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Abstract We review major modeling strategies and methods
to understand and simulate the macroscopic behavior of mam-
malian cells. These strategies comprise two important steps:
the first step is to identify stoichiometric relationships for the
cultured cells connecting the extracellular inputs and outputs.
In a second step, macroscopic kinetic models are introduced.
These relationships together with bioreactor and metabolite
balances provide a complete description of a system in the
form of a set of differential equations. These can be used for
the simulation of cell culture performance and further for op-
timization of production.

Keywords Cell culture - Macroscopic modeling - Antibody
production - Kinetic models - Stoichiometric relationships -
Quality by Design

Introduction

Mammalian cell cultures are the major source of a number of
biopharmaceutical products, including monoclonal antibodies
(Niklas and Heinzle 2012; Sidoli et al. 2004), viral vaccines
(Vester et al. 2010), and hormones (Nottorf et al. 2007). Chi-
nese hamster ovary (CHO) cells are widely used as an expres-
sion system for the synthesis of therapeutic glycosylated
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proteins (Palomares et al. 2004; Zhu 2012). Predicting the
behavior of mammalian cells during cell culture processes
under different culture conditions is highly desirable for both
commercial and scientific reasons (Kell and Knowles 2006).
In batch and fed-batch processes, the rate of overproduction of
heterogeneous proteins by mammalian cells is limited by the
decline in cell viability, by the depletion of required metabo-
lites and substrates or by the accumulation of metabolic prod-
ucts and inhibitors. Therefore, it becomes imperative to iden-
tify the parameters which have a significant impact on cell
viability and on protein production and understand their ef-
fects on the cellular phenotype. Moreover, in 2004, the Food
and Drug Administration (FDA) proposed the “Quality by
Design” (QbD) methodology to biopharmaceutical compa-
nies. The focus of this concept is that the quality, most impor-
tant protein glycosylation, should be built into a product with a
thorough understanding of the product itself and the process
for its production (Tomba et al. 2013). Additionally, critical
process parameters should be identified which have an impact
on the critical quality attributes (CQAs) of the product
(Kontoravdi et al. 2007; Royle et al. 2013; Teixeira
et al. 2009).

Mammalian cell culture processes are complex (Stelling
et al. 2006), and numerous input parameters have to be iden-
tified to optimize growth and productivity (Nolan and Lee
2011, 2012; Sellick et al. 2011). To understand biological
mechanisms and to optimize production processes, rational
design guided by experience is the most common method
currently used. However, experiments are time consuming
and expensive to perform and, generally, generate noisy data.
Mathematical models can help to characterize the different
phenotypes and the needs of mammalian cells (Royle et al.
2013; Sidoli et al. 2004). They can be used as a prediction tool
in simulation and optimization (Goudar et al. 2006; Wiechert
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2002). Mathematical models can also help to understand and
identify mechanisms that cannot be easily identified only with
experimental data and a pure statistical analysis of them.
Therefore, modeling of metabolism has become highly
desirable in the development process where the identifi-
cation of the parameters impacting the cell culture pro-
cesses and the prediction of the evolution of the pro-
cesses are important. Identification of yield coefficients
can be used for this purpose (Chen and Bastin 1996).
This creates significant added value in terms of cost and
time compared to methods that do not use models
(Kessel 2011).

Compared to very detailed cellular models, the benefit of
the use of macroscopic models is that it is much easier but yet
very informative to analyze the cells as a black box or grey
box rather than to take into account extended details of what
happens inside the cell (Zamorano et al. 2013). Analysis of
intracellular metabolites necessary for setting up and tuning
detailed kinetic models of metabolism is much more complex
to perform than extracellular metabolite analysis and requires
much more sophisticated techniques, particularly for
suspended cells (Neermann and Wagner 1996; Wahrheit and
Heinzle 2013). In addition, the number of model parameters in
macroscopic models is significantly lower than the number of
parameters in microscopic models. The identification of pa-
rameters is therefore more difficult for very detailed micro-
scopic models.

A mathematical model can be used for different purposes
(Ashyraliyev et al. 2009; Hu 2012):

(1) To summarize a large volume of experimental data,

(2) To explore concepts and test hypotheses,

(3) To predict the behavior of the systems under non-tested
conditions,

(4) To identify conditions for optimal performance of a pro-
cess as defined by an objective function.

The extrapolation power of a model cannot be predicted a
priori. The probability that a model will allow prediction out-
side the originally observed region is, however, increasing if
physically meaningful functions are used. In our review, we
emphasize the separation into a material balancing part, the
so-called macroscopic reactions, and a kinetic part. The mate-
rial balancing part, i.e., stoichiometry, provides a sound basis
and must not be violated for keeping predictivity. The kinetic
part relies very much on the characteristics of the rate deter-
mining processes, €.g., saturation kinetics of Michaelis-
Menten type, allosteric kinetics of Hill-type, or structure of
feedback control loops in biological systems. The appropriate
choice of the underlying types of mathematical functions is
certainly a crucial point in this respect. For certain problems,
e.g., metabolic network modeling as shown for CHO, the use
of ensembles, i.e., sets of models with different structures and/
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or parameter values, seems useful for improving prediction
(Villaverde et al. 2015).

In this review, we will present different types of models
used in previous work to model the metabolism of suspension
cells at the macroscopic level, i.e., to model extracellular out-
puts as function of extracellular inputs. This paper is orga-
nized as follows: (i) the first part introduces the types of
models and the existing modeling frameworks (Mahadevan
and Doyle 2003). (ii) Then, different methods for identifying
relevant parameters for creating a macroscopic metabolic
model will be presented. Preliminary work has to be per-
formed to reduce the number of parameters to study and to
understand which parameters have a significant impact on the
responses (Mahadevan and Doyle 2003). (iii) In part three,
different kinetic models are reviewed. Kinetic models are used
after the selection of parameters and when the relationships
between those parameters are defined. (iv) Model calibration
and testing are reviewed and (v) applications to process con-
trol are described. (vi) Finally, main conclusions and an out-
look are presented.

Types of models

There are different ways to classify models. The first distin-
guishes between empirical models, also called descriptive
models, and mechanistic models. Empirical models use a
pragmatic description of all the data with any suitable mathe-
matical relationship. They only partially take into account the
underlying phenomena or physical laws that govern the sys-
tem behavior. Mechanistic models are based on theoretical
foundations of systems and on known relationships. The pre-
dictions of the responses are based on biological, chemical,
and physical input of knowledge.

Another classification was proposed by Tsuchiya et al.
(1966) and distinguishes deterministic models and probabilis-
tic models. The first is based on continuous variables using
differential equations. Reactions and interactions are repre-
sented as continuous processes (production, consumption,
growth...) by corresponding mathematical functions. It is ap-
propriate for systems composed of a relatively large number
of cells, e.g., more than 10,000. This kind of model describes
the population as average. Probabilistic or stochastic models
use probability in the formulation of the model and are typi-
cally used for a population of only few cells or for molecular
events with only small number of molecules, e.g., transcrip-
tion. This allows representation of the variability of a popula-
tion and a system. In cell culture, the number of cells is usually
very large (e.g., >10° cells/ml) allowing the preferential use of
deterministic models.

Another classification distinguishes structured, non-struc-
tured, segregated, and non-segregated models. Structured
models take into account the cellular reactions within cells
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(Harder and Roels 1982; Tsuchiya et al. 1966). Structured
models can describe biological systems in great detail but
are more difficult to set up. The number of parameters in-
creases with the complexity of the model and with the number
of intracellular reactions taken into account. In addition, de-
spite the enormously increased knowledge about cellular pro-
cess, there is still a significant lack of information about many
steps, e.g., transport, control of enzymes activities and expres-
sion or post-transcriptional processing of proteins. Unstruc-
tured models are easier to work with because they analyze
the cells as a black or grey box. Intracellular reactions are
not analyzed in detail. It is assumed, for example, that cell
growth depends only on extracellular parameters. However,
the extended and now easily excessible comprehensive
knowledge about the biochemical reaction networks and its
stoichiometry allows the incorporation of this information into
macroscopic models. Macroscopic models are less accurate
than structured models, but easier to set up and to apply. Seg-
regated models, as opposite of non-segregated models, de-
scribe cellular behavior as a function of cell cycles or age of
cells (Garcia Miinzer et al. 2015a, b; Karra et al. 2010;
Meshram et al. 2013; Pisu et al. 2015). The vast majority of
models are non-structured and non-segregated.

Neural networks are particularly useful to relate input and
output variables to each other in complex systems with incom-
plete or even completely lacking knowledge of the systems
structure and also in cases with incomplete measurements.
Mechanistic knowledge can however be introduced by using
hybrid models (Oliveira 2004; van Can et al. 1999).

Identification of relevant input-output relationship

A general macroscopic reaction scheme of macroscopic reac-
tions can be expressed as follows (Bastin and Dochain 1990):

Z (_Vi,k)ﬁiﬁz Vik; ke[l,M] (1)
i€Ry, JjePx
where

e M is the number of reactions;

* ¢y is the kth reaction rate;

* & and & are the ith and the jth component, respectively;

* v and v;; are the corresponding stoichiometric
coefficients;

* Ry is the kth set of reactant and catalyst indices;

* Py is the kth set of product and catalyst indices.

This general reaction scheme represents a macroscop-
ic stoichiometric relationship. To set up such a macro-
scopic model, the important parameters, i.e., the relevant
cellular inputs, &;, and outputs, §;, as well as the

stoichiometric coefficients, v;;,v;, relating the inputs
to the outputs, have to be determined. This can start
from the increasingly comprehensive knowledge of cel-
lular reactions and transport or, as traditionally done,
from purely empirical data. Ideally, both types of infor-
mation are combined as described below and indicated
in Fig. 1. This step is often the main bottleneck in the
design of a macroscopic model for complex biotechno-
logical processes.

Method based on expert reasoning

One possible approach to select significant parameters is
based on expert reasoning and experimental observations.
This approach measures correlations between the macroscopic
outputs we want to model with the cell culture parameters, i.e.,
the macroscopic inputs, under different experimental condi-
tions. A most popular method uses the concept of yield coef-
ficients relating always two measured variables to each other,
e.g., biomass to substrate or product to biomass (Dunn et al.
2003). Yield coefficients are frequently used to set up stoi-
chiometric relationships to be applied in metabolic flux anal-
ysis using metabolite balancing (Niklas et al. 2009). It requires
little thought about the actual detail of the system and uses
most significant phenomena observed during experiments to
define the extracellular parameters such as limiting nutrients
or accumulation of side waste products. Typically, outputs/
inputs taking into account in a macroscopic model with this
kind of approach are biomass, glucose, glutamine, lactate, and
ammonia. For instance, Jang and Barford (2000) developed an
unstructured model of growth and metabolism of a mouse
murine hybridoma AFP-27 cell line producing an IgG1 anti-
body. They assumed that glucose, glutamine, lactate, and am-
monia were growth limiting. Lactate and ammonia were con-
sidered as toxic products of catabolic reactions, which inhibit
cell growth and can ultimately cause cell death in their model;
even though they assumed that hybridoma cells can produce
monoclonal antibodies until any of amino acid is depleted,
they only considered glutamine as a limiting amino acid.
Moreover, based on the demonstration of Suzuki and Ollis
(1990), they considered the specific antibody production to
be a function of the fraction of cells in G1 phases. Acosta
et al. (2007) also assumed this link between specific growth
rate and specific productivity in their model of IgG2a Mab
production in hybridoma cells. Although glucose is generally
important for cell growth, it was not found to be a limiting
nutrient in another model (Bree et al. 1988) that is, however,
only relying on one batch experiment, certainly a too limited
observed experimental space for meaningful extrapolation.
Lactate and ammonia are assumed to both inhibit and kill cells
(Batt and Kompala 1989; Glacken et al. 1988; Ozturk et al.
1992), but the impact on specific antibody productivity was
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Experimental and literature data
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Fig. 1 Methods to derive macroscopic kinetic models. In order to get a
simulation and prediction model of the macroscopic cell behavior, first,
the macroscopic reactions of the cell culture system have to be
determined, i.e., the stoichiometry relating input and output of the cells.
To do that, statistical methods, empirical observations, and metabolic

reported as not significant (Ozturk et al. 1992). Jang and
Bradford (2000) and Dhir et al. (2000) assumed that the lactate
production was due to cellular consumption of glucose and
glutamine. They assumed that the spontaneous degradation of
glutamine was negligible. It is, however, usually relevant but
depending on the used medium and process duration
(Borchers et al. 2013; Glacken et al. 1988; Ozturk and Palsson
1990). Amino acid depletion has been considered in another
model developed by Liu et al. (2008). Knowledge about
metabolism and its control can be incorporated but usually
not in a systematic manner. Meshram et al. (2013) developed
a macroscopic metabolic model and linked it to a model of
apoptosis. A dynamic model of Mab synthesis and Mab
glycosylation by hybridoma was described by Kontoravdi
et al. (2007) using a structured model based on the work of
Umaifia and Bailey (1997). The availability of nutrients such
as glucose or glutamine had an impact on protein
glycosylation.

Such empirical procedures can be a valuable tool for un-
derstanding metabolic processes as well as for process design
and optimization. They are used to design a macroscopic mod-
el and select the extracellular parameters which have an im-
pact on the response defined. Nevertheless, very little real
understanding of the cell culture process is obtained with this
kind of procedure.

Method based on statistical tools
A large number of variables can be identified and quantified

due to the recent development of high-resolution and high-
throughput analytical techniques (Martin et al. 2014; Steinhoff
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Macroscopic kinetic model

network-based methods can be used. After that, the kinetics of the
system have to be described and combined with the stoichiometric
model. Finally the model is calibrated, usually using optimization-based
methods, and tested. PCA principal component analysis, MFA metabolic
flux analysis, EFM elementary flux mode, NNs neural networks

etal. 2014). In this context, it becomes more complex to select
the significant input only with an empirical approach and
based on expert judgment. Moreover, the relations of variables
are generally dynamic and involve temporal dependencies.
To deal with these challenges, multivariate data analysis
methods, e.g., principal component analysis (PCA), can be
used as a statistical tool to select parameters. PCA is a multi-
variate analysis method based on eigenvalue analysis, which
is actually the projection of original data onto a new set of
axes, i.e., the principal components. PCA has been introduced
by Pearson (1901) and Hotelling (1933) to describe the vari-
ation of multivariate data in terms of a set of uncorrelated
variables. It is used to reduce a high-dimensional dataset into
fewer dimensions while retaining important information.
Starting out with high-dimensional noisy experimental data,
one can reduce the dimensionality and even remove pure ran-
dom errors by determination of significant factors (Malinow-
ski 1991). Using significant factor analysis followed by rota-
tion, a stoichiometric model with only two independent, phys-
ically meaningful reactions were identified for Bacillus
subtilis batch culture (Saner et al. 1992). Xing et al. (2008)
used a methodology based on principal factor analysis (PFA)
to identify threshold values of repressing metabolites, i.e.,
ammonium, lactate, osmolality, and carbon dioxide levels,
on CHO growth and protein quality (glycosylation properties)
but also to select significant inputs. PFA was applied by rotat-
ing principal components obtained by PCA and seeks physi-
cally meaningful linear combinations of variables. In their
study, Xing et al. determined that ammonia and glucose neg-
atively contributed to cell growth. Lactate and osmolality were
positively correlated to cell growth and pCO, levels can
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reduce protein quality above a defined threshold. Multivariate
analysis methods can be a powerful tool to determine the
macroscopic stoichiometry of a biological system that cannot
easily be determined by intuition. However, it becomes more
complex to evaluate correlations and to apply this kind of
statistical method with time-series data with varying number
of metabolic phases, particularly in fed-batch cultures.

Another possibility to deal with this complexity is to use
time-series data analysis such as the Granger causality test.
The Granger causality test is a statistical hypothesis test used
to determine causality among parameters. It was developed by
Clive Granger (1934-2009), a British economist (Granger
1969). This test has recently been used to analyze transcripto-
mics and metabolomics profiles (Sriyudthsak et al. 2013).
Siryudthsak et al. introduced this test to evaluate causality
among metabolites. Direct relationships between two metab-
olites were evaluated using the bivariate Granger causality
test. This method has not yet been used to develop macroscop-
ic metabolic reactions and to select the significant input pa-
rameter, but it is expected to be applied in the future.

Statistical tools are useful when the underlying phenomena
are too complex to resolve manually, such as multivariate data
or temporal data. The two statistical methods presented above
can help to structure problems, to reduce the dimensionality of
the problem, to select relevant input and output parameters,
and to develop a macroscopic stoichiometric model.

Method based on metabolic network knowledge

The central idea is that the macroscopic behavior of cellular
metabolism is the result of a combination of intracellular mi-
croscopic reactions that are more and more easily accessible
via public databases. Metabolic networks are represented as a
system of metabolite balance equations based on stoichiomet-
ric reactions. The general goal is to identify a minimal set of
macroscopic reactions that can then build a sound basis for a
macroscopic model.

Network construction

Metabolic network models of the central metabolism of mam-
malian cells have been built from the available genomic and
biochemical information. Multiple databases can be used as
resource for metabolic network reconstruction. As an exam-
ple, the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway database (Kanehisa et al. 2014) and the BioCyc da-
tabase collection (Caspi et al. 2014) are important databases
that can be used to reconstruct a metabolic network. A number
of studies have proposed metabolic networks of central me-
tabolisms (Ahn and Antoniewicz 2012; Antoniewicz 2013;
Nicolae et al. 2014; Zamorano et al. 2013). To set up stoichio-
metric macroscopic relationships of cell metabolism, the main
difficulty is the size of the metabolic network which can make

the decomposition into external macroscopic reactions com-
plex (Riigen et al. 2012). To overcome this problem, metabol-
ic networks can be reduced and simplified using computed
fluxes in order to detect and remove insignificant pathways.

Metabolic flux analysis

Metabolic flux analysis (MFA) using metabolite balancing,
first applied for microorganisms (Aiba and Matsuoka 1978),
has been widely applied to mammalian cells. Metabolite
balancing is a powerful method to quantify the manifestation
of a phenotype (Ahn and Antoniewicz 2012; Antoniewicz
2013; Goudar et al. 2006, 2009; Grafahrend-Belau et al.
2013; Klein et al. 2013; Niklas and Heinzle 2012; Niklas
et al. 2011; Quek et al. 2010; Sengupta et al. 2011; Varma
and Palsson 1994; Wahrheit et al. 2014b). Metabolite
balancing is based on the assumption that accumulation of
intracellular metabolites is insignificant compared to the ex-
tracellular fluxes in batch and fed-batch cultures (Niklas and
Heinzle 2012). This assumption is valid for small concentra-
tion of intracellular metabolites which is usually fulfilled but
may deviate to a certain extent for highly concentrated metab-
olites, e.g., of the TCA cycle (Rehberg et al. 2014). Based on
this quasi-steady-state assumption, we can say that the sum of
influxes and effluxes of an internal metabolite of a metabolic
network is equal to zero.

S-v=0 (2)

where S is a stoichiometric matrix, based on a defined meta-
bolic network, with each row corresponding to a balanced
internal metabolite and each column corresponding to a flux
in the flux vector, v.

We can then split Eq. 2 to have on one side, the fluxes that
are experimentally measured (substrates, products, biomass),
v, and on the other side, fluxes that will be calculated by
MFA, v,

SV = —Seve (3)

S,, and S,. are the stoichiometric matrices associated to v,,
and v,, respectively. If S, is a square matrix of full rank, the
fluxes are calculated by

Ve = _(Sc)71 S Vi (4)

The uptake and production rates of metabolites are such
measurable external fluxes that can be related to the specific
growth rate, u, by yield coefficients ¥ er/gio-

Vm,i = ,U'YMet/Bio (5)

Monte Carlo simulation can be used to get a more precise
and realistic estimation of the standard deviation of the calcu-
lated fluxes. A dynamic metabolic flux analysis can also be
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performed in order to have the profile of the intracellular flux
over time (Niklas et al. 2011; Wahrheit et al. 2014a). When
metabolite balancing is performed, reactions with insignifi-
cant fluxes can be identified and then deleted from the meta-
bolic network to simplify it.

Elementary flux mode analysis

Elementary flux mode (EFM) analysis can then be applied on
a metabolic network as defined in Eq. 2. EFM analysis is the
calculation of independent, minimal biochemical pathways in
a metabolic network at steady-state, which are thermodynam-
ically and stoichiometrically possible, taking into account the
irreversibility or the reversibility of the reactions (Schuster
et al. 1999). There is a distinction between external and inter-
nal metabolites. A “flux mode” is a steady-state flux distribu-
tion in which the proportions of fluxes are fixed and it is called
“elementary” if it is not decomposable. Various software can
be used for this purpose such as COPASI (Hoops et al. 2006),
Metatool (Schuster and Schuster 1993), efmtool (Terzer and
Stelling 2008), or CellNetAnalyser (Klamt and von
Kamp 2011).

To perform EFM, the stoichiometric matrix based on a
metabolic network is used, and the convex basis vectors are
computed using Eq. 2, taking into account the thermodynamic
feasibility constraints (Schuster et al. 1999). Any possible flux
distribution v can be expressed as a non-negative linear com-
bination of a set of elementary flux vectors e; which represent
the not decomposable metabolic paths between the substrates
and the final products.

v=wier +wer + ... +wpe,  w;>0 (6)

The non-negative matrix £ with column vectors e; satisfies
S-E = 0. E constitutes the admissible flux space also known as
the convex polyhedral cone (Gagneur and Klamt 2004). How-
ever, a critical issue in EFM is the calculation of these
elementary flux vectors because of dramatically increas-
ing computational demands with increasing network
size. Based on the matrix E, a set of macroscopic reac-
tions of the extracellular metabolites can be derived
(Baughman et al. 2010; Dorka et al. 2009; Gao et al.
2007; Niu et al. 2013; Provost and Bastin 2004; Provost
et al. 2006; Zamorano et al. 2013). Examples of the
stochiometric matrix E are presented in Table 1. A
methodology was proposed by Junger et al. (2011) to
compute minimal elementary decompositions of meta-
bolic flux vectors. Later, Zamorano et al. (2013) showed
that this method allows the estimation of metabolic
fluxes even with an underdetermined mass balance sys-
tem where data are not sufficient to uniquely define
these fluxes. This provides also an excellent basis for
setting up macroscopic models.
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The output of these approaches are stoichiometric
macroscopic relationships of cell metabolism based on
a metabolic network and on biological and biochemical
knowledge that provide a necessary input for kinetic
macroscopic models.

Macroscopic kinetic models

After a first screening to select input parameters and to set up
the stoichiometric macroscopic reactions, the macroscopic ki-
netic reactions can be developed. Different types of kinetics
are available and this section will present some of the most
important ones.

Monod model and its derivatives

For modeling of mammalian cell culture kinetics, the
Monod equation and derivations of it are most frequent-
ly applied. These kinetics with slight modifications are
capable to simulate different types of characteristics like
saturation, inhibition, and limitation by substrates and
other components.

For Monod kinetics, the growth is defined as follows:

Si
n= :u’max |:H Si + KS[:| (7)
Where o is the specific growth rate; S; and Kg; are the
corresponding substrate concentration and half-saturation
constant, respectively. fimax 1S the maximum specific
growth rate. To incorporate inhibitory effects, a corre-
sponding term is added to the denominator. In the case
of balanced growth, all other rates can be related to u
by yield coefficients (Eq. 5).

There are two methods for estimation of the maximum
specific growth rate, 1., and the associated Monod constant,
Ks;. One is the steady-state measurement of growth and the
limiting substrate concentration in continuous culture at dif-
ferent dilution rates. An alternative method is the measure-
ment of growth rate at different substrate concentrations in
batch culture (Banerjee 1993). To estimate the maximum spe-
cific growth rate, fi,,,,, the associated Monod constant, Kg;,
were arbitrarily set to small values to obtain balanced growth
(Dorka et al. 2009; Provost et al. 2006). This seems well
justified for batch cultures but will not allow to transfer such
a model to continuous or fed-batch processes without read-
justment of these constants. Monod-type models are widely
used, but it is often difficult to define which formulation is the
best to characterize the cell behavior (Bastin and Dochain
1990). Furthermore, finding the optimal formulation of this
kind of model and estimating model parameters can be time
consuming. Table 2 presents kinetic growth models used in
the literature to describe growth of different organisms.



Appl Microbiol Biotechnol (2015) 99:7009-7024 7015
Table 1  Stoichiometric matrices of macroscopic reaction networks for CHO cell lines
el e2a e2b e3 e4 e5 eb e7 e8 e9 el0
Glucose -1 -1 -1 -1 0 0 0 —0.0508 0 0 0
Gln 0 -2 0 0 0 0 -1 —0.0577 —0.0104 -1 0
Lac 2 0 2 2 0 0 0 0 0 0 0
Glu 0 2 -2 -2 -1 0 —0.0016 —0.0107 1 -1
Asn 0 0 0 0 0 -1 1 —0.006 —0.0072 0 0
Asp 0 0 0 0 0 1 -1 —0.0201 -0.0082 0 0
Ala 0 2 2 0 0 0 0 -0.0133 -0.011 0 0
Pro 0 0 0 0 1 0 0 -0.008 -0.0148 0 0
BM 0 0 0 0 0 0 0 1 0 0 0
Mab 0 0 0 0 0 0 0 0 1 0 0
(Dorka et al. 2009)
el e2 e3 e4 e5 eb e7 e8 e9
Glucose -1 -1 -1 0 0 0 -0.0508 0 0
Gln 0 0 0 0 0 -1 —0.0577 —0.0104 -1
Lac 2 2 2 0 0 0 0 0 0
NH; 0 0 0 0 1 0 0 0 1
Glu 0 -2 -2 -1 0 1 —0.0016 —0.0107 1
Asn 0 0 0 0 -1 1 -0.006 —0.0072 0
Asp 0 0 2 0 1 -1 -0.0201 —0.0082 0
Ala 0 2 0 0 0 0 —-0.0133 -0.011 0
Pro 0 0 0 1 0 0 -0.0081 —0.0148 0
Cco2 0 2 6 0 0 0 0 0 0
BM 0 0 0 0 0 0 1 0 0
Mab 0 0 0 0 0 0 0 1 0
(Gao et al. 2007)
el e2 e3 e4 e5 €6 e7
Gle -1 -1 0 0 0 -1 -1
Gln 0 0 -1 -1 -1 -3 -2
Lac 2 0 0 1 0 0 0
NH; 0 0 1 2 2 1 1
Ala 0 0 1 0 0 0 0
CO, 0 6 2 2 5 2 2
Nucl 0 0 0 0 0 1 1
(Provost and Bastin 2004)
el e2 e3 e4 e5 eb e7 e8 e9
Gle -1 -1 -1 0 0 0 -0.0508 0 0
Gln 0 0 0 0 0 -1 -0.0577 —0.0104 -1
Lac 2 2 2 0 0 0 0 0 0
NH; 0 0 0 0 1 0 0 0 1
Glu 0 -2 -2 -1 0 1 —0.0016 —0.0107 1
Asn 0 0 0 0 -1 1 —0.006 —0.0072 0
Asp 0 0 2 0 1 -1 -0.0201 —0.0082 0
Ala 0 0 0 1 0 0 -0.0081 —0.0148 0
Pro 0 2 0 0 0 0 0 0 0
BM 0 0 0 0 0 0 1 0 0
Mab 0 0 0 0 0 0 0 1 0

(Baughman et al. 2010)

Numbers differing from 0 are given in bold

Glc glucose, Lac lactate, BM biomass, Mab monoclonal antibody, Nuc/ nucleotides, amino acids are specified using the standard three-letter code
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Table 2  Kinetic models for mammalian cell growth

Kinetic parameters Cells References Growth equations
— -1 :
Ponax = 0.125 h Hybridoma (Bree et al. 1988) _ % G % ke % kamm
H = Fmax” kgu+Gin kractLac kamm-+Amm
kGln = 0.8 mM
kLax: =8 mM
kAmm =1.05 mM
Ly = 0.055 ! Hybridoma (Glacken et al. 1988) . SerGln
H = Hmax - A
(kx)o =265 (Scr+(k;)0*)( ‘)*(k(;m'#Gln)* <1+m>
[ =021
kG =0.15 mM
kamm =26 mM?
[y = 0.053 h! Hybridoma (Ozturk and Palsson 1991) B «  Serum
H = Hmax kserum~+Serum
kseram = 0.0139 v/v
_ Hybridoma (de Tremblay et al. 1992)
= 1 _ Gl Gln
[ = 0.045 h 1= fma™ 5 G o Gl
kc,k; =1 mM
kgn = 0.3 mM
_ Hybridoma (Portner et al. 1996)
_ 1
s = 0.036 1 1= i TG
kGln =0.06 mM
0.689 h-! Hybridoma (Dhir et al. 2000) v G % Gn % k Lac .
= J— n Lac ke
Himax : 1= Pmax™ B 1Ol o 1O T e — Krd e — Ka™Amm
kg =4.79 mM
kg = 0.032 mM
krae = 0.67 mM
kra =0.019 07!
kg4 =0275h7"
_ Hybridoma (Jang and Barford 2000)
= 1 _ Gle Gln kiac kamn
Fimax = 0.065 h 1= Hinax ™ Gl gy 0l T Lo Kt A
kg = 0.75 mM
kg = 0.075 mM
kLac =90 mM
kAmm =15 mM
_ 0043HO (Xing et al. 2010)
Poax = 0.028 h™!
kgie = 0.084 mM
kGln =0.047 mM
kiae =43 mM
k Amm 6.51 mM
B - AGE1.HN (Borchers et al. 2013) Gle
Hmax = 0.0190 h n= :umax’k o +Gle *
kg = 1.45 mM

Gle glucose, Gin glutamine, Lac lactate, Amm ammonium

*kinetic model of growth in S00mL stirred tank reactors
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Generally, only the growth rate is described by a Monod-
type model, and the other components, products, and sub-
strates are then described by simple mass balance equa-
tions (Baughman et al. 2010; Borchers et al. 2013; Sainz
et al. 2003; Xing et al. 2010), also called first principle
models (FPMs). To describe the relationship between the
variation of substrates and products with the cell number,
the mass balance equations are defined as a set of ordi-
nary differential equations (ODEs) based on biological
knowledge and taking into account the inner structure of
the cells. Often the specific consumption/production rates
are assumed to be proportional to the specific growth
rate (Eq. 5) during the process but this is not always the
case. Monod-type models can also be used to describe
other specific consumption/production rates of metabolites
independent of growth (Baughman et al. 2010; Dorka
et al. 2009; Gao et al. 2007; Provost and Bastin 2004).
Batt and Kompala (1989), Glacken et al. (1988), and
Ozturk et al. (1992) described a four-compartment struc-
tured model to describe growth of hybridoma and mono-
clonal antibody productions using Monod- and Haldane-
type kinetic models.

Logistic equation

Verhulst (Vogels et al. 1975) developed the first logistic equa-
tion to describe population growth based on the work of
Thomas Malthus. Verhulst added an extra term, K, called the
overall saturation constant to the first model of Malthus to
represent the resistance to growth up to a certain limit value of
biomass concentration as shown in the equation describing
logistic growth.

dX (1)
dt

=r X (1-=2) (8)

This model does not take into account the death of cells,
either by necrosis or apoptosis, observed in mammalian cell
processes. Therefore, cell growth and death have been taken
into account in an alternative formulation, the so-called four-
parameter-generalized-logistic-equation which can describe
cell density profiles in batch and fed-batch cultures (Jolicoeur
and Pontier 1989).

A
X0 =Greem ®)

Where X(¢) is the cell density at time t. 4 is related to the initial
value of X while B and C correspond to the maximum death
and growth rate, respectively. Goudar (2012a) applied such
logistic modeling in batch and fed-batch cultures of mamma-
lian cells. To describe the cell culture process system, besides
Eq. 9, two types of equations were used for the formation of
products and for substrate consumption.

The second type of equation used was the logistic growth
equation to describe monotonously increasing quantities of
product concentrations, P, such as lactate and ammonium.

A

P(t)=———— 10
( ) 1 + Ce_Dt ( )

Finally, the logistic decline equation has been used to de-
scribe monotonously decreasing quantities of nutrient concen-

tration, &V, such as glucose or glutamine concentration.

A

N(t)=——
(t) eB[_i_C

(11)

To get robust logistic modeling, initial estimation of param-
eters using linearization has been successfully used. More
complex equations can be used. For instance, Acosta et al.
(2007) use two asymmetric logistic equations for growth and
nutrients and products. Logistic equations have been success-
fully used in a variety of applications to describe the dynamic
of population growth; most of them involved bacterial growth
(Gibson et al. 1987; Tsoularis and Wallace 2002) but also
mammalian cell growth (Goudar 2012a, b; Goudar et al.
2005, 2009). This kind of model is particularly useful if the
matrix S from Eq. 2 is not known.

The main differences between the logistic equation and the
Monod model are that the logistic equation uses fewer param-
eters compared to the Monod model and that it does not re-
quire knowledge about limiting substrates. That makes the
computational step from logistic approach simpler than clas-
sical approaches but seems less suited for extrapolation and
not well suited to incorporate additional information on
metabolism.

Neural networks and hybrid models

Neural networks (NNs) are computational models of black
box type. They are used to model a wide spectrum of prob-
lems. NNs are an interconnected network structure composed
of a set of processing elements (PEs) (Price and Shmulevich
2007). Giving some input, computations are made using the
transfer functions of the network to estimate the output. The
network is composed of different layers: the input layer, the
hidden layers, and the output layer. The PEs are composed of
transfer functions (polynomial, hyperbolic, kernel, ...) and the
significance of the connection is called the weight.

Marique et al. (2001) used a NN to simulate non-linear
kinetics of CHO strains. For the transfer function, a classical
sigmoid function was applied. Biomass, glucose, glutamine,
lactate, and ammonia concentrations represented output and
input layers. A model with CHO K1 of those five variables
was obtained by using only one hidden layer. Moreover, the
same NN has been used to predict the behavior of another cell
line (CHO TF70R) by adjusting the time scale. As described
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above, mechanistic knowledge is not needed to create NNs.
Nevertheless, hybrid neural networks are more used since a
decade, combining non-parametric functions such as NNs and
parametric functions based on cell culture process knowledge
(Laursen et al. 2007; van Can et al. 1999; Vande Wouwer et al.
2004). Laursen et al. combined material balances to estimate
accumulation rates of biomass, product, and metabolites in a
bacterial fed-batch culture combined with a NN for each var-
iable. Vande Wouver et al. (2004) used several hybrid NNs to
describe CHO batch cultures. A set of NNs for the calculation
of the reaction rates was combined with material balances of a
bioreactor (Chen et al. 2000). Teixeira et al. (2007) used EFM
to reduce the metabolic network of a recombinant baby ham-
ster kidney (BHK-21A) cell line producing a glycoprotein
(IgG1-IL2) to a minimal set of macroscopic reactions which
then served as a basis for a hybrid NN model. A three-layered
backpropagation neural network was used as a non-parametric
function to describe the kinetics of the system. By using this
hybrid model in a fed-batch process, they were able to in-
crease the final productivity of IgG1-IL2 by 10 % (Teixeira
etal. 2007). Graefe et al. (1999) applied a serial hybrid model
to CHO-K1 by combining mass balances and neural network
kinetics. A convincing prediction of components concentra-
tions in the stirred tank bioreactor was achieved.

Hybrid models exploit the advantages of parametric
models (“grey box model”) and of non-parametric models
(“black box models”) and overcome the limits of each used
individually. For complex problems, this kind of methodology
provides a good benefit/cost ratio.

To conclude, logistic models and neural network models do
not or only partially consider the underlying physical, biolog-
ical phenomena. Nevertheless, they are less difficult to devel-
op than mechanistic models. There parameters are hardly
physically interpretable in contrast to mechanistic models that
take into account the underlying phenomena including mass
balances which supports biological understanding. Moreover,
mechanistic-type models are generally more suited for extrap-
olation outside the experimentally explored space. For very
complex systems with limited mechanistic knowledge avail-
able, logistic models and NNs can be useful due to the lower
number of parameters to identify. Hybrid models take the
advantages of both approaches, the mechanistic approach
and the empirical/semi-empirical approach, e.g., by improving
model extrapolation compared to a pure NN (Van Can
et al. 1998) but require complex optimization tools to
calibrate them.

Model calibration and testing
Before starting to identify model parameters, it is important to

identify and remove outliers. Outliers can increase the level of
variance of the model parameters (Yang et al. 2011), can
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reduce the model performance by biasing parameter
estimates, and can lead to false conclusion. Outliers are
often due to fault, biological deviations, or human/
instrumental errors. For instance, Borchers et al. (2013) de-
fined an outlier detection approach for AGE1.HN cell line
based on a model (model generic approach) by introducing
an additional pessimistic bound (relative error). Then, they
identified model parameters and performed a reachability
analysis. The outliers were then selected by comparing the
reachable state sets with the measurements data. There are
many other possible methods to identify outliers like the lo-
cally estimated plot smoothing (LOESS) (Sriyudthsak et al.
2013) or splines (Laursen et al. 2007), but most of them de-
pend on the context of the experiment, the equipment per-
formed, and the variables analyzed.

Kinetic parameters are usually determined by fitting the
model to the experimental data. Parameter estimation is an
optimization problem, in which an objective or cost function
characterizing the deviation of a model prediction from the
experimental data is minimized by adjusting model parame-
ters. Typically, least squares or the maximum likelihood func-
tions are applied. Together with the usually non-linear differ-
ential equations of the model, non-convex problems result that
are hard to solve, but powerful algorithms and mathematical
tools have been developed to treat them. These were
successfully applied to macroscopic models of mammalian
cells. For instance, Borchers et al. (2013) used a semi-
definite programming (SDP) algorithm to solve a polynomial
function by reformulating and relaxing the non-convex con-
straint problem into a convex optimization problem, whereas
Baughman et al. (2010) used a simple discretization scheme
combined with a filtered interior point primal dual line search
algorithm (IPOPT) to identify global optima for the non-
convex problem.

The choice of optimization algorithms depends on the type
of optimization problem, the number of parameters and vari-
ables, the constraints, the model but also software availability,
e.g., gOPT from gPROMs (Kontoravdi et al. 2007), ADMIT
toolbox (Borchers et al. 2013; Streif et al. 2012) and
MATLAB (MathWorks, Natick, MA) (Sainz et al. 2003;
Teixeira et al. 2007; Vande Wouwer et al. 2004).

Goudar et al. (2009) compared the simplex method, the
generalized reduced gradient method (GRG) and the
Levenberg-Marquard algorithm (LMA) for non-linear param-
eter estimation of logistic model parameters of batch and fed-
batch mammalian cell culture. The simplex method and GRG
methods resulted in a better fit than LMA. LMA was also used
by Vande Wouwer et al. (2004) for batch CHO cell culture.
LMA was applied in the training process for hybrid models of
bioprocesses (Graefe et al. 1999). Dorka et al. (2009) success-
fully identified Monod-type parameters of hybridoma cell cul-
ture during exponential phase by using quadratic program-
ming (QP). For the post-exponential phase, the maximal rates



7019

Appl Microbiol Biotechnol (2015) 99:7009-7024

qeN un
o1d Rilablg |
usy EHN (‘Te 32 oen woy)
(010T e 10 uewySneg) d8-0€1 BWOPLIGAH L1dOdI dsy  Aysuop [0 ad£y pouoy Suruosear podxy
de)oe]
uone[AS0IA]D) un
qeN 2s00n[D)
(LO0OT 'Te 12 IpARIOJUOTY]) St-#-+1 BWOPLGAH dOSs SN Ansudp (o) ordouud ysng  odK) pouon Suruosear wadxg
un
SHN ENeilTs)
(€107 Te 30 s1oydIOg) NH 140V das e AISUdp (D ordround jsa g Suruosear padxyg
qeN
By un
[o1eas oul| Judlpeld ojednfuoo SHN asoonjn
(00T 'Te 10 110XI9) VIZ-3HE UM WLIOT[E UOIMON-ISENQ) oyeor]  ANSudp D [opowt pLqAH NI + HOMISU OT[OqRIN
qeN un
o1 deyoe]
usy ‘HN (‘e 10 0B woxy)
(S10T "Te 32 nuea)sIS) JA8-0€] BWOpPLIGAH 0Sd dsy  Aysuop [[oD od£) pouojy Suruosear podxg
9s0onyn
($007 ©I9AIO) JSBOA S Joyeg dOS o[ess-o3re]  [ouepyg Ajsuap [10D [elds pugAHq Suruosear odxg
0190410
Joueyg 2s00n[D
(€007 Te 10 Zures) JSBAX Sururesdoxd resury SN Ansuap (12D ordound jsng SHI0oMIaU JI[OGRIIAL
qeN
‘HN 00
UIIIOS[E [BOTUOUR)) PUE oejoRT 9s00n[D [eoruouR))
(8007 'Te 30 Burx) OHD UOLRIWIS O1B)) U0 U  Asudp oD ad4y pouoy Vdd
qeN un
SHN 9s0on|n
(0107 ‘Te 30 Sury) OHD powpaw DHINDIN qepoe]  Ansudp (o) opdound ysng  9dAy pouon Suruosear padxg
qeN un
(8861 'Te 10 Uaor[D)  909[-TYD LWOPLAH poyjour [omod SN Ansuap (10D od£) pouojy Suruosear podxg
qeN
(2661 1819 mzo ‘HN 00
9861 e 10 Uaor[D) oJe108] 9s0onnH od£y moniquyuy
(6861 eredwoy] pue peq) BWOPLIQAH ©)Ep AIMRIN] un  AJsuap 10D od£y pouojy Suruosear podxg
qeN un
o1 Bilablg |
(aseyd renuouodxe-ijsod)  (eseyd [enusuodxa) usy EHN
(L00T Te 10 oeD) BUWOPLIQAH popow DINDIN  SurerSoxd operpend) dsy  Ayisuap ([0 ad&y pouon INAH + 1omiou JI[OqeRIA
uin Jeroe] (1o11exed pue [eLos)
(#00T T 19 Iomnop opueA) OHD VIN'T 0s0on[y  ANsuop [0 [opow pLGAH oMU JT[OqRIIN
BWOPLIQAH O¥n Jeoe
MHA xo[dung un *HN
(600€ '[e 12 Tepnon) OHD VINT os0on[y  ANsuop [0 onsIS0] -
QOUIRJY I 12D uonewNsSs IoJoWeIe S9[qBLIBA [OPOIN [opow onaury]  A3ojopoyewr diysuonejar yndino-nduy

S[[29 uelRWIWIEW J0J s|opow drdodsordewr dojaasp 03 sargarens parddy € J[qe],

pringer

fHs



7020

Appl Microbiol Biotechnol (2015) 99:7009-7024

and the half-saturation constants were calibrated using a Mar-
kov chain Monte Carlo method (MCMC) using a Metropolis-
Hasting algorithm. More examples of applications of optimi-
zation algorithms for macroscopic modeling of mammalian
cells can be found in a number of studies, e.g., the method
of Powell (Glacken et al. 1988), MCMC (Xing et al. 2010),
linear programming (Sainz et al. 2003), the particle swarm
algorithm (PSO) (Selisteanu et al. 2015), sequential quadratic
programming (SQP) (Kontoravdi et al. 2007), and a quasi-
Newton method (Teixeira et al. 2007). It is not possible to a
priori recommend any single algorithm as the superior method
as it is problem-dependent.

Major problems of parameter estimation in non-linear sys-
tems are the potential existence of multiple local minima and
over fitting. Additionally, models have to be assessed for their
predictive power and their robustness against perturbations.

Model validation is one of the most critical parts of the
modeling process. We can identify two ways to evaluate the
quality of a model: one called direct validation compares the
model prediction with the same experimental data as used to
estimate the parameters (Goudar et al. 2009; Selisteanu et al.
2015). The second method uses an independent new data set
to validate or invalidate the model (cross validation). For in-
stance, Xing et al. (2010) identified the parameters on three
independent sampling trains with different initial parameters
and then used two types of validation. The first one validated
the model by applying the model to different cell cultures to
assess the applicability of the model. Secondly, they applied
the model to a perturbed system to assess the accuracy of the
model. For hybrid neural models, two data sets, one training/
calibration data set to identify hybrid model parameters and
one validation data set to assess the model quality are usually
used (Oliveira 2004; Teixeira et al. 2007; Vande
Wouwer et al. 2004).

A more complex methodology was used by Borchers et al.
(2013) for the invalidation of models and for parameter esti-
mation. Their set-based method builds on a semi-definite pro-
gramming relaxation and outer-bounding techniques support-
ed by the ADMIT toolbox (Streif et al. 2012).

Another important method to assess the quality of a model
is to perform sensitivity analysis that can provide valuable
information regarding the importance of parameters on the
model output and on the possible impact of variability of the
input on the output. For instance, one can evaluate the largest
possible variation of the parameters which does not lead to
rejection of the model (Borchers et al. 2013). Baughman et al.
(2010) quantified the impact of the linear discretization on the
parameters and on the numerical error. Moreover, the impact
of possible measurement variability on model estimate has
been performed by using Monte Carlo simulation using nor-
mal distribution (Baughman et al. 2010). Global sensitivity
analysis (GSA) has the advantage of evaluating the effect of
a factor while all other factors varied simultaneously
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(Kiparissides et al. 2008). For instance, Kontoravdi et al.
(2007) used the Sobol’ global sensitivity method to assess
the sensitivity of the parameters of dynamic hybridoma model
and, based on the same case study, Kiparissides et al. (2008)
evaluated the performance of the Sobol’ method and deriva-
tive based global sensitivity measures (DGSM) as a GSA
method. The DSGM method was identified as more useful
than the Sobol” method due to the lower computational re-
quirement while producing the same quality of results.

Application of models for control of processes

An important application for industrial production is the use of
macroscopic models for the control of production processes.
Generally, models applied for control should be simple and
variations of process conditions, and cell characteristics can be
taken into account by adapting the model parameters online. It
is most straightforward to use a stoichiometric model together
with dynamic material balances to estimate the state of a cul-
ture. A feeding strategy can be determined in a fed-batch pro-
cess based on the model and on defining an objective to reach.
For instance, Haas et al. (2001) used an open-loop-feedback-
optimal controller to maintain glucose and glutamine at low
levels in a culture of a hybridoma cell line producing an IgG
antibody. This controller was based on a Monod-type model
of growth in which the parameters and the state are estimated,
and then an optimization part calculates an optimal feeding
profile. Teixeira et al. (2007) also used a controller with a
hybrid model on a culture of a BKH cell line producing an
IgG1-IL2. The glucose and glutamine feeding rate was
optimized to maximize the total amount of antibody
produced at the end of the experiment. Finally, Craven et al.
(2014) used a non-linear model predictive controller (NMPC)
in a CHO cell line to control the glucose concentration. The
kinetic models used were of Monod type.

Conclusion and outlook

As was described in this review, setting up of macroscopic
models is carried out in primarily two steps (Fig. 1). After
identification of the stoichiometric part of a model, kinetics
for growth and metabolite conversion are defined to yield
relatively simple yet useful combined models. As in most
other cases of modeling, macroscopic modeling of mammali-
an cell cultures is an iterative process of setting up a model,
calibrating, validating, and testing it; designing and
performing new experiments; and revising the model.
Macroscopic modeling of metabolism can be used in many
applications to accelerate cell line selection, medium optimi-
zation, feeding strategy development, and other bioprocess
development activities. By using macroscopic models, it is
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possible to understand what are the significant parameters that
have an impact on the cell culture process and then predict
how the process will evolve if one parameter is changed. Hav-
ing predictive models of cell culture processes can be a pow-
erful tool to help in identifying the critical process parameters
which have an impact on CQAs, e.g., glycosylation, and to
optimize process performance with respect to a defined objec-
tive function. Therefore, macroscopic models are more and
more used by biopharmaceutical companies. They also assist
in fulfilling requirements of the QbD methodology by provid-
ing a handle to further improve CQAs.

For fed-batch cell culture processes, macroscopic models
can be applied to predict the time courses of metabolites which
have significant impact on the cell culture process or to esti-
mate process rates of interest and then control feeding rates
based on model prediction and using an appropriate objective
function.

Different types of models can be used to select variables
and determine the macroscopic reactions of the system, and
then, different kinetic models can be applied to simulate and
predict the macroscopic behavior of the cells. All types of
combinations of those models can be applied; for example, a
stoichiometric model using the EFM method combined with a
logistic kinetic equation or empirical stoichiometric relation-
ships identified with a PCA combined with Monod-type ki-
netic equations and so on. Stoichiometry derived by the EFM
method are used together with NN to result in so-called hy-
brid neural network models. Such kind of hybrid models are
more of grey box type rather than black box type (Laursen
et al. 2007; van Can et al. 1999; Vande Wouwer et al. 2004).
The choice of the model depends not only on the aim of the
study but also on the complexity of the system we want to
simulate and understand. As summary of strategies used to
develop macroscopic models with mammalian cells from var-
ious studies is presented on Table 3.
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