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Abstract

DNA methylation exhibits different patterns in different cancers. DNA methylation rates at different genomic loci
appear to be highly correlated in some samples but not in others. We call such phenomena conditional
concordant relationships (CCRs). In this study, we explored DNA methylation patterns in 12 common cancers using
data of 2434 patient samples collected by The Cancer Genome Atlas project. We developed an exploratory
method to characterize CCRs in the methylation data and identified the 200 gene markers whose on-and-off
statuses in DNA methylation are most significantly associated with drastic changes in CCRs throughout the
genome. Clustering analysis of the methylation data of the 200 markers showed that they are tightly associated
with cancer subtypes. We also generated a library of the significant CCRs that may be of interest to future studies
of the regulation network of DNA methylation in cancer.

Introduction
DNA methylation plays an important role in carcinogen-
esis and cancer progression through hypermethylation to
turn off the expression of tumor suppressors and hypoth-
methylation to activate the expression of oncogenes [1].
Genomic analyses of DNA methylation using microarrays
and next generation sequencing technologies have shown
that various forms of neoplasia and cancers are asso-
ciated with massive changes in DNA methylation [2,3].
Such changes are often distinctive depending on the sub-
type of cancer [4,5]. DNA methylation in cells is appar-
ently regulated by a large, intricate network. However,
although a large number of genomic network studies
have focused on data regarding gene expression, protein-
protein interactions, and protein-DNA/RNA interactions
[6,7], little has been done to incorporate DNA methyla-
tion data to study the underlying regulatory network.
In general, relationships that link different genes at

DNA, RNA, protein, and metabolite levels strongly
depend on the specific context, such as cell type, subcel-
lular location and time of the biological processes.
A number of methods have been developed to uncover

context-dependent relationships using gene expression
data. For example, the liquid association model was
developed to identify mediator genes that can modulate
coexpression of other pairs of genes [8]. A few other
similar models have been proposed to describe three-way
relationships among genes [9-11]. Cancer type dependent
coexpression patterns have been reported previously
[12,13]. The MINDy algorithm used conditional mutual
information to identify modulators that strongly affect
the concerted activities of transcription factors and their
targets, and found novel modulators of MYC function in
B cells [14].
In this study, we focused on the dynamic nature of

concordant relationships between the methylation status
of genes, using a large DNA methylation dataset of 2434
samples across 12 cancer types generated by The Cancer
Genome Atlas (TCGA) project. We observed that many
gene pairs showed dramatic changes in methylation pat-
terns in different cancers. We call such phenomena con-
ditional concordant relationships (CCRs). CCRs are
commonly observed in cancer. For example, Hess et al.
found that methylation of the ESR1 promoter is strongly
predictive of the concurrent methylation of a group of
tumor suppressors in acute myeloid leukemia, and is
associated with clinical outcome [15]. Carvalho et al.
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found that the concurrent methylation of a group of can-
cer-related genes is associated with the microsatellite
instability phenotype [16]. We are particularly interested
in finding marker genes that have the following property:
depending on the methylation status of the marker, the
patient samples can be dichotomized into two groups,
and the gene-gene correlation matrices derived from the
methylation data of the two groups are drastically differ-
ent. Such markers are likely to be associated with global
changes in methylation correlation patterns. This concept
of the methylation markers resembles the modulator in
three-way gene expression studies [9]. We have devel-
oped a method to identify such markers. We demonstrate
the utility of our approach to study CCRs, classify cancer
subtypes, and explore the patterns of DNA methylation
in cancer.

Results
Genomic patterns of DNA methylation in cancers
To show the overall pattern of DNA methylation in can-
cers, we downloaded methylation data of 2434 samples
across 12 cancer types from the TCGA data portal [17]
and performed hierarchical clustering analysis. Table 1
shows the sample size for each of the 12 cancer types.
This dataset contains 27,578 probes interrogating proxi-
mal promoter regions of 14,475 genes in the human gen-
ome. The methylation status of many probes showed
small variances and therefore does not contribute to the
clustering analysis. We hence removed the non-changing
probes and kept ~9000 probes that have the highest var-
iance across samples. We also removed probes on the X
and Y chromosomes because their methylation rates
mainly reflected gender difference rather than disease or
tissue differences. Figure 1 shows the cluster diagram
generated from the 9000 probes across 2434 samples,
with each row representing one probe and each column

representing one sample. The bottom panel shows the
tissue type and normal-cancer status of the samples. It
can be observed that the samples were mostly organized
by tissue type, with some noticeable outliers. GBM,
LAML, OV, BRAC and UCEC samples formed their own
clusters. READ and COAD samples were grouped
together. The kidney cancer samples and the normal kid-
ney samples were clustered close to each other. The nor-
mal and cancer samples of LUAD and LUSC were mixed
with each other but scattered across the clustering dia-
gram. The majority of the lung samples appeared to be
similar to KIRC. The STAD samples formed three
groups. A subset of the STAD cancer samples were clus-
tered with READ and COAD, while the remaining STAD
cancer samples were clustered with lung cancer samples.
The STAD normal samples were similar to another
group of lung cancer samples.
Since the rows in Figure 1 were ordered according to

chromosomal location, the horizontal stripes indicate
that methylation patterns are similar for the probes that
are close to each other on the chromosomes. In Figure 2,
we show that the correlation of methylation rates
between two probes is related to the distance between
the genomic loci that the probes interrogate. The correla-
tion was high (> 0.7 in 75% of the case) for probes within
200 base pairs (bps) of one another. As we examined
probe pairs with larger distances, the correlation dimin-
ished and decreased to a baseline level beyond 2000 bps.
We noticed that the pairwise relationships of methyla-

tion rates between two genomic loci can strongly depend
on cancer type. For example, Figure 3 shows the methyla-
tion data for two probes that both interrogate the promo-
ter region of gene RAB25 on chromosome 1. The two
probe loci are 338 bps apart. In COAD, BRCA, LUAD,
and LUSC, the methylation rates between the probes
were highly correlated (> 0.9). In LAML, both loci were
always fully methylated. In KIRC and OV, the linear cor-
relation was somewhat distorted. In GBM, however, the
correlation appeared to be zero, which is strikingly differ-
ent from the other cancers. We consider this to be a
clear example of CCRs.

Identifying the markers associated with global changes in
gene-gene correlations
To systematically evaluate CCRs, we searched for marker
probes associated with a large number of them. We ran-
domly selected 1500 samples as the training set, and the
remaining samples were reserved as the testing set. Based
on the training samples, we selected ~9000 high-variance
probes, derived scores to evaluate each probe’s associa-
tion with CCRs, and rank-ordered the probes (see Meth-
ods). These high-variance probes were also scored based
on the testing set. Figure 4 shows that the scores
obtained in the training set were highly correlated with

Table 1 Cancer type and sample size of TCGA
methylation data

Cancer Type Sample size

cancer normal

GBM - Glioblastoma multiforme 291 0

LAML - Acute myeloid leukemia 188 0

KIRC - Kidney renal clear cell carcinoma 219 199

KIRP - Kidney renal papillary cell carcinoma 16 5

LUAD - Lung adenocarcinoma 128 24

LUSC - Lung squamous cell carcinoma 134 27

STAD - Stomach adenocarcinoma 82 59

READ - Rectum adenocarcinoma 70 1

COAD - Colon adenocarcinoma 168 15

BRCA - Breast invasive carcinoma 186 0

UCEC - Uterine corpus endometrioid carcinoma 70 0

OV - Ovarian serous cystadenocarcinoma 542 10
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those derived from the testing set. This procedure was
repeated multiple times, and the results appeared to be
nearly identical (details not shown), suggesting that the
top-ranked probes and their scores were robust.

We performed clustering analysis on all 2434 samples
based on the top 200 probes selected from the training
set. As shown in Figure 5, the top 200 CCR-associated
probes were able to separate cancer types. Similar to the

Figure 1 Clustering of whole genome methylation pattern. Hierarchical clustering is performed using the whole genome methylation data
observed in 2434 samples across 12 common cancers.
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previous analysis in Figure 1 based on 9000 high-variance
probes, the top CCR-associated probes defined distinct
clusters for GBM, LAML, OV, BRAC, and UCEC, respec-
tively. READ and COAD samples were grouped into one
cluster. The major difference was the clustering of the
lung samples. Based on the CCR-associated probes, the
two subtypes of lung samples (LUAD and LUSC) formed
one tight cluster. Normal lung samples were grouped
with KIRCs in the previous analysis, but the CCR-asso-
ciated probes highlighted the difference between them.
For most cancer types where normal and cancerous

samples were both available, the cancerous and corre-
sponding normal samples were clustered close to each
other. This observation suggests that the difference in
methylation across different tissue types is larger than
cancer-induced methylation changes. The only exception
in this dataset was STAD. In Figure 5, we observed that
the STAD normal samples were more similar to the
lung samples, whereas the STAD cancer samples were
more similar to the COAD and READ samples. This

Figure 2 Correlation of methylation and genomic distance.
Correlation of methylation depends on distance between probed
positions on the chromosomes. The box plots show the distribution
of correlation (y-axis) between two neighboring probes depending
on the distance between the interrogated loci.

Figure 3 Example of cancer-dependent methylation correlation. The methylation data of two probes in the promoter region of RAB25 is
used to derive the plots. Each plot shows the correlations of methylation level between the two probes in one cancer type.
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observation indicates that methylation might play a
major role in stomach adenocarcinoma.
Our analysis found ESR1 to be one of the most signifi-

cant CCR-associated markers. Figure 6 shows an exam-
ple of a CCR associated with ESR1. When ESR1 was
methylated, the correlation between TMED6 and TFF1
was high. The correlation was disrupted in when ESR1
was unmethylated. In BRCA samples, TMED6 was
always methylated, while TFF1 could be either methy-
lated or unmethylated. This was in sharp contrast to the
high correlation between TMED6 and TFF1 in COAD
samples. ESR1 is known to play a very important role in
cancer, and previous research found that ESR1 methyla-
tion is associated with concurrent methylation of a
group of tumor suppressors [15]. TFF1 is an ESR1 regu-
lated protein, and it has been found to enhance cell
migration and oncogenicity in breast cancers [18,19].
TMED6, transmembrane emp24 protein transport
domain containing 6, has been found to be differentially
expressed in different grades of gastric cancer [20], but
no direct evidence has been found to implicate its role
in cancer.
Figure 7 shows another example of a CCR-associated

marker, BZRAP1. This example is interesting because
there was a strong negative correlation between GFAP
and TMEM173 in GBM samples, where BZRAP1 was
unmethylated. It is not clear how these three genes are
related. BZRAP1 is an autism risk gene. TMEM173
expression can activate the NF-�B signaling pathway
[21]. GFAP is a cell specific marker of astrocytes in the
brain and is regulated by NF-�B [22]. However, the

functions of these genes do not provide a clear clue
about the observed negative correlation between
TMEM173 and GFAP.

CCR-associated markers recovered GBM subtypes
In the previous section, we showed that when applied to
all samples containing multiple tissue types, the top
CCR-associated markers were able to distinguish among
tissue types. A natural next step was to focus on one
cancer type, and examine whether the CCR-associated
markers could identify cancer subtypes. We focused on
the 291 GBM samples, selected ~9000 high variance
probes, scored each probe’s association with CCRs,
rank-ordered the probes, and used the top 200 probes
to perform clustering analysis. Figure 8 (a) shows the
clustering diagram of the 291 GBM samples based on
the top 200 CCR-associated probes. We observed that
the GBM samples were divided into two groups. The
clinical outcome of the smaller group was significantly
better than that of the bigger group, as shown in Figure
8 (b). The smaller GBM sample group with better survi-
val was previously reported [23]. This group of samples
carry a CpG island methylator phenotype, which is asso-
ciated with better survival and low-grade gliomas. In
Noushmehr et al. [23], clustering analysis was performed
on 1500 high-variance probes, and discovered three
GBM subtypes. One of the three was the smaller sample
group we show in Figure 8 (a). The remaining two cor-
responded to the bigger group in our analysis, but there
was no significant evidence for biological and clinical
differences between the two remaining groups in the
previous study.

Discussion
We have described an approach to explore complex
patterns observed in DNA methylation data. We identi-
fied CCRs and markers associated with global changes
in methylation correlation in different cancers. Expect-
edly, when the identified markers were used for clus-
tering analysis, the clustering diagram largely coincided
with cancer types, since distinct methylation patterns
exist in different tissue types. We demonstrated that
our approach can be used to uncover tissue types and
subtypes of cancer. In this sense, our method is similar
to feature selection and unsupervised clustering.
However, there are also important distinctions. In

clustering methods, the common approach is to divide
samples into groups so that within-group variation is
small and between-group variation is large. In contrast,
our method seeks markers that define two sample
groups whose within-group correlation patterns differ.
We do not require within-group variation to be small.
It should be noted that the associations between the

markers and CCRs shown in this study are statistical

Figure 4 Scores that describe CCR-association.Each of the 9000
high-variance probes is evaluated and scored on whether it is
associated to CCR. Two sets of scores are derived from the training
and testing data separately, and the two sets of scores show high
correlation.
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associations identified from the data. The markers are
not necessarily the causative agents that drive the
changes in the correlations. Nevertheless, the markers
provide candidates and useful information to identify
the underlying causative agents. We believe that the
main utility of our approach is to facilitate a systematic
assessment of CCRs, which could be useful toward a
better understanding of DNA methylation regulation in
cancer.
The current study was limited to methylation data

only. However, data from multiple platforms measuring

gene expression, microRNA expression, DNA copy
number, and somatic mutations can all be evaluated as
candidate markers that affect CCRs in DNA methyla-
tion. Integrating data from multiple platforms will be
increasingly powerful as more data are accumulated in
the TCGA project.

Method
Data and preprocessing
In this study, we focused on the DNA methylation data
provided by TCGA (http://tcga-data.nci.nih.gov/tcga/

Figure 5 Clustering of top-200 CCR-associated probes. Hierarchical clustering of the 2434 cancer samples is performed using 200 top CCR-
associated probes.

Qiu and Zhang BMC Bioinformatics 2012, 13(Suppl 13):S7
http://www.biomedcentral.com/1471-2105/13/S13/S7

Page 6 of 11

http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp


tcgaHome2.jsp). Genome-wide methylation measurements
of 2434 samples were available, spanning across 12 cancer
types. The data were generated using the IIllumina Infi-
nium Human DNA Methylation27 array platform, which
interrogates the methylation status of 27,578 CpG sites for
each sample. The data is available at http://odin.mdacc.
tmc.edu/~pqiu/projects/TCGAMethData/index.htm.
We used the level 3 methylation data defined by TCGA,

which is the ratio of Mi /(Ui + Mi) for each CpG site i. Mi

represents the methylated probe intensity of CpG site i,
while Ui is the unmethylated probe intensity. Therefore,
the numerical range of the data is between 0 and 1. 0
means unmethylated, and 1 means completely methylated.
The data contain null entries, which correspond to probes

that overlap with known single nucleotide polymorphisms
(SNPs) or other genomic variations, and probes whose sig-
nal intensities are lower than the background.
In our analysis, we filtered out probes with many null

entries (number of nulls more than 1% of the sample
size) and probes with small standard deviation (SD <
0.1). Roughly 9000 probes survived these two filtering
criteria and were considered in the analysis of CCRs.

Dichotomize samples based on methylation
Although DNA methylation is a reversible process and
methylated CpG sites may not be completely methylated,
methylation data appear to be bimodal in general. By
thresholding the ratio Mi /(Ui + Mi) (i.e., nominal

Figure 6 Example of CCR-associated marker ESR1. The methylation status of ESR1 affects the correlation between TMED6 and TTF1. The left
panels show the correlation between TMED6 and TTF1, and cancer type distribution for samples in which ESR1 is unmethylated. The right
panels correspond to the samples with ESR1 methylated.

Qiu and Zhang BMC Bioinformatics 2012, 13(Suppl 13):S7
http://www.biomedcentral.com/1471-2105/13/S13/S7

Page 7 of 11

http://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
http://odin.mdacc.tmc.edu/~pqiu/projects/TCGAMethData/index.htm
http://odin.mdacc.tmc.edu/~pqiu/projects/TCGAMethData/index.htm


threshold 0.2), we can use probe i to divide samples into
two groups. The status of CpG site i in one group is
unmethylated, whereas CpG site i in the other group is
methylated. If the methylation correlation patterns in the
two sample groups are quite different, the CpG site i is
likely to be related to the global changes in methylation
regulation.

Clustering
Before calculating the changes in methylation correlation,
clustering is performed to find modules of highly corre-
lated probes. The purpose of this step is to reduce com-
putational complexity. The pairwise correlations between
modules can be used as surrogates of the pairwise corre-
lations between individual probes.

We use a variation of the agglomerative clustering
algorithm [24,25]. This algorithm requires a user-speci-
fied threshold for cluster coherence, defined as the aver-
age Pearson correlation between each probe in the
cluster and the cluster mean. This parameter determines
the quality of the resulting clusters (the default setting is
0.7). At the beginning of the first iteration of the
agglomerative algorithm, each probe forms its own clus-
ter. One probe is randomly chosen and merged with its
nearest neighbor as defined by Pearson correlation and
average linkage, and these two probes become unavail-
able in the current iteration. Then, another probe is ran-
domly chosen from the remaining ones and merged
with its nearest neighbor, if the nearest neighbor is still
available. Again, the chosen probe and its nearest

Figure 7 Example of CCR-associated marker BZRAP1. The methylation status of BZRAP1 affects the correlation between TMEM173 and GFAP.
The left panels show the correlation between TMEM173 and GFAP when BZRAP1 is unmethylated. The right panels correspond to the samples
with BZRAP1 methylated.
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neighbor become unavailable in the current iteration. If
a merge results in a cluster whose coherence is below
the user-specified threshold, the merge is rejected. After

all the probes become unavailable, the first iteration
ends and the number of clusters is reduced by approxi-
mately half. The same procedure is repeated in the

Figure 8 CCR-associated markers and GBM subtypes. (a) Clustering and diagram of 291 GBM samples based on top 200 CCR-associated
probes. (b) Kaplan-Meier plot of the survival data of the two GBM subgroups observed in (a). The survival of the two groups showed significant
differences (logrank test, pvalue 10–5).
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second iteration to further reduce the number of clus-
ters. The iterative process continues until all merges in
a particular iteration are rejected.
This algorithm guarantees that the quality of all the

resulting probe clusters is higher than the user-specified
threshold. The average of each cluster can be viewed as
a meta-probe that summarizes the average methylation
status of the cluster of correlated probes.

Identify CCR-associated switch-like probes
To identify CCR-associated probes, we used the training
samples to filter for roughly 9000 probes that had small
number of null entries and high standard deviation.
These probes were considered as candidates to be evalu-
ated. We also performed the above agglomerative algo-
rithm using the training set to cluster probes into
modules that contained highly correlated probes, and
we represented each module by the mean methylation
profile of probes in that module.
For each candidate probe, we evaluated whether its

on-off status affected methylation correlation globally.
We dichotomized the training samples into two groups
(i.e., threshold = 0.2), computed the module-module
correlation matrices for the two sample groups sepa-
rately, performed z-transform, and summarized the dif-
ference between the two correlation matrices into one
scalar score (s = ∑i,j |z1(i, j) – z2(i, j)|). If a candidate
probe resulted in an extremely unbalanced split (i.e., the
smaller sample group contained less than 15% of sam-
ples), this candidate probe was not scored, because cor-
relation computed from on a small number of samples
may not be accurate and reliable. The candidate probes
were rank-ordered according to their scores, where the
methylation status of top ranking probes were associated
with large changes in methylation correlation.
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