explain the function of 
immune activity as an extrinsic factor in shaping gene 

Figure 6: Smaller gene expression noise was associated with better patient prognosis. Patient cohorts of  BRCA (A), LIHC (B),  
LUAD (C), LUSC (D) and COAD (E) were divided into two groups, on include stage I  at diagnosis( Early), the other include III or IV 
(Late). The expression noise was calculated in each groups. The frequency of Log (Noise_Late/Noise_Early) was plotted in contrast to 
random distribution. Wilcoxon’s signed rank test was used to test whether the median of Log (Noise_Tumor/Noise_Normal) equals to 0. 
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expression noise in cancers.  Unlike in breast, liver and 
lung cancers, gene expression noise in colon cancer are 
smaller in patients with lower p53 and local immune 
activity. The mechanism underlying this difference will 
need further studies. For example, other intracellular 
molecules, signal pathways and extracellular factors may 
be involved in gene expression noise regulation.

Here we investigated the gene expression noise in 
human cancers at transcriptomic and populational level. 
Translational and post-translational control of gene 
expression noise in cancers was not determined. Moreover, 
the association of intra-tumor gene expression noise with 
p53 status, immune activity  and its relationship with 
prognosis was not answered. Recent progress in single cell 
RNA sequencing will provide invaluable tools to solve this 
problem [36, 37].

MATERIALS AND METHODS

Datasets  

The RNA-seq data (level 3) of breast invasive 
carcinoma (BRCA), liver hepatocellular carcinoma 
(LIHC), lung adenocarcinoma (LUAD),  lung squamous 

cell carcinoma (LUSC)  and colon adenocarcinoma 
(COAD) were downloaded from TCGA website (https://
tcga-data.nci.nih.gov/). For each sample, the mRNA 
expression levels were determined on Illumina HiSeq 
2000 RNA Sequencing Version 2 platform. The patients’ 
IDs used in this study were listed in supplementary 
materials.

Calculation of gene expression noise 

 Gene expression noise was defined as Standard 
Deviation divided by Average according to Schmiedel’s 
method [13]. For each of a total of 16,424 genes, the noise 
was calculated in the normal and/or tumor tissues of a 
patient cohort. The logarithms of Noise_Tumor/Noise_
Normal were used to compare its distribution from random.

Gene ontology analysis  

Gene Ontology and Pathway analysis were 
performed on The PANTHER Classification System 
(http://pantherdb.org/). This platform provides a 
comprehensive set of functional annotation tools to 
understand biological meaning behind large lists of genes.

Figure 7: Gene expression noise was positively correlated with p53 activity in normal tissues. Normal tissues from breast  
(A) and lung cancer (B) patients were sorted into the top and bottom quartiles of p53 activity. The expression noise was calculated in each 
quartile. The frequency of Log (Noise_p53Low/Noise_p53High) was plotted in contrast to random distribution. Wilcoxon’s signed rank 
test was used to test whether the median of Log (Noise_Tumor/Noise_Normal) equals to 0. 
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Metrics of p53 status and local immune activity

  As described by Cristescu et al., the p53 status in 
a tumor sample was represented as the geometric mean of 
the mRNA levels of CDKN1A (also known as p21) and 
MDM2, two key molecules that involved in p53 pathway 
[38]. Similarly, the tumor local immune activity was 
calculated as the geometric mean of  Granzyme A and 
Perforin-1 mRNA levels according to Rooney’s method 
[39]. Patients were then sorted by their p53 or immune 
activity, and the difference of gene expression noise 
between the top quartile (higher p53 or immune activity) 
and bottom quartile  (lower p53 or immune activity) 
patient groups was investigated.

Statistics 

 Data analysis was performed with Graphpad 
software. Wilcoxon’s signed rank test was used to test 
whether the median of a set of values equals to zero  
(two tailed). 

ACKNOWLEDGMENTS AND FUNDING

 This work was supported in part by the grants from 
the Nature Science Foundation of China  (81071655, 
81372149) , China Postdoctoral Science Foundation  
(2015M572366), the National Science Foundation 
Projects of Guangdong Province  (2014A030313547), the 
High level Talents Project of Guangdong Province  (2013), 
Innovation of Science and Technology Commission of 
Shenzhen Municipality  (JCYJ20140418091413510, 
JCYJ20140418193546118, ZDSY20130329101130496, 
KQCX20140519104925300). 

CONFLICTS OF INTEREST

The authors declare no competing financial interests.

REFERENCES

1. Blake WJ, M KA, Cantor CR, Collins JJ. Noise in 
eukaryotic gene expression. Nature. 2003; 422:633–7. doi: 
10.1038/nature01546 nature01546.

2. Golding I, Paulsson J, Zawilski SM, Cox EC. Real-time 
kinetics of gene activity in individual bacteria. Cell. 2005; 
123:1025–36. doi: 10.1016/j.cell.2005.09.031.

3. Dar RD, Razooky BS, Singh A, Trimeloni TV, 
McCollum JM, Cox CD, Simpson ML, Weinberger LS. 
Transcriptional burst frequency and burst size are equally 
modulated across the human genome. Proc Natl Acad Sci 
USA. 2012; 109:17454–9. doi: 10.1073/pnas.1213530109.

4. Volfson D, Marciniak J, Blake WJ, Ostroff N, Tsimring LS, 
Hasty J. Origins of extrinsic variability in eukaryotic 
gene expression. Nature. 2006; 439:861–4. doi: 10.1038/
nature04281.

 5. Lestas I, Vinnicombe G, Paulsson J. Fundamental limits on 
the suppression of molecular fluctuations. Nature. 2010; 
467:174–8. doi: 10.1038/nature09333.

 6. Bowsher CG, Swain PS. Identifying sources of variation 
and the flow of information in biochemical networks. Proc 
Natl Acad Sci USA. 2012; 109:E1320–8. doi: 10.1073/
pnas.1119407109.

 7. Lei X, Tian W, Zhu H, Chen T, Ao P. Biological Sources of 
Intrinsic and Extrinsic Noise in cI Expression of Lysogenic 
Phage Lambda. Sci Rep. 2015; 5:13597. doi: 10.1038/
srep13597.

 8. Chalancon G, Ravarani CN, Balaji S, Martinez-Arias A, 
Aravind L, Jothi R, Babu MM. Interplay between gene 
expression noise and regulatory network architecture. 
Trends Genet. 2012; 28:221–32. doi: 10.1016/j.
tig.2012.01.006.

 9. Raj A, van Oudenaarden A. Nature, nurture, or chance: 
stochastic gene expression and its consequences. Cell. 
2008; 135:216–26. doi: 10.1016/j.cell.2008.09.050.

10. Chepyala SR, Chen YC, Yan CC, Lu CY, Wu YC, Hsu CP. 
Noise propagation with interlinked feed-forward pathways. 
Sci Rep. 2016; 6:23607. doi: 10.1038/srep23607.

11. Dhananjaneyulu V, Sagar PV, Kumar G, Viswanathan GA. 
Noise propagation in two-step series MAPK cascade. PLoS 
One. 2012; 7:e35958. doi: 10.1371/journal.pone.0035958.

12. Bahar Halpern K, Caspi I, Lemze D, Levy M, Landen S, 
Elinav E, Ulitsky I, Itzkovitz S. Nuclear Retention of 
mRNA in Mammalian Tissues. Cell Rep. 2015; 13:2653–62.  
doi: 10.1016/j.celrep.2015.11.036.

13. Schmiedel JM, Klemm SL, Zheng Y, Sahay A, Bluthgen N, 
Marks DS, van Oudenaarden A. Gene expression. 
MicroRNA control of protein expression noise. Science. 
2015; 348:128–32. doi: 10.1126/science.aaa1738.

14. Boutros PC, Fraser M, Harding NJ, de Borja R, Trudel D, 
Lalonde E, Meng A, Hennings-Yeomans PH, McPherson A, 
Sabelnykova VY, Zia A, Fox NS, Livingstone J, et al. 
Spatial genomic heterogeneity within localized, multifocal 
prostate cancer. Nat Genet. 2015; 47:736–45. doi: 10.1038/
ng.3315.

15. Lawrence MS, Stojanov P, Polak P, Kryukov GV, 
Cibulskis K, Sivachenko A, Carter SL, Stewart C, 
Mermel CH, Roberts SA, Kiezun A, Hammerman PS, 
McKenna A, et al. Mutational heterogeneity in cancer and 
the search for new cancer-associated genes. Nature. 2013; 
499:214–8. doi: 10.1038/nature12213.

16. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, 
Garraway LA, Golub TR, Meyerson M, Gabriel SB, 
Lander ES, Getz G. Discovery and saturation analysis 
of cancer genes across 21 tumour types. Nature. 2014; 
505:495–501. doi: 10.1038/nature12912.

17. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, 
Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, 
Leiserson MD, Miller CA, Welch JS, et al. Mutational 
landscape and significance across 12 major cancer types. 
Nature. 2013; 502:333–9. doi: 10.1038/nature12634.



Oncotarget72020www.impactjournals.com/oncotarget

18. Anglani R, Creanza TM, Liuzzi VC, Piepoli A, Panza A, 
Andriulli A, Ancona N. Loss of connectivity in cancer co-
expression networks. PLoS One. 2014; 9: e87075. doi: 
10.1371/journal.pone.0087075.

19. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, 
Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, 
Velculescu VE, Kinzler KW, Vogelstein B, et al. Distant 
metastasis occurs late during the genetic evolution of 
pancreatic cancer. Nature. 2010; 467:1114–7. doi: 10.1038/
nature09515.

20. Gerlinger M, Rowan AJ, Horswell S, Larkin J, 
Endesfelder D, Gronroos E, Martinez P, Matthews N, 
Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, et al. 
Intratumor heterogeneity and branched evolution revealed by 
multiregion sequencing. N Engl J Med. 2012; 366:883–92.  
doi: 10.1056/NEJMoa1113205.

21. Hanahan D, Weinberg RA. Hallmarks of cancer: the next 
generation. Cell. 2011; 144:646–74. doi: 10.1016/j.cell. 
2011.02.013.

22. Eldar A, Elowitz MB. Functional roles for noise in 
genetic circuits. Nature. 2010; 467:167–73. doi: 10.1038/
nature09326.

23. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 
2000; 100:57–70.

24. Cha YJ, Kim HR, Lee CY, Cho BC, Shim HS. 
Clinicopathological and prognostic significance of 
programmed cell death ligand-1 expression in lung 
adenocarcinoma and its relationship with p53 status. 
Lung Cancer. 2016; 97:73–80. doi: 10.1016/j.lungcan. 
2016.05.001.

25. Guantes R, Rastrojo A, Neves R, Lima A, Aguado B, 
Iborra FJ. Global variability in gene expression and 
alternative splicing is modulated by mitochondrial content. 
Genome Res. 2015; 25:633–44. doi: 10.1101/gr.178426.114.

26. Jones DL, Brewster RC, Phillips R. Promoter architecture 
dictates cell-to-cell variability in gene expression. Science. 
2014; 346:1533–6. doi: 10.1126/science.1255301.

27. Demidenko ZN, Korotchkina LG, Gudkov AV, 
Blagosklonny MV. Paradoxical suppression of cellular 
senescence by p53. Proc Natl Acad Sci USA. 2010; 
107:9660–4. doi: 10.1073/pnas.1002298107.

28. Leontieva OV, Gudkov AV, Blagosklonny MV. Weak p53 
permits senescence during cell cycle arrest. Cell Cycle. 
2010; 9:4323–7. doi: 10.4161/cc.9.21.13584.

29. Korotchkina LG, Leontieva OV, Bukreeva EI, 
Demidenko ZN, Gudkov AV, Blagosklonny MV. The 
choice between p53-induced senescence and quiescence 

is determined in part by the mTOR pathway. Aging 
(Albany NY). 2010; 2:344–52. doi: 10.18632/aging.100160.

30. Lane DP, Verma C, Fang CC. The p53 inducing drug 
dosage may determine quiescence or senescence. Aging 
(Albany NY). 2010; 2:748. doi: 10.18632/aging.100229.

31. Perez-Mancera PA, Young AR, Narita M. Inside and out: the 
activities of senescence in cancer. Nat Rev Cancer. 2014; 
14:547–58. doi: 10.1038/nrc3773.

32. Bahar R, Hartmann CH, Rodriguez KA, Denny AD, 
Busuttil RA, Dolle ME, Calder RB, Chisholm GB, 
Pollock BH, Klein CA, Vijg J. Increased cell-to-cell 
variation in gene expression in ageing mouse heart. Nature. 
2006; 441:1011–4. doi: 10.1038/nature04844.

33. Uphoff S, Lord ND, Okumus B, Potvin-Trottier L, 
Sherratt DJ, Paulsson J. Stochastic activation of a DNA 
damage response causes cell-to-cell mutation rate variation. 
Science. 2016; 351:1094–7. doi: 10.1126/science.aac9786.

34. Ali HR, Provenzano E, Dawson SJ, Blows FM, Liu B, 
Shah M, Earl HM, Poole CJ, Hiller L, Dunn JA, Bowden SJ, 
Twelves C, Bartlett JM, et al. Association between CD8+ 
T-cell infiltration and breast cancer survival in 12,439 
patients. Ann Oncol. 2014; 25:1536–43. doi: 10.1093/
annonc/mdu191.

35. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, 
Lanier LL, Yokoyama WM, Ugolini S. Innate or adaptive 
immunity? The example of natural killer cells. Science. 
2011; 331:44–9. doi: 10.1126/science.1198687.

36. Wen L, Tang F. Single-cell sequencing in stem cell biology. 
Genome Biol. 2016; 17:71. doi: 10.1186/s13059-016-0941-0.

37. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, 2nd, 
Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, 
Murphy G, Fallahi-Sichani M, Dutton-Regester K, et al.  
Dissecting the multicellular ecosystem of metastatic 
melanoma by single-cell RNA-seq. Science. 2016; 
352:189–96. doi: 10.1126/science.aad0501.

38. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, 
Wong SS, Liu J, Yue YG, Wang J, Yu K, Ye XS, Do IG, 
Liu S, et al. Molecular analysis of gastric cancer identifies 
subtypes associated with distinct clinical outcomes. Nat 
Med. 2015; 21:449–56. doi: 10.1038/nm.3850.

39. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. 
Molecular and genetic properties of tumors associated with 
local immune cytolytic activity. Cell. 2015; 160:48–61. doi: 
10.1016/j.cell.2014.12.033.


