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The in vivomeasurement ofmetabolic flux by 13C-basedmetabolic flux analysis (13C-MFA) provides valuable information regarding
cell physiology. Bioinformatics tools have been developed to estimate metabolic flux distributions from the results of tracer isotopic
labeling experiments using a 13C-labeled carbon source. Metabolic flux is determined by nonlinear fitting of a metabolic model to
the isotopic labeling enrichment of intracellular metabolites measured by mass spectrometry. Whereas 13C-MFA is conventionally
performed under isotopically constant conditions, isotopically nonstationary 13C metabolic flux analysis (INST-13C-MFA) has
recently been developed for flux analysis of cells with photosynthetic activity and cells at a quasi-steady metabolic state (e.g.,
primary cells or microorganisms under stationary phase). Here, the development of a novel open source software for INST-13C-
MFA on theWindows platform is reported. OpenMebius (Open source software for Metabolic flux analysis) provides the function
of autogenerating metabolic models for simulating isotopic labeling enrichment from a user-defined configuration worksheet.
Analysis using simulated data demonstrated the applicability of OpenMebius for INST-13C-MFA. Confidence intervals determined
by INST-13C-MFAwere less than those determined by conventional methods, indicating the potential of INST-13C-MFA for precise
metabolic flux analysis. OpenMebius is the open source software for the general application of INST-13C-MFA.

1. Introduction

The in vivo measurement of metabolic flux by 13C-based
metabolic flux analysis (13C-MFA) provides valuable infor-
mation regarding cell physiology in fields ranging from the
metabolic engineering of microorganisms to the analysis of
human metabolic diseases [1–3]. Since metabolic fluxes are
estimated by a computational analysis of the isotopic labeling
data produced by a series of wet experiments [4–7], the
development of an open software platform for 13C-MFA is
desired for further methodology improvement and wider
applications for in vivometabolic flux measurement.

In 13C-MFA, after feeding of a 13C-labeled carbon source
into a cell culture, amino acids or intermediates are extracted
and subjected tomass spectrometric analysis. For the simplest
example, [1-13C] glucose is converted to pyruvate (PYR) and
then alanine (Ala) via two glycolytic pathways including the
Embden-Meyerhof-Parnas (EMP) pathway and the pentose

phosphate (PP) pathway (Figure 1(a)). Whereas one 13C-
labeled molecule and one nonlabeled molecule of Ala are
generated from one molecule of [1-13C] glucose by the EMP
pathway, no 13C-labeled Ala is produced via the PP pathway,
because the 13Catom ismetabolically discarded asCO

2
.Thus,

the metabolic flux ratio between the EMP and PP pathways
could be estimated from the relative abundances of 13C-
labeled and nonlabeled Ala using mass spectrometry.

In 13C-MFA of complex networks of carbon central
metabolism, metabolic fluxes are computationally estimated
by a nonlinear optimization method since the relationship
between metabolic fluxes and isotopic labeling enrichment is
usually nonlinear. For that purpose, a metabolic model 𝑀 is
constructed based on themetabolic pathway network and the
carbon transition network, which represents the transitions
of carbon atoms between substrates and products in a
metabolic reaction (Figure 1(b)).𝑀 is a function to calculate
isotopic labeling enrichment or the mass distribution vector
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Figure 1: Principle of 13C-based metabolic flux analysis. (a) Principle of 13C-based metabolic flux analysis (13C-MFA). Isotopic enrichment
of alanine depends on metabolic flux via the Embden-Meyerhof-Parnas (EMP) pathway or the pentose phosphate (PP) pathway. (b) The
configuration of the model is described in “Metabolic network.xlsx.” The metabolic reactions and the carbon transfer are described in the
“Rxns” and “Carbon transitions” columns, respectively. Detailed rules are provided in the tutorial on the project home page. ((c) and (d))
Metabolic steady state and isotopically stationary. The isotopic labeling experiment is performed under metabolic steady state. After feeding
13C-labeled glucose, isotopic labeling enrichment changes in a time-dependent manner and then reaches a stationary condition. Whereas
cells are sampled under isotopically stationary conditions in conventional 13C-MFA, time courses of isotopic labeling enrichment during an
isotopically transient state are used for INST-13C-MFA.

(MDV) of metabolites from the given metabolic fluxes and
isotopic labeling patterns of carbon sources. Consider

MDVsim
𝑗

= 𝑀(V, 𝑥inp
) . (1)

Here,MDVsim
𝑗

is a simulatedmass spectrumofmetabolite 𝑗. V
and𝑥inp are the vectors ofmetabolic flux and isotopic labeling
pattern of carbon source, respectively. A vector of metabolic
flux V is fitted to the observed mass spectrum (MD̂V

𝑗
) by a

nonlinear optimization method:

𝐷 = MD̂V
𝑗
−MDVsim

𝑗
,

Vopt = argmin
V

𝑁

∑

𝑗=1

(𝐷
𝑇
𝐶
−1

MD̂V𝑗
𝐷) , s.t. 𝑆V = 0.

(2)

The optimized value Vopt is the estimated metabolic
flux distribution in the cells to minimize the covariance-
weighted sum of squared difference. 𝐶MD̂V𝑗 is the covariance
matrix with a measurement standard deviation located on
the diagonal. 𝑆 is the stoichiometric matrix. There are several
software packages to perform conventional 13C-MFA such as
13CFLUX [8], 13CFLUX2 [9], C13 [10], Metran [11], FIA [12],
influx s [13], and OpenFLUX [14].

In the case of conventional 13C-MFA, isotopic labeling
data must be obtained from cell culture under metabolic
steady state and isotopically stationary conditions (Figures

1(c) and 1(d)). Here, metabolic steady state indicates the
constant flux distribution and pool size of intracellular
metabolites that has to be maintained during the isotopic
labeling experiment (Figure 1(c)). An isotopically stationary
condition means constant isotopic labeling enrichment of
metabolites. A long culture period has often been required
to achieve isotopically stationary conditions after feeding a
13C-labeled substrate.

In recent years, a novel method has been developed to
determine metabolic flux using a time course of isotopic
labeling data obtained from an isotopically transient state
(Figure 1(d)) [15–17]. For the isotopically nonstationaryMFA
(INST-13C-MFA), an expanded metabolic model 𝑀 is used
to simulate isotopic labeling dynamics, taking into consider-
ation the metabolite pool size in the cell:

MDVsim
𝑗,𝑡=𝑡𝑘

= 𝑀(V, 𝑥inp
, 𝑋, 𝑡
𝑘
) , (3)

where 𝑡
𝑘
is the time of the 𝑘th sampling point.𝑋 is the vector

of the pool sizes of all metabolites in the metabolic system.
The formulation indicates that the intracellular pool sizes
of intermediates in central metabolism 𝑋 must be precisely
determined for INST-13C-MFA [18, 19]. Time course analysis
by rapid sampling techniques has also been performed in
INST-13C-MFA to analyze the fast turnover of isotopic
labeling enrichment in carbon central metabolism [20, 21].
Despite these technical challenges, INST-13C-MFA would be
essential for the analysis of photoautotrophic organisms using
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CO
2
as a carbon source.Metabolic flux cannot be determined

by conventional 13C-MFA using 13CO
2
as a carbon source,

because all metabolites are uniformly labeled after reaching
an isotopically stationary phase [22]. The methodology is
also promising for the precise metabolic flux analysis of
cells at a quasi-steady metabolic state (e.g., primary cells or
microorganisms in stationary phase). In order to analyze a
time course dataset produced by INST-13C-MFA, a software
package with a graphical user interface has recently been
reported (INCA [23]). In addition to these sophisticated
tools, open source software packages such as OpenFLUX [14]
for conventional 13C-MFA are also useful for facilitating the
further development of INST-13C-MFA [24].

Here, a novel open source software package for INST-
13C-MFA, OpenMebius (Open source software for Metabolic
flux analysis), is reported. OpenMebius has been developed
to perform INST-13C-MFA and conventional 13C-MFA using
a user-defined metabolic model. A metabolic model 𝑀 can
be automatically generated from a metabolic pathway and
a carbon transition network described in text or Microsoft
Excel worksheet files. The metabolic flux distribution can be
estimated by nonlinear fitting of the metabolic model to the
isotopic labeling enrichment data.

2. Materials and Methods

2.1. Model Construction. OpenMebius is implemented in
MATLAB (MathWorks, Natick, MA, USA) for the Win-
dows platform. The software consists of two parts: auto-
mated model construction and metabolic flux estimation by
nonlinear optimization. Functions for processing raw mass
spectrum data and the determination of confidence intervals
are also included. OpenMebius is designed for conventional
13C-MFA and INST-13C-MFA usingmass spectrometry data.
Isotopic labeling enrichment of metabolites is described by a
mass distribution vector (MDV) [25]:

MDV
𝑗
=

[
[
[
[

[

𝑚 + 0

𝑚 + 1

...
𝑚 + 𝑛

]
]
]
]

]

with
𝑛

∑

𝑖=0

𝑚 + 𝑖 = 1, (4)

where MDV
𝑗
is the vector of isotopic labeling enrichment

of metabolite 𝑗. 𝑚 + 𝑖 indicates the relative abundance of a
metabolite in which 𝑖 carbons are labeled with 13C. To obtain
the MDV

𝑗
of the carbon skeleton, mass spectrum data are

corrected for the presence of naturally occurring isotopes
using the correction matrix [26].

In conventional 13C-MFA, a metabolic model 𝑀 is an
algebraic equation used to generate MDVsim

𝑗
from the vector

of metabolic flux (V) and the isotopic labeling pattern of a
carbon source (𝑥inp

), as shown in (1).
Since the metabolic flux is determined in cells at

metabolic steady state, V follows the stoichiometric equation
described by

𝑆V = 0, (5)

where 𝑆 is the stoichiometric matrix. In OpenMebius, 𝑆

is constructed from a metabolic network described in the
“Rxns” column in a user-defined configuration worksheet
(Figure 1(b)), taking into consideration the fluxes for biomass
syntheses and product excretion. MDVsim

𝑗
is calculated by

the framework of elementary metabolite units (EMU) [27]
using the carbon transition information described in the
“carbon transitions” column of the configuration worksheet
(Figure 1(b)). In the framework, the carbon transition net-
work is decomposed to cascade networks of EMUsdepending
on those carbon numbers.The cascade networks of the EMUs
with 𝑠th carbon follow the EMU balance equation [27]:

𝐴
𝑠
(V) 𝑍
𝑠
= 𝐵
𝑠
(V) 𝑌
𝑠
(𝑥

inp
) . (6)

Here, each row in matrix 𝑍
𝑠
is MDV of corresponding EMU.

The matrix 𝑌
𝑠
(𝑥

inp
) includes EMUs of the carbon source or

the smaller size EMUs. The element 𝑎
𝑠
(𝑖, 𝑗) in row 𝑖 and

column 𝑗 of matrices 𝐴
𝑠
(V) and the element 𝑏

𝑠
(𝑖, 𝑗) of matrix

𝐵
𝑠
(V) are described, respectively, as follows:

𝑎
𝑠
(𝑖, 𝑗)

= {
−sum of fluxes consuming, 𝑖th EMU in 𝑍

𝑠
, 𝑖 = 𝑗,

flux to 𝑖th EMU in 𝑍
𝑠
from 𝑗th EMU in 𝑍

𝑠
, 𝑖 ̸= 𝑗,

𝑏
𝑠
(𝑖, 𝑗) = −flux to 𝑖th EMU in 𝑍

𝑠
from 𝑗th EMU in 𝑌

𝑠
.

(7)

In the case of INST-13C-MFA, the metabolic model 𝑀
is expanded to describe a transition state of isotopic labeling
(Figure 1(d)) by considering the dilution of isotopic labeling
enrichment depending on the pool size of intermediates, as
shown in (3), where 𝑋 is a vector of the pool size of each
metabolite that is constant under metabolic steady state. 𝑡

𝑘
is

the time of the 𝑘th sampling point. In this study, instead of a
direct description of themetabolicmodel𝑀, time-dependent
changes in the isotopic labeling enrichment of metabolite 𝑗

are described by the differential equation as follows:

𝑑MDVsim
𝑗,𝑡=𝑡𝑘

𝑑𝑡

=
1

𝑋
𝑗

(

𝑛

∑

𝑖=1

(Vin
𝑖
MDVsim

𝑖,𝑡=𝑡𝑘
) −

𝑚

∑

𝑙=1

(Vout
𝑙
MDVsim

𝑗,𝑡=𝑡𝑘
)) ,

(8)

where Vin
𝑖
and Vout
𝑙

represent the fluxes of the 𝑖th inflow reac-
tion and the 𝑙th outflow reaction of metabolite 𝑗, respectively.
The model is automatically constructed by “ConstEMUnet-
work.m.” Detailed rules to describe a user-defined metabolic
pathway and carbon transition network are provided on the
project home page (http://www-shimizu.ist.osaka-u.ac.jp/
hp/en/software/OpenMebius.html). Euler’s method is imple-
mented to solve the ordinary differential equation (8) without
adaptive step size control. Stiff equations can be resolved by
carefully selecting the step size. The MDVsim

𝑗,𝑡=𝑡𝑘
are standard-

ized for each step to prevent divergence.Moreover, no specific
libraries were used to implement the algorithm for solving
differential equations.
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Figure 2: Procedure for metabolic flux estimation. Step 1: initial estimates of metabolic fluxes are given at random following the constraints
of the mass balance, biomass synthetic rate, and substrate consumption and production rate. Step 2: metabolic fluxes are determined by
minimizing the difference between simulated and measured isotopic labeling enrichment using the Levenberg-Marquardt method.

2.2. Metabolic Flux Estimation. The procedure for estimating
metabolic flux is shown in Figure 2. In Step 1, the initial flux
distribution is given considering the rates of biomass synthe-
sis, substrate consumption, and product excretion (Figure 2,
Step 1). In Step 2, the metabolic flux vector V is optimized to
minimize the covariance-weighted sum of squared difference
(SSD) using the Levenberg-Marquardtmethod [28] (Figure 2,
Step 2):

𝐷 = MD̂V
𝑗,𝑡=𝑡𝑘

−𝑀(V, 𝑥inp
, 𝑋, 𝑡
𝑘
) ,

Vopt = argmin
V

𝑁𝑠

∑

𝑘=1

𝑁

∑

𝑗=1

(𝐷
𝑇
𝐶
−1

MD̂V𝑗, 𝑡=𝑡𝑘
𝐷) , s.t. 𝑆V = 0.

(9)

Here,MD̂V
𝑗,𝑡=𝑡𝑘

is the vector of experimental data at 𝑡 = 𝑡
𝑘
.𝑁

is the total number of measured metabolites for data fitting.
𝑁𝑠 is the total number of sampling points (𝑁𝑠 = 1 in the case
of isotopically stationary), and 𝐶MD̂V𝑗,𝑡=𝑡𝑘

is the measurement
covariance matrix with the measurement standard deviation
located on the diagonal.

2.3. Calculation of Confidence Interval. Confidence intervals
of estimated fluxes are determined by OpenMebius using the
grid search method [29, 30]. The metabolic flux of reaction 𝑟

is fixed to Vopt,𝑟 +𝑑 and the objective function is reoptimized.
Here, Vopt,𝑟 is the optimized metabolic flux of reaction 𝑟 and
𝑑 is the perturbation level. The procedure is iterated with
increased or decreased 𝑑. The range of fixed metabolic flux
whose SSD is less than the threshold level is the confidence
interval. The threshold level is determined by

Φres,𝑠𝑟 ≤ Φres +
Φres
𝑛 − 𝑝

𝐹
𝛼
(1, 𝑛 − 𝑝) , (10)

whereΦres,𝑠𝑟 is the minimized SSD with one fixed flux,Φres is
the original minimized SSD, 𝑛 is the number of independent
data points used in the fitting, 𝑝 is the degrees of freedom
in the original flux fit, 𝐹 is the 𝐹-distribution, and 𝛼 is the
confidence level.

3. Results and Discussion

3.1. Implementation. OpenMebius is a toolbox for conven-
tional 13C-MFA and INST-13C-MFA using mass spectrome-
try data implemented inMATLABon theWindows platform.
Figure 3 shows a representative MATLAB code to perform
INST-13C-MFA on a simplified TCA cycle model mentioned
below. A metabolic model is generated by the “ConstE-
MUnetwork” function from user-defined metabolic network
information described in text or Excel worksheet files. After
loading related data, a metabolic flux distribution is esti-
mated by the “marquardt inst” function using a nonlinear
optimization (Levenberg-Marquardt method). For a routine
analysis, a batch execution of metabolic flux estimations
is also supported. See Materials and Methods for detailed
information.

3.2. Test Case of Isotopically Stationary MFA: Simplified TCA
Cycle Model. The performance of OpenMebius for conven-
tional 13C-MFA was tested with the simplified metabolic
network used in the previous study [14] (Figure 4). The
metabolic network consisted of the 16 reactions of the TCA
cycle using pyruvate and glutamate as substrates described by
Table 1. Among 16 metabolic fluxes, one influx (R1) and six
effluxes (R8–R13) were predetermined. The metabolic model
𝑀 was successfully constructed from the metabolic pathway
and carbon transition networks. Here, the vector of experi-
mental mass spectra (MD̂V

𝑗
) of valine, lysine, aspartate, and
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% Load model configuration

% Construction metabolic model

% Load experimental data

% Generation of isotope labeling data of carbon sources

% Initialization of metabolic flux

[model] = ConstEMUnetwork(model, frag);

SubsEMU = generating SubsEMU(Substrate, model);

[Flux] = initialization(model, Rm);
% Metabolic flux estimation for INST-13C-MFA

inst(model, Spectrum, 0, 1000, MDV Exp, Flux,

SubsEMU, time course, Pool, Stepsize);

[Flux,NetFlux,MDV, Pool,Chi2] = marquardt

[model, frag] = Modelconfig(‘TCA cycle model’, ‘csv’);t

InputData(frag, ‘Artificial data’, ‘csv’, ‘inst’);[Substrate, Spectrum, Rm, MDV Exp, time course, Pool]=

(a)

OpenMebius TCA cycle model Artificial data
MSReac.csv
Substrate.csv

efflux.csv
Substrate.csv

Components.csv
Mass balance.csv

Initial pool.csv
Time course.csv

Abundance list1.csv
Abundance list2.csv
Abundance list3.csv

...

(b)

Figure 3: Representative Matlab code and structure of the metabolic model directory for isotopically nonstationary-13C-metabolic flux
analysis using OpenMebius. (a) A metabolic model “model” is generated from information described in “TCA cycle model” directory by
“Modelconfig” and “ConstEMUnetwork” functions. After loading time course mass spectrometry data in “Artificial data” directory, isotopic
labeling data of carbon sources and an initial metabolic flux distribution are prepared. A metabolic flux distribution (“Flux”) is estimated
by the “marquardt inst” function using nonlinear optimization (Levenberg-Marquardt method). (b) Directory structure of the TCA cycle
model. Configuration for simulating isotopic labeling, carbon source, and mass balance are described in MSReac.csv, Substrate.csv, and
Mass balance.csv, respectively.The simulated data directory includes a series of experimental data. Fluxes for biomass syntheses and product
excretion, isotopic labeling information of substrate, metabolic concentrations of intracellular metabolite, and sampling times are described
in efflux.csv, Substrate.csv, Initial pool.csv, and Time course.csv, respectively. Components.csv defines chemical elements in amass fragment.
A series of Abandance list.csv are time course of isotopic labeling enrichment data. The “TCA cycle model” and online manual are available
on web page (http://www-shimizu.ist.osaka-u.ac.jp/hp/en/software/OpenMebius.html).

succinate was artificially created using the metabolic model,
the flux distribution described in the previous research [14],
and the isotopic labeling of pyruvate (mixture of 50% 1-13C
and 50% U-13C) and glutamate (100% 1-13C). Considering
the simulated data as the measured MDV, the metabolic flux
distribution was determined by the conventional 13C-MFA
function of OpenMebius. The estimated flux distribution
was essentially identical to that of simulated distribution,
which was consistent with the results of 13CFLUX [8] and
OpenFLUX [14] (Figure 4).The total computation time was 6
seconds for 10 cycles of optimization (Intel Core i7 2.80GHz),
which was the same as in OpenFLUX.

3.3. Test Case of Isotopically Nonstationary MFA: Simpli-
fied TCA Cycle Model. To simulate an isotopic labeling
experiment during an isotopically nonstationary period, the
pool size information of six intermediates was arbitrarily
added to the above TCA metabolic network. A metabolic

model for INST-13C-MFA was successfully constructed by
OpenMebius. To prepare simulated experimental data, time
course data of isotopic labeling dynamics of oxaloacetate
and succinate were created using the differential equation (8)
combined with the pool size information (𝑋). The current
version of OpenMebius uses the pool size information (𝑋)

as constant values, although 𝑋 should be estimated with
an optimization procedure since the pool size data are less
reliable than isotopic labeling measurements. That function
will be supported in a future version of OpenMebius. The
flux distribution (V) and isotopic labeling patterns of substrate
(𝑥

inp
) were identical to those of the previous section. The

MDVs of oxaloacetate and succinate were sampled 17 times
at 5-second intervals in silico, to which Gaussian noise (1%)
was added to imitate actual measurements. Considering
the simulated data as measured MDVs (MD̂V

𝑗,𝑡=𝑡𝑘
), the

metabolic flux distributionwas estimated usingOpenMebius.
The step size was set to 0.01 seconds to compute the simulated
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Figure 5: Dynamics of isotopic labeling enrichment. Time course of fitted (solid lines) and simulated (symbols) isotopic labelling enrichment
is shown. OAA, oxaloacetate; SUC, succinate.

MDVs. Although only two intracellular metabolites were
used for data fitting, the fitted isotopic labeling dynamics
and a flux distribution were consistent with the simulated
data (Figure 5). The total computational time for one cycle of
optimizationwas around 10minutes (Intel Core i7 2.80GHz).

For a performance comparison between conventional
13C-MFA and INST-13C-MFA, the 95% confidence intervals
of four representative reactions were determined by the grid
searchmethod (Figure 6(a)). For INST-13C-MFA, confidence
intervals were estimated using the simulated data with the 17
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Figure 6: Comparison of confidence intervals between INST-13C-MFA and conventional 13C-MFA. (a) 95% confidence intervals of four
representative fluxes were compared between conventional 13C-MFA (red) and INST-13C-MFA (blue). Black triangles indicate the actual
values. (b) Shapes of reoptimized sum of squared difference (SSD) determined by the grid search. The red and blue lines show the results of
conventional 13C-MFA and INST-13C-MFA, respectively. The horizontal lines represent the threshold value for the 95% confidence intervals.

time points prepared above. In the case of conventional
13C-MFA, a novel simulated dataset was prepared by the
following procedure. From the MDVsim

𝑗
of oxaloacetate and

succinate calculated using (1), 17 sets of simulated mass
spectra (MD̂V

𝑗
) data were produced with the addition of

Gaussian noise (1%). While an identical number of data
points was used, the confidence intervals determined by
INST-13C-MFAwere approximately 22% that of conventional
13C-MFA (Figure 6(a)). The sharply curved parabolas were
observed for INST-13C-MFA, suggesting that the time course
MDVdata includes information for amore precise estimation
of metabolic flux (Figure 6(b)). These results suggest that
INST-13C-MFA could be a reliable method to determine in
vivometabolic flux with narrow confidence intervals.

3.4. Test Case of Isotopically Nonstationary MFA: Escherichia
coli Model. INST-13C-MFA was also performed using sim-
ulated data produced from the central metabolic model of
E. coli with 54 reactions and 22 intermediates. A simulated
experimental dataset was prepared based on the literature-
reported metabolic flux distribution and metabolite pool size
data [31]. Pool sizes of unmeasured metabolites (GAP, PYR,
Xu5P, E4P, IsoCit, 𝛼KG, and glyoxylate) were arbitrarily set at
0.1 𝜇mol gDCW−1. Simulated MDVs were sampled 11 times
at 1-second intervals using 100% [1-13C] glucose as a carbon
source. Considering the simulated dataset as experimental
data, metabolic fluxes were estimated using the INST-13C-
MFA function of OpenMebius. The step size was set to
0.001 seconds to compute the simulated MDVs. Although
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Figure 7: Metabolic network of Escherichia coli. Solid lines and dotted lines indicate intracellular metabolic reactions and product excretion,
respectively.The arrows represent directions of the reactions. Simulated metabolic flux and estimated metabolic flux are shown left and right,
respectively. All fluxes are given as absolute values (𝜇mol gDCW−1 s−1). Abbreviations are shown in the Abbreviations section.

the computation time took 7 h 42min (Intel Xeon X5670
2.93GHz), the estimated flux distribution was essentially
identical to that of the simulated data (Figure 7). The result
indicates that OpenMebius could deal with INST-13C-MFA
using a realistic metabolic model of E. coli.

4. Conclusions

OpenMebius is the first open source software for metabolic
flux analyses under both isotopically stationary and non-
stationary conditions. The software supports the automatic
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Table 1: Configuration of TCA cycle model.

FluxID Rxns Net flux Carbon transitions
R1 Subs PYR EX → PYR 0 abc → abc
R2 PYR → ACCOA + Ind CO2 0 abc → bc + a
R3 ACCOA + OAA → IsoCit 0 ab + cdef → fedbac
R4 IsoCit → AKG + Ind CO2 0 abcdef → abcde + f
R5 AKG → Sym SUC + Ind CO2 0 abcde → abcd + e
R6 Sym SUC → OAA 1 abcd → abcd
R7 PYR + Ind CO2 → OAA 2 abc + d → abcd
R8 AKG → [AKG B] 0
R9 OAA → [OAA B] 0
R10 OAA → [LYS B] 0
R11 PYR → [PYR B] 0
R12 PYR → [LYS B] 0
R13 PYR → [VAL B] 0
R14 Subs GLU EX → AKG 0 abcde → abcde
R15 OAA → Sym SUC 1 abcd → abcd
R16 OAA → PYR + Ind CO2 2 abcd → abc + d

construction of a metabolic model for INST-13C-MFA from
a user-defined metabolic network. Analysis using simulated
data demonstrated not only the utility of OpenMebius for
INST-13C-MFA, but also its potential for use in metabolic
flux analysis with reduced confidence intervals. OpenMebius
provides an essential bioinformatics tool for INST-13C-MFA
to analyze metabolic flux in cells with slower metabolism
(i.e., mammalian) [17] and cultivation with single carbon
substrates (i.e., cyanobacteria) [15].

Abbreviations

MDV: Mass distribution vector
13C-MFA: 13C-based metabolic flux analysis
INST-13C-MFA: Isotopically nonstationary 13C

metabolic flux analysis
𝛼KG: 𝛼-Ketoglutarate
ACCOA: Acetyl-CoA
Cit: Citrate
DHAP: Dihydroxyacetone phosphate
E4P: Erythrose-4-phosphate
F6P: Fructose-6-phosphate
FBP: Fructose-1,6-bisphosphate
FUM: Fumarate
G6P: Glucose-6-phosphate
GAP: Glyceraldehyde-3-phosphate
GLX: Glyoxylate
IsoCit: Isocitrate
MAL: Malate
OAA: Oxaloacetate
PEP: Phosphoenolpyruvate
6PG: 6-Phosphoglycerate
3PG: 3-Phosphoglycerate
PYR: Pyruvate
R5P: Ribose-5-phosphate
Ru5P: Ribulose-5-phosphate

S7P: Sedoheptulose-7-phosphate
SUC: Succinate
SUC FUM: Sum of metabolite pool of succinate and

fumarate
Xu5P: Xylulose-5-phosphate
VAL: Valine
LYS: Lysine.
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