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Abstract

Parameter identifiability problems can plague biomodelers when they reach the quantification stage of development, even
for relatively simple models. Structural identifiability (SI) is the primary question, usually understood as knowing which of P
unknown biomodel parameters p1,…, pi,…, pP are-and which are not-quantifiable in principle from particular input-output
(I-O) biodata. It is not widely appreciated that the same database also can provide quantitative information about the
structurally unidentifiable (not quantifiable) subset, in the form of explicit algebraic relationships among unidentifiable pi.
Importantly, this is a first step toward finding what else is needed to quantify particular unidentifiable parameters of interest
from new I–O experiments. We further develop, implement and exemplify novel algorithms that address and solve the SI
problem for a practical class of ordinary differential equation (ODE) systems biology models, as a user-friendly and
universally-accessible web application (app)–COMBOS. Users provide the structural ODE and output measurement models
in one of two standard forms to a remote server via their web browser. COMBOS provides a list of uniquely and non-
uniquely SI model parameters, and–importantly-the combinations of parameters not individually SI. If non-uniquely SI, it also
provides the maximum number of different solutions, with important practical implications. The behind-the-scenes
symbolic differential algebra algorithms are based on computing Gröbner bases of model attributes established after some
algebraic transformations, using the computer-algebra system Maxima. COMBOS was developed for facile instructional and
research use as well as modeling. We use it in the classroom to illustrate SI analysis; and have simplified complex models of
tumor suppressor p53 and hormone regulation, based on explicit computation of parameter combinations. It’s illustrated
and validated here for models of moderate complexity, with and without initial conditions. Built-in examples include
unidentifiable 2 to 4-compartment and HIV dynamics models.
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Introduction and Motivation

Nonlinear Dynamic System Models, Identifiability Notions
and Motivational Examples

Structural identifiability (SI) analysis addresses the ques-

tion of whether quantification of model parameters p1, p2, … is

possible from a given set of ideal, noise-free input-output (I-O)

data [1,2]. In this sense, it establishes the limits of knowledge

attainable about the parameters from real I–O data, and is a

necessary condition for quantifying them from data. For this

reason, it is sensible to consider SI properties of models prior to

attempting to quantify them. This is particularly important for

modeling in systems biology, where models are typically large –

with many parameters – and I–O data are few, e.g. protein

network models, among others [1].

For SI analysis, no real data are needed – only model topology

or structure – which includes initial conditions (ICs) and the

locations of model inputs and outputs – together representing a

model of a system and an experiment. Identifiability notions have

relevancy primarily in the context of I–O experiments. I–O

structure must be included explicitly in the statement of the model.

The model also must account for all a priori information related in

any way about the parameters. The constrained structure – Eq. (1)

below – or its equivalent, is a convenient representation of the

model for examining SI properties [1,3].

In Eq. (1), x is an n-vector of state variables xi (e.g. biochemical

species); p is a P-vector of unknown parameters pi (e.g. rate

constants); u is an r-vector of test-inputs ui (e.g. exogenous stimuli);

f is an n-vector of nonlinear (or linear) functions of the state, input

and parameter vectors (system structure – e.g. stoichiometric

equations); y is an m-vector of outputs (e.g. measurements); g is a

linear or nonlinear m-vector of output functions of state variables

and parameters (output structure); and h is a v-vector of

independent constraint relationships involving the parameters

(e.g. positivity of rate constants). In these terms, the basic nonlinear

ODE system-experiment model is:
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_xx(t,p)~f x(t,p),u(t),p½ � ,t [ t0,T½ �

y(t,p)~g x(t,p); p½ �

x0~x(t0,p)

h x(t,p),u(t),p½ �§0

ð1Þ

The four sets of relationships in (1) are the constrained
structure, the complete model for a system quantification

experiment on the interval 0# t # T. Constraints

h x(t,p),u(t),p½ �§0 generally affect structural identifiability prop-

erties, e.g. p.0 are common parameter constraints. Identifiability

properties are also generally dependent on the form of the input

u(t), the initial conditions (ICs) x0~x(t0,p), and the period of data

observation if the model is nonlinear [2,3], as in Eq. (1).

In the following developments, we assume the ODE model

already has any equality constraints h = 0 included in the ODEs,

e.g. by substitutions. It is convenient to abbreviate the system-

experiment model (1) as vector equation: _xx~f x,u,pð Þ, (with

equality constraints included), output (vector) y = g(x, p) and

initial conditions (ICs) x0~x0(p). We also assume all parameters

p.0, the usual way parameters are defined in mechanism-based

structural models. Additionally, for the purposes of algorithm

developments in this paper, where we apply the differential

algebra approach developed in [4–6], we assume that f and g are

rational polynomial functions of their arguments. Notably, rational

polynomial function expressions as in mass-action based kinetics –

for example – are common in systems biology models.

The following four definitions codify structural identifia-
bility (SI) of models and their parameters [7].

1. The single parameter pi of the constrained structure (1) is

structurally unidentifiable (abbreviated unID) on the

interval [t0, T] if there exists an (uncountably) infinite number

of solutions for pi from these relationships. If one or more pi is

(structurally) unID, then the model is unidentifiable.

2. The single parameter pi of the constrained structure (1) is

nonuniquely structurally identifiable (SI) on the interval

[t0, T] if there exists more than one distinct solution for pi from

these relationships.

3. The single parameter pi of the constrained structure (1) is

uniquely structurally identifiable (SI) on the interval [t0,

T] if there exists a unique solution for pi from these

relationships. If all pi are uniquely structurally identifiable,

the model is uniquely structurally identifiable.

4. The single parameter pi of the constrained structure (1) is

(structurally) interval identifiable on [t0, T] if it is

unidentifiable (unID) and a finite interval, dependent on these

relationships, exists bounding pi. If all pi are structurally

interval identifiable, the model is (structurally) interval
identifiable.

Globally and Locally Identifiable. The adjectives globally

and locally are also used in the literature to define some of these

notions. Globally structurally identifiable (SI) simply means

uniquely structurally identifiable. Locally structurally identi-
fiable or just identifiable means structurally identifiable, but

not necessarily uniquely. Distinct degrees of identifiability, or lack

thereof, are illustrated in Fig. 1.

Also, unidentifiable parameters – although they have an

uncountably infinite number of possible solutions – are usually

implicitly constrained by the model structure, Relationships (1),

which define the interval parameter bounds noted in Definition 4

above. This means they cannot be given any value for, say, model

simulation purposes, as explained further in the next paragraph

and illustrated in Example 2 below.

Identifiable Parameter Combinations and Their

Importance. If a model is structurally unID (i.e. if some pi

are not SI), there always exist identifiable combinations of

parameters (abbrev: combos), and each such combination can

have one or a finite number of solutions. Finding explicit forms of

identifiable combinations of parameters in a structurally unID

model can be important in model quantification and applications.

Combos are structural invariants of the model and – for many

applications – they can provide a simpler input-output equivalent
structure, i.e. with the same input-output properties [8], e.g. for

simply simulating the model. These structural invariant combos

also can provide interval bounds for unID parameters, the

substance of identifiability definition 4 above [7].

Explicit expressions for SI combos in a model can be quite

useful, particularly for large nonlinear models that involve tens of

state variables and scores or hundreds of parameters – e.g. large

protein network models – but also for not-so-large dimensional

models. Input-output equivalent models expressed only in terms of

SI parameters and parameter combos are simpler and therefore

easier to implement, quantify and analyze. Explicit parameter

combinations also can be used to reveal parameters that might be

fixed, or otherwise established independently– an experiment

design application – in order to improve identifiability. The

algebra, however, can be tedious if accomplished analytically, even

for the simplest models. Motivation for automation of this analysis

by machine computation is illustrated in the first three examples

below – which also illustrate some important results about

nonuniqueness of SI parameter solutions – further motivating

computation of SI parameter combinations. Explicit expressions

for SI combos also can be used to help reparameterize a model

i.e. fully recast a model in terms of identifiable parameters and

parameter combinations, as illustrated in Example 2 below.

The differential algebra-based algorithms reported by Meshkat

and coworkers [4–6] are focused here on computing SI parameter

combinations symbolically, in a new computer program COM-

BOS, providing SI parameter combinations explicitly. COMBOS

– described in a subsequent section – is implemented as a user-

friendly web application (app), accessible online at: http://

biocyb1.cs.ucla.edu/combos.

Three other published computational methods for SI analysis of

nonlinear ODE models are notable for giving useful information

in the unidentifiable case. These include: DAISY, a differential

algebra-based method capable of global identifiability solutions

[9]. The second method is a generating series approach, called

GENSSI – also capable of global identifiability solutions [10]. The

third is a non-parametric bootstrap-based algorithm for local

identifiability analysis, based on the method of mean optimal

Figure 1. The distinct degrees of structural identifiability SI (or
unidentifiability) of the parameters and parameter combina-
tions of a dynamic system model.
doi:10.1371/journal.pone.0110261.g001
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transformations [11]. For unidentifiable models, the second and

third methods can isolate ‘‘groups of functionally related

parameters, so that the modeler can determine which parameters

must be fixed in order to improve identifiability’’ [11], but they do

not determine algebraic relationships among the parameters.

DAISY takes identifiability analysis a step further, and does

provide algebraic relationships among the parameters, in a form

that can sometimes be manipulated to find SI parameter

combinations – with varying levels of additional effort – as

demonstrated in Examples 1, 3, 5, 6, 8 and 9 below. In contrast,

COMBOS completes the task and yields algebraic relationships

among SI parameters explicitly.

We remark that Examples 1–3 utilize relatively simple linear

compartmental ODE models to both illustrate the complexity of

the identifiability problems addressed and motivate automated

COMBOS solutions for more dynamically complex nonlinear

models. These linear examples have analytic solutions and are

solvable by classical methods [1,2], but not without substantial

algebraic analysis for achieving solutions – as noted in the

examples.

Example 1: Unidentifiable 2-Compartment Model

(Fig. 2). This model has been used to represent the dynamics

of numerous physiological systems, e.g. distribution and turnover

of labeled cholesterol in humans, with impulsive injection and

concentration measurements of tracer in compartment 1 [12].

_xx1~{(k01zk21)x1zk12x2zu:k11x1zk12x2zu

_xx2~k21x1{(k02zk12)x2:k21x1zk22x2

y~x1=V1

ð2Þ

By definition, kij $0 for i ? j. We assume kij .0 (an additional

constraint relation), but there are no known relationships among

the kij, for i ? j. This model has five unknown nonzero

parameters: k01, k02, k12, k21, and V1. The right-hand side

equalities in the first two equations in (2) are simplified by defining

the compartment turnover rates: - k11 ; k01+ k21 and - k22 ; k12+
k02, which we use in the second part of this example below. The

input-output transfer function for this model H11(s) = Y(s)/U(s)
embodies all information about the parameters that can be

obtained from ideal input-output data. H11(s) is evaluated using

Laplace transform analysis of the ODEs in (2):

H11(s)

~
(szk02zk12)=V1

s2z(k01zk02zk12zk21)szk01k02zk01k12zk02k21

:
b2szb1

s2za2sza1

ð3Þ

The a and b coefficients of the numerator and denominator

polynomials H11(s) in (3) can always be evaluated uniquely from

input/output data (a well-known algebraic property of polynomi-

als) and these are:

b1~
k02zk12

V1
:{

k22

V1
,b2~

1

V1
[k22~{

b1

b2

a1~k01k02zk01k12zk02k21~k01
b1

b2

zk02k21

~{k01k22zk02k21~k11k22{k12k21

a2~k01zk02zk12zk21~k01zk21z
b1

b2

~{k11z
b1

b2

[k11~
b1

b2

{a2

k12k21~k11k22{a1

ð4Þ

The a and b coefficients are thus SI parameter combinations

(combos). It is also clear from (4) that V1, k11, k22 and the product

k12k21~k11k22{a1(from a1 equation in (4)) are another set of four

SI combinations of this model [1]. In either case, there are five

unknown kijs in Eqs. (4) that cannot be all found from only these

combo equations, and hence the model is structurally unID. Only

V1 can be evaluated uniquely, from Eq. (4).

If it is known that k01 ; 0, a very commonly used different 2-

compartment kinetic model – e.g. for the disposition of drugs [13]

or hormones [14] – we have four unknowns and a unique solution

is available from Eqs. (4), i.e. the model is uniquely SI, because:

V1~1=b2, k21~a2{b1=b2, k02~a1=k21 work and

k12~a2{k02{k21. Similarly, if only k02 ; 0, we obtain a

(different) model – used even more often to describe drug kinetics,

e.g. [15,16] – and we again have a unique solution for the

remaining four parameters [1].

A binary nature for the identifiability (SI) question has been

illustrated in this example. The model is either uniquely

identifiable or it is not identifiable at all, depending on prior

knowledge of certain parameters. However, SI of all parameters

does not generally imply a unique solution set, as illustrated in the

next example.

Example 2: Unidentifiable 2-Compartment Model

Reparameterized into Uniquely SI Models. We reparame-

terize the unidentifiable 2-compartment model in Fig. 2 in two

ways here, both in terms of the SI parameter combinations.

Redefining (scaling) the unmeasured state variable x2 in Eq. (2) as

x’2:k12x2 reparameterizes the model with all coefficients as the

uniquely SI parameter combos: k11, k22, V1 and k12k21.
Figure 2. A SI 2-compartment model, with both input and
output in compartment 1. All kij .0 are unidentifiable; but volume
V1 and the three parameter combinations (combos) k12k21, - k11 ; k01+
k21 and - k22 ; k12+ k02 are uniquely SI.
doi:10.1371/journal.pone.0110261.g002
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_xx’2:k12 _xx2~k12k21x1zk22x’2

_xx1~k11x1zx’2zu
ð5Þ

This model form can be readily simulated. But, it is not a

compartmental structure, with balanced exchange fluxes between

two compartments and nonzero flux leaks from both.

To preserve the original compartmental structure, we can add

and subtract x’2:k12x2 from the _xx’2 ODE and also add and

subtract k12k2161 from the _xx1 ODE, as in the alternative re-

parameterized model:

_xx’2~k12k21x1{({k22{1)x’2{x’2

_xx1~{({k11{k12k21)x1{k12k21x1zx’2zu
ð6Þ

The compartmental model structure in Fig. 3 also has

parameters made up only of ID combos. It does, however, have

a restricted region of validity, because the leaks in the transformed

model must retain their nonnegativity, i.e. k’02:{k22{1§0
or k22ƒ{1 and k11ƒ{k12k21, as noted in definition 4 above.

Example 3: Some 3-Compartment Models: Combos and

Ambiguities. The model in Fig. 4 is described by:

_xx1~{(k21zk31)x1zk12x2zk13x3zd(t)

_xx2~k21x1{(k02zk12)x2

_xx3~k31x1{(k03zk13)x3

y~x1=V1

ð7Þ

This model has been used, for example, to represent the intra-and

extravascular kinetics of thyroid hormone in response to an

intravenous tracer dose (impulse d(t)) of hormone in the euthyroid

human, rat and sheep [17]. It has seven unknown parameters: k02,

k03, k12, k13, k21, k31 and V1, all assumed positive (the constraint

relations). The measured output y(t) is the concentration of

substance (tracer hormone in blood plasma) in compartment 1.

The transfer function H11(s):Y (s)=U(s) is evaluated from

Laplace transforms of Eqs. (7). To simplify the algebra (as in

Example 1), we define the parameter combinations:

k11~{(k21zk31): { turnover rate of compartment 1

k22~{(k02zk12) : { turnover rate of compartment 2

k33~{(k03zk13):{ turnover rate of compartment 3

c1:k12k21, c2:k13k31

ð8Þ

Then, with much of the detailed algebra suppressed, we arrive

at:

H11(s)~
b3s2zb2szb1

s3za3s2za2sza1
ð9Þ

with coefficients evaluated as:

b1~
k22k33

V1
,b2~

{(k22zk33)

V1
,b3~

1

V1

a1~k12k21k33zk13k22k31{k11k22k33

~c1k33zc2k22za3

a2~k11k22zk11k33zk22k33{k12k21{k13k31

~k11k22zk11k33zk22k33{c1{c2

a3~{(k11zk22zk33)

ð10Þ

As in Example 1, we know all six a and b coefficients (combo set

1) of the numerator and denominator polynomials of H11(s) can be

evaluated uniquely from (ideal) input-output data – Eqs, (10) –

over any time interval, i.e. they are uniquely SI. The set of combos

in Eq. (8), i.e. k11, k22, k33, k12k21, k13k31, plus V1 in Eq. (10), are

also SI, but not all uniquely. Either set yields six kij equations in

the seven unknown parameters. The volume V1 is uniquely

identifiable, in this case directly from Eq. (10), but none of the six

kij can be determined uniquely from the remaining five equations

in Eqs. (8) or (10). We remark that the structural symmetry of the

model renders compartments 2 and 3 interchangeable in Fig. 4–
because input and output are only in central compartment 1 in this

example – the reason the model cannot be globally identifiable

from this limited input-output pair. Indeed, additional algebraic

Figure 3. The unidentifiable 2-compartment model of Figure 2
is reparameterized here into a uniquely SI equivalent model,
with the same structure, and with new parameters evaluated
and designated in terms of SI combos.
doi:10.1371/journal.pone.0110261.g003

Figure 4. A 3-compartment unidentifiable model with both
input and output in compartment 1. None of the kij .0 are SI, but
volume V1 and the five combos k11, k22, k33, k12k21, k13k31 are uniquely SI.
If k03:0, all 5 remaining kij become SI, but not uniquely – each has two
feasible solutions.
doi:10.1371/journal.pone.0110261.g004
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analysis (not shown) indicates that combo k11 is uniquely

identifiable, while combos k22, k33, k12k21 and k13k31 are locally

ID, each with exactly two solutions – results not easily gleaned by

inspection or a less than rigorous analysis.

Example 4: Nonuniqueness of SI Parameters and

Parameter Combinations. If k03:0 in Eq. (7) we have a

different model, one that has been used e.g. to represent bilirubin

kinetics [18]. Transfer function analysis yields six independent

equations with six unknowns [1]. All parameters of this model are
SI, but – as in the previous example – not uniquely, despite having

6 equations in 6 unknowns. There are two solutions, and both are

physiologically feasible if no additional constraints are available a
priori. The two sets of solutions for all unknown model parameters

can be determined from the following algorithm, obtained by

successive substitution into Eqs. (7) – (10) with k03 ; 0, i.e.

V1~
1

b3

� k22~
{b2V1+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2V2
1 {4b1V1

q
2

� k13~k22zb2V1

k11~{a3zb2V1

c~k13zk22

D~a1zk11b1V1

m~(b1zk11b2)V1{a2

� k31~
m k13zD

c k13

� k21~{(k11zk31)

� k12~
m k22{D

c k21

� k02~{(k12zk22)

ð11Þ

The equations marked with an asterisk each have two nontrivial

combo solutions, because they all involve k22, which itself has two.

Additional information about the model or its parameters is

needed to distinguish between these two solutions. Similar results

(two solutions) are obtained if only k02 ; 0, yet another variation

of this 3-compartment model.

Unidentifiable models in Examples 3 and 4 here show how

additional parameter information can render a model more

identifiable, but not necessarily uniquely. The Example 3 model

has only SI combos (and V1) identifiable, with two distinct

solutions for all but one combo, whereas fixing one parameter

(k03:0) in the same structural model in Example 4 renders all

remaining individual kij parameters SI, but still with two distinct

solutions.

Besides these complexities, lack of structural identifiability also

poses a challenge for further quantitative analysis of these models.

For example, without individual parameter or combo values, it

cannot be simulated. This indeterminacy can be overcome by

reparameterizing the model in terms of the identifiable combina-

tions (combos) of parameters and computing solutions using

combos in the ODEs – as illustrated in these motivational

examples. Reparameterization, however, requires explicit knowl-

edge of the SI combinations and – as also illustrated – the algebra

for finding them can be quite tedious. Machine computation

clearly is needed to facilitate the process.

Algorithms, COMBOS Software Implementation
and New Results

Computational Algorithms
We refined and extended the differential algebra algorithms

developed for finding SI parameter combinations in nonlinear and

linear ODE models [4–6] and imbedded them in a novel open-

source web application (app), COMBOS, all as described below

and detailed further in the Methods section. This app includes a

facile user interface to the open-source computer algebra software

package Maxima (maxima.sourceforge.net/), implementing the

computational engine for COMBOS. We remark that COMBOS

finds individually SI parameters as well as SI combinations.

Differential Algebra Algorithms & Extensions for

COMBOS. Detailed explanation and proofs of the underlying

theory are given in [4–6]. In brief, the model ODEs are

transformed algorithmically into equations with no state variables,

only parameters, inputs and outputs and their derivative terms,

using a differential elimination method [6]. The resulting

equivalent model is called the input-output map Y(y,u,p)~0, a

subset of a complete characteristic set. The mapping from the P
parameters p to the coefficients c(p) in these input-output

equations is tested for uniqueness (distinctness), to determine

identifiability, by computing a Gröbner basis for these equations.

If this mapping is finite-to-one, the model is identifiable and no

additional Gröbner bases are needed and no more are computed

in COMBOS – yielding relatively quick solutions. If this

coefficient mapping is infinite-to-one, the model is unidentifiable

and – in COMBOS – identifiable parameter combinations are

computed by finding additional Gröbner bases for the system of

equations c(p) = c(p*). To speed up computation time, a

numerical value is chosen for p*. There are P! possible Gröbner

bases for the system of equations c(p) = c(p*) for a parameter

vector p [4], which can be computationally prohibitive for large P.

In our earlier work, we generally did not need to find more than P
different Gröbner bases: trial-and-error randomization of the

ordering of the parameter vector p followed by the computation of

Gröbner bases corresponding to P shifts of the parameter vector p
generated a sufficient number of SI parameter combinations. This

worked well enough for small to medium size models, but it does

not guarantee that enough combinations would be available for all

models. Algorithmic refinements were needed to automate this

process in the COMBOS implementation, and this entailed a

computability compromise, consistent with algorithmic goals.

The main overall goal is to find simple parameter combinations.

The simplest identifiable parameter combinations (in terms of

polynomial degree and number of terms) among these Gröbner

bases is determined by searching them for elements and factors of

a certain form, which we call ‘‘decoupled’’ terms [4]. We then add

these identifiable parameter combinations to the set of the original

coefficients of the input-output equations and determine the

simplest algebraically independent set among these. This proce-

dure may not generate the absolute simplest set of identifiable

parameter combinations, which would require checking of all P!

possible Gröbner bases – not practical with current software tools.

Computationally tractable automation of parameter combina-

tion selection in COMBOS was implemented by systematic and

exhaustive ordering and reordering of Gröbner bases, and

repeating this process two additonal times – each with a different

ordering – to expand the search to a larger subset of the P! possible

Gröbner bases for the system of equations c(p) = c(p*). 3P was

Identifiable Parameter Combos & Web Application
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chosen heuristically because it generated a sufficient number of

simple identifiable parameter combinations in all example runs of

unidentifiable models with as many as 10 parameters.

These algorithmic refinements are implemented in COMBOS

as follows. P shifts of parameter vector p are made and Gröbner

bases are computed for each of these. The parameter vector is

then reordered and Gröbner bases corresponding to P shifts of this

reordered parameter vector are computed. Shift means trans-

forming (p1, …, pP) to (p2, …, pP, p1). This gives each parameter a

ranking that eliminates it last. Reordering means transforming (p1,

…, pP) to (p1, p3, …, pP-1, p2, p4, …, pP) if P is even; and (p1, p3,

…, pP, p2, p4, …, pP-1) is P if odd. This gives each parameter a

‘‘new neighbor’’, so new combinations can possibly be found. This

process is repeated one more time, for a total of 3P rank orderings.

Initial Conditions Included. If any initial conditions are

known, they are now included algorithmically with the character-

istic set and identifiability results are evaluated using the complete

characteristic set of equations, as in [19]. Special handling of initial

conditions is discussed further below.

COMBOS: User Interface, Structure & Usage Guidelines
The Methods section provides a flowchart of the underlying

computational steps involved in COMBOS program interactive

use. At the front-end of the user-interface, model equations are

entered for SI analysis in either of two ways: using a fill-in form
that prompts for addition of equations, in a standard markup

language; or entry into a text area in copy/paste form, with

equations delimited by semicolons. These modes of model entry

circumvent storing user data on the server, thereby minimizing

security concerns. Equations are displayed in native math (pretty)

form as they are entered, as illustrated in the interface screen shot

in Fig. 5, which illustrates computed identifiability analysis results

as well as user input. Model equations and initial conditions (ICs)

are specified as program input for this 4-compartment model

example; and the results show multiple solutions. The standard-

ized syntax is described further below. Note that results also

include the model in copy/paste form, which greatly facilitates

model reentry, as is, or edited.

Syntax & Naming Conventions for Specifying the

Model. Equations are entered using ASCIIMathML library

notation (http://www1.chapman.edu/,jipsen/mathml/asciimath.

html), chosen over its MathML and LaTeX counterparts for its

simplicity, reduced character count and thus usability. Table 1 lists

the naming guidelines for ODE equations of the form _xx~f x,u,pð Þ,
with initial conditions (ICs): x(0, p) and outputs y = g(x, p). Users

must adhere to this common standardized notation.

Numbering of state variables, inputs and outputs MUST start

from 1 and be monotonically increasing. This means the

numerical subscript of an input or output does not necessarily

correspond to that associated with a state variable (or compart-

ment). For instance, a system with a single output of/from state

variable (compartment) 2 is written y1~x2; or input u1 can be in

any ODE, not just the first one, etc.

Differential algebra algorithms currently handle only polyno-

mial and rational function terms for SI analysis. Terms with

trigonometric or transcendental functions, e.g. sin, cos, ln – as well

as constants (e.g. pi, e) – are not recognized as such by the parser

and would be incorrectly treated as parameters if encountered.

Initial Condition Handling in COMBOS. Initial conditions

may or may not be known for a given state variable in a model,

and knowledge of initial conditions can change the resulting SI of

the parameters or parameter combinations. The interface provides

a convenient way to enter known ICs. Known initial conditions

are usually numbers, but – importantly – COMBOS also

accommodates functions (combinations) of the parameters, which

can be useful in some applications, e.g. when ICs represent

nonzero steady state functions of parameters to be estimated from

transient response data initiated from steady state (e.g, see [20]).

When not known, initial conditions are simply treated as generic
by default. This means that identifiability properties obtained

without initial conditions hold true almost everywhere, i.e. except

on a ‘‘thin set,’’ – a set of measure zero [21]. This means there

might be particular initial conditions that yield different identifia-

bility properties [21]. These are called inaccessible states that –

under very particular circumstances – lead to unidentifiability of

parameters [21]. The COMBOS algorithm presently handles

inaccessible initial states for models that have one or more

constant ODE solution trajectories, i.e. dxi=dt~0forsomei, which

renders the model reducible. These constant solutions are

incorporated into the algorithm for finding the input-output (I-

O) equations, Y(y,u,p)~0, and change identifiability properties of

the model, as illustrated in Example 8. Otherwise the system is

assumed accessible from all known initial conditions.

For each state variable, a subfield is available for entering the

corresponding initial condition, assumed unknown (generic) and

hidden from view at the start, so as not to obscure the view of the

overall interface and thus its usability. Visibility of the subfield can

be manually toggled so that it is displayed only if there are known

initial values to enter. For the copy/paste method, users need only

list values for known initial conditions.

For each known initial condition specified, the program checks

that none are functions of undefined state variables, inputs,

outputs or parameters.

Application Testing and New Results
Comparisons with DAISY. DAISY (Differential Algebra for

Idenfiability of SYstems: http://www.dei.unipd.it/,pia) is a freely

downloadable computer algebra software package for analyzing

parameter SI [9]. Users include an input file with the mathemat-

ical model in the syntax required by DAISY and run the program

using a command line interface. Results provide solutions to the

system of parameter-coefficient mapping equations c(p) = c(p*) at

a pseudo-random point p*. In the case of local identifiability, users

can then count the number of solutions; and in the case of

unidentifiability, they can sometimes algebraically manipulate the

solution to get identifiable parameter combinations [4,5]. In some

cases (see Examples 5, 6, 8, and 9), this can be readily done by

moving all parameters in DAISY solutions to one side of the

equations, via addition/subtraction or multiplication/division, but

not in general. Even for very simple examples such as the 2- and 3-

compartment models of Examples 1 and 3 above, this trick of

moving all the parameters to one side is not so easy, as we now

show.

For Example 1– with p = (k01, k02, k12, k21, V1) – DAISY code

generated the pseudo-random point p* = (8, 7, 13, 12, 3) for which

it provides precisely the following solution:

k21~({156)=(k02{20)

k01~(4 � (5 � k02{61))=(k02{20)

k12~{k02z20

V1~3

While the SI combination k02+ k12 is readily obtained from the

third equation, by simple rearrangement, the combos k12 k21 and

k01+ k21 are not so easy to unravel. In particular, k01+ k21 requires
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Figure 5. Main features of the COMBOS user interface. (TOP) Header and interactive input of a 4-compartment model example with one
output and one IC. Equations entered using programming language are translated on the right into natural math (‘‘pretty’’). (BOTTOM) – SI analysis
results, provided in ,16 secs. Six of 7 SI combos – rendered explicitly – have three feasible solutions each. The Model in Copy/Paste Format can
be readily used to run variations of this model, by direct editing in the copy/paste input window.
doi:10.1371/journal.pone.0110261.g005
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several steps of algebraic manipulation, not so obvious to users

unfamiliar with compartmental model equations. The 3-compart-

ment model of Example 3 requires similar algebraic manipulations

to obtain all SI parameter combinations. In contrast, COMBOS

finds all SI combinations explicitly for these examples, in a matter

of seconds.

To further evaluate COMBOS functionality and accuracy, we

next compared the results of COMBOS SI analyses with the

example solutions computed using DAISY reported in four papers

[9,19,21,22]. Both COMBOS and DAISY provided identical

results about SI for all of these examples, which included a mix of

both linear and nonlinear models up to dimensionality four. We

present and discuss only four examples that differed in some

respects here, with all models presented in COMBOS math

syntax.

Example 5. The following 3-compartmental model example

[19] has one input and one output, tested with and without initial

conditions:

_xx1 ~ {p1x1zp2x2zu1

_xx2 ~ p3x1{p4x2zp5x3

_xx3 ~ p6x1{p7x3

y1 ~ x1

ð12Þ

With no initial conditions given, both DAISY and COMBOS

indicate the model is unidentifiable. COMBOS, however,

additionally indicates explicitly that p1 and combination p2p3

are uniquely identifiable; and p4, p7 and p2p5p6 are locally

identifiable, with 2 solutions. With additional effort, this also can

be derived from the DAISY results, with some additional cross-

multiplication computations. As noted in [4,5], this manipulation

does not work for some notable unidentifiable models.

With all initial conditions given, both DAISY and COMBOS

indicate the model is locally identifiable. COMBOS specifically

provides additional SI results: the four locally SI parameters

p4, p5, p6, p7 have two solutions (established in 10 seconds

runtime). This result also can be attained from DAISY results by

counting solutions in the output.

Example 6. The following nonlinear polynomial 4-compart-

mental HIV/AIDS model describes the dynamics of uninfected,

latently infected and actively infected cells, along with the free

virus particles [22]:

_xx1 ~ s{dx1{bx4x1

_xx2 ~ q1bx4x1{m1x2{k1x2

_xx3 ~ q2bx4x1{k1x2{m2x3

_xx4 ~ k2x3{cx4

y1 ~ x1

y2 ~ x4

ð13Þ

With no initial conditions given, both DAISY and COMBOS

find b, d, s uniquely identifiable and c,m2 locally identifiable.

COMBOS results additionally indicate that candm2 have three

local solutions; combination q2k2 is uniquely identifiable; and

k1zm1 and q1k1k2 are locally identifiable with 3 solutions
(runtime: 90 seconds). Again, as noted above, this result can be

obtained by additional algebraic manipulation of DAISY results.

Example 7. This example, from [9], is a 4-compartmental

mammillary compartment model with one input and one output,

tested with and without initial conditions:

_xx1 ~ { k21zk31zk41zk01ð Þx1zk12x2zk13x3zk14x4zu1

_xx2 ~ k21x1{k12x2

_xx3 ~ k31x1{k13x3

_xx4 ~ k41x1{k14x4

y1 ~ x1

ð14Þ

With no initial conditions given, both DAISY and COMBOS

found the model locally identifiable. COMBOS results explicitly

indicated that parameter k1 is uniquely identifiable, with the

others all locally identifiable – with 3 solutions each. DAISY

produces all local solutions, but you have to locate and count them

in the output. When at least two initial conditions are known

among x2 0ð Þ, x3 0ð Þ, x4 0ð Þ, both DAISY and COMBOS results

indicate that the model becomes globally identifiable. All

COMBOS runs completed in less than 1 minute.

Example 8. This simple nonlinear model [21] has one input

and two outputs:

_xx1 ~ p1u1x3, _xx2 ~ p2x1, _xx3 ~ p3x1x2

y1 ~ x1,y2 ~ x2, p§0
ð15Þ

Table 1. Syntax & Naming Conventions for Specifying the Model.

Time MUST BE ‘‘t’’ t

State variables MUST BE ‘‘x’’ followed by a number x1, x2 etc

Initial conditions CAN BE defined for any state variable xi and MUST BE expressed either numerically or by a function
of the parameters pj. Only functions of parameters in the state equations are allowed.

e.g. 3, 55, x2(0) = 3*p1+ p3

Inputs MUST BE ‘‘u’’ followed by a number u1, u2 etc

Outputs MUST BE ‘‘y’’ followed by a number y1, y2 etc

Parameters MUST BE any unreserved letter (NOT x, u, y, t) by itself or followed by any combination of letters,
numbers or commas

e.g. p, p4, Vmax, k1,3

Known constants MUST BE entered as numerical values; otherwise, they are treated as unknown parameters e.g. 6, 4.32 etc

Operands MUST BE separated by some combination of operators (+ 2 */‘) and regular parentheses e.g. k0,1*x1+ u1

Standardized to facilitate usage and comprehension of results.
doi:10.1371/journal.pone.0110261.t001
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The authors of [21] use this example to illustrate how DAISY

algorithms handle special initial conditions (ICs), i.e. ICs that yield

SI parameter solutions valid almost everywhere. They note that, for

partially null (particular) initial conditions x1 0ð Þ~0 and x3 0ð Þ
~ 0, i.e. {0, x2, 0}, this model is reducible to y1~x1~0, _xx2~ _yy2f
~ 0?y2~x2~constantg. This means that for this very partic-

ular initial state, the model is inaccessible from the outputs, for any

x2(0)§0, meaning the set of states reachable from these initial

conditions is empty. It is noteworthy that this particular IC is an

unstable equilibrium point of the system, i.e. dxi=dtw0 for all
tw0, making it an unlikely IC in practice. In any case, all

parameters are clearly unidentifiable – without machine compu-

tation. The authors of [21] correctly analyze this special case using

DAISY; and also show that for all other initial conditions DAISY

finds p2 uniquely identifiable.

The COMBOS algorithm also finds all parameters unidentifi-

able for these particular initial conditions, using a slightly different

approach. As noted earlier, COMBOS specifically checks for

constant solution trajectories for the initial value problem and

incorporates them into the algorithm for finding the input-output

equations. In this example, the constant solutions effectively

reduce the dimensionality of the input-output relations, thus

leading to unidentifiability of the system.

With no initial conditions provided, COMBOS explicitly finds

p2 and combination p1p3 uniquely SI. For this simple model, a

little extra effort yields the same result from DAISY output,

manually extracting p1p3 from the parameter solution for p1, by

cross-multiplication.

All COMBOS runs were completed in about 5 seconds. We

remark that, for unidentifiable models in general, DAISY runtimes

can be substantially shorter than COMBOS runtimes, because

multiple Gröbner Bases are computed in COMBOS in search of

identifiable combinations in simplest and explicit form.

Benchmarking COMBOS and New Identifiability

Results. The dimensionality of models COMBOS can handle

is limited by the computational capacity of the underlying

symbolic algebraic program, currently Maxima. The first test-

group below includes five generic linear models of increasing order

n, analyzed for SI under generic initial conditions. Most of the SI
parameter combinations results for these models have not

previously been published. These examples are then followed by

SI analysis of several nonlinear systems biology models. The

intention is not to give a hard upper bound on the dimensionality

that COMBOS can manage, but to show – using systematically

more complex examples – that the success of COMBOS is highly

dependent on the complexity as well as the size of the model.

Test-Model 1 is a linear ODE system with a full matrix of n2

parameters, n§2, all states measured, one input – in the _xx1

equation only – and generic ICs:

_xx1~p11x1z:::zp1nxnzu1

_xxi~pi1x1z:::zpinxn, for i~2 to n

yj~xj , for j~1 to n

ð16Þ

Results were generated up to dimension n = 7, with all

parameters found globally identifiable in 3 to 20 secs. COMBOS

currently has a default limit of 60 parameters. For n = 8, Eqs. (16)

have 64 parameters, so computations did not extend beyond n = 7.

It can be shown by induction that all parameters are uniquely SI
for any n.

Test-Model 2 is the same linear system, with the same input,

but one less output, i.e. n{1 states measured:

_xx1~p11x1z:::zp1nxnzu1

_xxi~pi1x1z:::zpinxn, for i~2 to n

yj~xj , for j~1 to n{1

ð17Þ

For this model, it is well-known that p11 is uniquely SI for n = 1.

For n .1, all models are unidentifiable. For n = 2, p11, p22 and

combo p12p21 are uniquely SI. For n .2, results are more

complicated. For example, for n = 3, p11, p21 and combos p22+ p33,

p23/p13, p22 – (p12 p23)/p13,

2 (p12 p23 p33)/p13+ p23 p32 – (p12p22 p23)/p13+ p2
22 and.

2 (p11 p23 p33)/p13+ p23 p31 – (p11 p22 p23)/p13+ p21p22 are

uniquely SI, a new result.

Test-Models 3, 4 and 5 are variations of single-input Test-

Model 2– each with different outputs defined. Test-Model 3 has a

single output sampled in the same compartment as the input:

y1~x1. Test-Model 4 has a single output sampled in a different

compartment from the input:y1~xn. Test-Model 5 has two

outputs sampled in separate compartments, with one sample in the

same compartment as the input: y1~x1 and the second in the nth

compartment y2~xn.

COMBOS results were generated up to dimension n~3 for

Test-Models 2 thru 5. Computations did not complete for n.3

because the models were too complicated for the Gröbner basis

solvers in Maxima. All were found unidentifiable overall, in 3 to 90

seconds runtime. As already noted, some SI analysis results for the

simplest of these models are consistent with known or published

identifiability properties, but most parameter combination results

are new and not so simple – as given below.

For Test-Model 3, n = 1: p11 is uniquely SI. For n = 2: p11, p22

and combo product p12 p21 are uniquely SI. For n = 3: p11 and

combos p33+ p22, p13p31+ p12 p21, p22 p332 p23 p32 and.

p11 p22 p33 – p12 p21 p332 p11p23 p32+ p13 p21 p32+ p12 p23 p312

p13 p22 p31 are uniquely SI.
For Test-Model 4, n = 1: p11 is uniquely SI. For n = 2: p21

and combos p22+ p11, p11 p222 p12 p21 are uniquely SI. For n = 3,

p31 and combos p33+ p22+ p11,

p21 p322 p22 p31, – p22 p332 p11 p33+ p23 p32+ p13p31 – p11 p22+
p12 p21 and.

p11 p22 p332 p12 p21 p332 p11 p23 p32+ p13 p21 p32+ p12 p23 p312

p13 p22p31 are uniquely SI.
For Test-Model 5, n = 1, p11 is uniquely SI. For n = 2, p11,

p12, p21 and p22 are uniquely SI. For n = 3, p11, p31 and combos:
p33+ p22, p32/p12, p332 (p13p32)/p12, 2 p13p33+ (p2

13p32)/p122

p12p23+ p13p22 and (p11p13p32)/p122 p13p31+ p11p222 p12p21 are

uniquely SI.

Moderate Dimension Examples: Reparameterization &
Model Reduction

Example 9: SI Analysis and Reparameterization of a

Minimal Viral Disease Dynamics Model. Equations for a

classic viral disease model [23] are rewritten in original form on

the left (Target cells T, Infected cells I, Virions V) and in

COMBOS form for analysis on the right below. This model has

eight unknown parameters:p1 to p8. The (constant) input s ;
p1u(t) ; p11(t) is a step function of unknown magnitude p1.
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_TT~s{dT{(1{g)bVT _xx1~p1u{p2x1{p3p4x1x3

_II~(1{g)bVT{dI _xx2~p3p4x1x3{p5x2

_VV~(1{e)pI{cV _xx3~p6p7x2{p8x3

y~V y~x3

ð18Þ

A slightly simpler version of model (with s, e and g equal zero)

was analyzed in [24] for identifiability of parameters p2, p5, p7 and

p8, also using a differential algebra approach. Parameters p2, p5

and p8 were found to be the only parameters identifiable. Analysis

using COMBOS online was in agreement, and also provided

potentially useful supplemental SI information: p2 and the combos

p3p4 and p1p6p7 are uniquely identifiable, and p5 and p8 are both

locally identifiable, each with two solutions. Computation time was

,10 seconds. Analysis using DAISY provided the same results

after algebraically manipulating the parameter solutions.

Using the COMBOS results, the input-output equivalent

reparameterized SI model (with parameters p) is readily written

by scaling x1 by p6p7 and x2 by 1/p1. i.e. x’1~p6p7x1, x’2~x2=p1.

The resulting ODE model is:

_TT ’~s(1{e)p{dT ’{(1{g)bVT ’ _xx’1~p1p6p7u{p2x’1{p3p4x’1x3

_II ’~(1{g)bVT ’{sdI ’ _xx’2~(p3p4=p1p6p7)x’1x3{p1p5x’2

_VV~(1{e)pI ’=s{cV _xx3~p6p7x’2=p1{p8x3

y~V y~x3

ð19Þ

The structure is identical to the original, but with a new and

equivalent set of (structural invariant) parameters: p2, p5, p8 and

combos p3p4 and p1p6p7.

Example 10: Tumor-Suppressor p53 Dynamics Model –

Full Nonlinear (NL) Model. This NL model has 4 ODEs, 4

outputs and 23 unknown parameters [1]. The equations in

COMBOS ASCIIMathML format are:

dx1=dt~p1 � x4-p3 � x1-p4

� x1̂ 2= p5zx1ð Þð Þ � 1zp6 � u1= p7zu1ð Þð Þð Þ

dx2=dt~p8-p9 � x2-p10�

x1 � x2= p11zx2ð Þ � 1zp12 � u1= p13zu1ð Þð Þð Þ

dx3=dt~p14-p15 � x3-p16 � x1

� x3 � 1-p18 � u1ð Þ= p17zx3ð Þ

dx4=dt~ p20-p21 � 1-p24ð Þ � 1-p25ð Þ= p22^4z1ð Þð Þ

-p20 � x4zp21 � x3^4ð Þ � 1zp23 � u1ð Þ

� 1-p24 � x1ð Þ � 1-p25 � x2ð Þ= p22^4zx3^4ð Þ

y1~x1

y2~x2

y3~x3

y4~x4

COMBOS, reports all parameters except p22 uniquely SI, with

p22 locally SI with four solutions. Since this model is at least

locally SI, only one Gröbner basis computation is required.

Identifiability results are achieved in about 22 minutes, due to the

large number (23) of parameters. However, it is clear that p22,

with four possible solutions, has only one nonnegative real – and

therefore feasible – solution, because p22 appears only in the single

quartic p22‘4 term – in the fourth equation. Therefore this model
is globally identifiable.

We remark that, whereas the number of nonnegative real

solutions is explicitly determined for this particular model, the

current implementation of COMBOS does not return a number of

nonnegative real solutions in general, because only a single

numerical point for p* is tested when solving the equations

c(p) = c(p*). Testing a different numerical point for p* might lead

to a different number of nonnegative real solutions.

Example 11: Model Reduction Using COMBOS:

Simplifying the p53 Dynamics Model for Facilitating

Quantification. The nonlinearities (NL) in this model are of

three types: several simple Michaelis-Menten (M-M) functions – of

the form: Ax=(Bzx), a fourth-order hill function, and products of

state variables. For the purpose of model quantification, simplifi-

cations of NL terms can be helpful – and were helpful – in

quantifying this model from four sets of data corresponding to the

output equations above, in [1]. The M–M functions, in particular,

are approximately linear (first-order ,Ax) for low substrate values

and constant (zero-order combo A/B) for large substrate values.

Either of these circumstances can in principle occur during transient

stimulation of the p53 regulation system by stressor signals and

either would therefore be better represented by simpler corre-

sponding M–M terms in the model. In other words, if the substrate

signal in an M–M function is very large during a transient, the M–M

function is approximately constant. If it is very small, the M–M

function is approximately linear. In either case, the number of

parameters that need to be estimated is reduced by one.

We systematically screened each of the NL M–M terms in each

of the four p53 ODEs, simplifying them one at a time in the above

manner, and used COMBOS to delineate the identity of the SI
parameters and parameter combinations (and their number)

resulting from each simplification. For example, the first full ODE:

_xx1~p1x4(t){p3x1{p4

x2

1

p5zx1
1z

p6u

p7zu

� � !
ð20Þ

is reduced to the following for (kinase signal intensity) u ,,p7,

showing the combo p6/p7 to be SI:
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_xx1%p1x4(t){p3x1{p4

x2

1

p5zx1
1z

p6u

p7

� � !

For u ..p7, Eq. (20) is reduced to the following ODE, with p’4
; p4(1+p6) SI:

_xx1%p1x4(t){p3x1{p’4
x2

1

p5zx1

Preliminary quantification of the full (and SI) model from

experimental data [25] provided initial parameter estimates

consistent with inequality u ..p7 and others like it in the four

equations. This led to several simplifications, thereby eventually

providing more precise parameter estimates for the smaller

number of them remaining [1].

Discussion

Novice modelers may not even recognize that poor identifia-

bility properties are often the problem when model quantification

from input-output data fails. Unfortunately, prior structural

identifiability analysis of an ODE model can be quite difficult –

particularly if it is nonlinear. The good news is that solving

identifiability issues has become computationally more practical

over the last decade with the advent of various numerical and

symbolic computational methods e.g. [4,9,11,26] for addressing

various aspects of the nonlinear problem. Symbolic differential

algebra approaches have certain advantages, but also significant

limitations in practice – due to the nature of symbolic computa-

tion. The computational issues remain large – but so does

accessibility to this complex methodology. Internet application

(app) COMBOS has been developed to overcome the accessibility

issues and incrementally advance the computational ones. In

addition to the readily accessible, testable and easily modifiable

examples built into COMBOS, we have presented 11 additional

examples here to further motivate and validate the COMBOS

app, and – importantly – to illustrate its utility for modeling and

new experiment design – a key subsidiary application of SI
analysis.

The Saccomani-Bellu-Audoly-D’Angiò group have contributed

significantly to both the theory and practice of SI methodology

and have made available the downloadable DAISY package for SI
analysis of nonlinear ODE models [9]. A major benefit of the

COMBOS and DAISY approaches is that parameter identifia-

bility can be determined globally instead of only locally, a

limitation of other approaches, e.g [11,27]. Our group has also

recently contributed to rendering differential algebra algorithms

for SI more complete and computationally efficient [4–6]. In the

current paper, we further update and exemplify these algorithms

and present the novel web application COMBOS, which explicitly

provides a more complete identifiability analysis than does DAISY

[9] and software based on other approaches [11,26]. DAISY and

other packages primarily provide SI analysis of individual

parameters; COMBOS is designed to do more.

Features and Limitations of COMBOS
COMBOS is universally accessible, uniquely for this kind of

analysis. Nothing needs be downloaded. Users simply access the

app via their computer or device browser and run the latest

version. All user interaction occurs in her/his local browser. All

mathematical computations are done on a remote server

maintained by the Computer Science Department at UCLA,

with updating of the algorithms and code done by the authors and

lab associates of this research team, without the need for local or

remote user intervention. In contrast, DAISY, GENSSI and other

available software tools require downloading of program files,

along with the numerous encumbrances of getting them to

function effectively on different local user platforms – typically

with dependence on other packages e.g. Matlab for GENSSI,

Reduce for DAISY.

The COMBOS interface provides very easy entry of user

models, either interactively or in copy/paste form. Natural math

language (pretty) feedback of equations entered is provided, for

easy checking. Model editing can be done right on the screen.

COMBOS algorithms provide a direct solution approach for

finding SI parameter combinations – as well as individual SI
parameters – in otherwise unidentifiable models, bringing the

quantification problem closer to resolution. It also provides an

upper bound on the number of non-unique solutions for SI
parameters and parameter combos.

COMBOS computational results are explicit and clear: a list of

all parameters and parameter combinations that are uniquely

identifiable or locally identifiable, along with the maximum

number of local solutions. This makes simulating a model easier,

from knowledge of SI parameter combinations, and provides

critical information for subsequent experiment design for quan-

tifying otherwise unidentifiable parameters, by zeroing in on

particular ones in combinations that may be SI in a different

input-output experiment configuration.

For these reasons – in addition to its facile use as a modeling tool

– COMBOS is particularly useful for teaching and further

research on this subject and we offer it primarily for these

purposes.

COMBOS has limitations. For practical computational reasons,

COMBOS does not yet distinguish among real and imaginary or

positive and negative solutions, so this task remains for the user.

But this might not be too difficult, as illustrated for the p53 model

example – readily shown to be globally SI – with only one feasible

(real and positive) solution to a quartic equation involving an

otherwise locally SI parameter. Future algorithmic enhancements

will hopefully resolve this limitation.

The COMBOS interface handles initial conditions facilely, but

differently than DAISY algorithmically. When no initial condi-

tions are given, COMBOS and DAISY results are consistent, i.e.

they provide identifiability results assuming ‘‘generic’’ initial

conditions. When initial conditions are provided, COMBOS and

DAISY results are consistent if the system is accessible from those

initial conditions. Accessible means that the set of states reachable

(at some finite time) from the particular initial condition is not

empty [21]. A model might be identifiable without initial

conditions known or specified. But fixing certain initial conditions,

e.g. (0,…,0), could render it unidentifiable. Currently, COMBOS

only checks for the case when one or more solution trajectories are

constant and the model is reducible, as in Examples 1, 3 and 4 of

[21]. However, reducible models with nonconstant solution

trajectories that remain inaccessible do exist, as in Example 2 of

[21]. This is a weakness of COMBOS; it does not handle all

inaccessible initial state situations correctly at this time.

COMBOS performance depends in large part on the compu-

tational capabilities of Maxima, the symbolic algebra package in

which COMBOS algorithms are implemented. Practically speak-

ing, COMBOS is limited in the dimensionality of problems it can

handle, perhaps more limited in this sense than DAISY and other
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packages. Because COMBOS explicitly provides identifiable

parameter combinations, the algorithm is more complex than

that in DAISY and others. Only one Gröbner Basis solution is

needed in DAISY – for example – to determine individual SI
parameters. For some cases, by manipulating DAISY output, this

is sufficient to also determine identifiable parameter combinations.

However, we previously demonstrated, with examples, that this

kind of manipulation does not always provide identifiable

combinations [4,5]. In contrast, Gröbner bases of model attributes

are computed multiple times to compute identifiable parameter

combinations in COMBOS. Specifically, for P parameters, 3P
Gröbner Bases are calculated, which can be very computationally

time consuming. This algorithmic enhancement, which we found

works well in practice, is more efficient than computing and

sorting all P! possible Gröbner bases. But it still can take a long

time to process, depending on model complexity – the cost for this

additional information.

These algorithmic enhancements thus limit the size and

complexity of models the program can handle. For models too

large or complex, COMBOS computations will not finish and the

process may run on until it is aborted by the user or the program.

A user abort button appears during computations in COMBOS.

In some moderate size example runs (e.g. for a 6-dimension

thyroid hormone dynamics model [20]), the differential elimina-

tion step – to determine the input-output equations – did not

complete after many hours of running. For some such models,

Maxima either runs out of memory, or the calculation exceeds

some internally allowed computation time, and the process aborts.

It should be noted, however, that computations for this model did

not finish in DAISY either. Thus, the input-output equations in

some models – for some still undiscovered reason – may not be

amenable to solution by differential algebra methods and both

COMBOS and DAISY can fail in this step.

In summary, COMBOS is a readily accessible internet

application tool for structural identifiability analysis of linear or

nonlinear ODE models with commonly found polynomial or

rational function terms, models not ‘‘too complex’’ – of small to

medium size. This is a broad class of models in applications, albeit

limited in dimensionality for the present.

The subject of identifiability is highly technical and also difficult

to comprehend and teach. COMBOS is particularly useful for

teaching and further research on this subject and we offer it in

large part for these purposes – from any location with an internet

connection. The built-in and easily accessible model examples

should go far toward teaching upper division and graduate level

university students about the basics of structural identifiability

concepts and applications, at any location with an Internet

connection. And it’s accessible using widely available browsers –

on desktops, laptops and even recent smartphones and tablet

devices. There is nothing to download and setup by users – a very

major enhancement to accessibility of very complex computational

solutions to key modeling quantification problems. COMBOS is

certainly limited in several respects – but a step forward in this

difficult research domain. In the research arena, when COMBOS

results explicitly produce complicated parameter combinations,

e.g. products of two or three parameters that are identifiable, this is

useful ‘‘extra’’ information because it enables users to see which

parameters would have to be known a priori for the others to be

identifiable. This informs new experiment designs, because other

I–O pairs are often capable (in principle) of singling out SI
parameters for estimation.

Well-equipped laboratory toolboxes for solving the largest class

of structural identifiability analysis problems should include

COMBOS and DAISY, plus other packages – including GENSSI

[10], each fulfilling what the other may not for particular

problems. The virtually immediate accessibility and facile interface

of COMBOS via a user’s web browser renders COMBOS likely to

be first on the user test list.

Methods

Website
The COMBOS web application implementing the algorithms

herein (Version 1.2) is accessible online at: http://biocyb1.cs.ucla.

edu/combos. The intention is to keep it updated with new versions

as the algorithms are improved.

Technical Implementation
COMBOS is run on a virtual Apache PHP web server hosted

by the UCLA Computer Science Department. It is written in

HTML/CSS, PHP and Javascript/JQuery. Equations are dy-

namically displayed in native math form with MathJax 2.0 and

parsed with a PHP script. Maxima symbolic algebra code is run on

the parsed input. MathJax 2.0 (http://www.mathjax.org) is an

open-source Javascript library that displays ASCIIMathML,

MathML and LaTeX markup in native math form on all modern

web browsers.

The main parser, written in PHP, is responsible for string

parsing, script execution and display of HTML content. ODEs,

output equations and initial conditions are stored in separate

arrays. The parser loops through the entries in the order listed,

simultaneously extracting relevant information and constructing

the syntax-appropriate input to Maxima. For each ODE and

output equation, regular expressions are used to identify and

record the state variables, inputs, outputs and parameters.

Parameters are mapped from user-defined to general symbols, to

make further data analysis more systematic. After all entries are

parsed into a complete Maxima command, the model is run in

Maxima and identifiability results are generated. Results displayed

include the SI parameters and parameter combinations, including

the number of nonunique solutions where appropriate. They also

include the model with copy/paste equivalent code – useful for

modifying the model and rerunning the SI analysis; and the

parameter mapping table – to help clarify the analysis. Fig. 6
illustrates this information flow in COMBOS.

Program Documentation and Code
Free source code and license can be obtained by request from

the third author (joed@ucla.edu).

List of Scripts

N index.php is the main browser webpage containing the

HTML form where users enter equations and where results

are displayed.

N helper2.js contains Javascript functions that enable: addition

and deletion of input fields; fills in corresponding input fields

upon clicking example links; toggles the visibility of the initial

condition form fields; and calls MathJax.js to display user input

in native math (pretty) form.

N upload.php is the PHP script executed on the browser

webpage upon entering a model in copy/paste form. It

preprocesses the text, parsing entries separated by semicolons

into ODEs with inputs, output equations and initial conditions,

and adding the entries to the $_POST array.

N parser.php is the PHP script executed on the browser

webpage upon form submission. It is either called directly by

the fill-in form or indirectly by upload.php. The parser
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converts all input equations to Maxima markup; maps all user-

defined parameters to numbered parameters pi; creates

separate lists for the differential equations, state variables,

output variables, input variables, parameters and initial

conditions; runs the Maxima code on the lists; and displays

Maxima results on the browser webpage.

N MathJax.js (v 2.0) is a third-party Javascript package that

displays mathematical expressions written in AsciiMathML,

LaTeX and MathML markup on all major browsers in native

math (pretty) form, fixed to make it even ‘‘prettier’’, because

MathJax interprets all multiplication signs (asterisks,*) as dots.

To eliminate this extraneous notation, dots are replaced by

spaces. This gives the desired aesthetic without modifying the

input fed into Maxima.

N style.css is the CSS stylesheet used on the main browser

webpage.

N In the../files directory: JSON files are on the path of several

Example links on the main browser webpage of COMBOS.

They contain the equations that fill the input fields when an

Example link is clicked.

N In the../maxima directory: FindCombos.maxima is the

Maxima code implementing the symbolic algorithms for

finding the identifiable parameter combinations.

Internal dependencies
./helper2.js.

./files/2CompModelInput.js.

./files/2CompModelIDInput.js.

./files/3CompModelInput.js.

./files/3CompModelICInput.js.

./files/4CompModelInput.js.

./files/4CompModelICInput.js.

./files/HIVModelInput.js.

./parser.php.

./upload.php.

External dependencies
jQuery (http://jquery.com/).

Mathjax (http://www.mathjax.org/).

Maxima (http://maxima.sourceforge.net/).
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