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Abstract: Bone is a complex hierarchical tissue composed of organic and inorganic materials that
provide structure, support, and protection to organs. However, there are some critical size defects
that are unable to regenerate on their own and therefore require clinical repair. Bone graft substitutes
allow repair by providing a temporary resorbable device. Among the common filler materials that
aid in regeneration is hydroxyapatite particles of either animal or human origin which is used to fill
or reconstruct periodontal and bony defects in the mouth. However, particulate graft substitutes
suffer from localized migration away from the implantation site, necessitating the use of a barrier
membrane. In this study, we designed InterOss Collagen, combining bovine hydroxyapatite granules
with porcine-skin derived collagen to form a bone filler composite. Physiochemical properties of
InterOss Collagen and a commercially available product, OsteoConductive Substitute-Bovine (OCS-B)
Collagen, referred to as OCS-B Collagen, were examined. We found two bone graft substitutes
to be mostly similar, though InterOss Collagen showed comparatively higher surface area and
porosity. We conducted an in vivo study in rabbits to evaluate local tissue responses, percent material
resorption and bone formation and showed that the two materials exhibited similar degradation
profiles, inflammatory and healing responses following implantation. Based on these results, InterOss
Collagen is a promising dental bone grafting material for periodontal and maxillofacial surgeries.

Keywords: bone; hydroxyapatite; collagen; bone graft substitute; bone fillers

1. Introduction

Bone loss in the weeks following tooth extraction is a common problem faced in
the field of implant and restorative dentistry [1]. In addition, the trauma and infection
associated with this invasive procedure causes alteration to the underlying bone structure.
Studies indicate up to 1–3 mm in alveolar ridge height and up to 3–5 mm in width may be
resorbed during the healing process [2–4]. This loss in bone has severe consequences in
terms of potential implant support and overall oral health.

One of greatest advances in dental bone regenerative dentistry is the ability to replace
damaged or missing teeth through implants and prosthetic crowns [5–7]. However, before
the implants can be placed in the defect site, sufficient bone volume is often needed to
provide long term stabilization of the implant.

Bone grafting is a well-established method used to fill or repair the bone defect
and replace the lost bone [8,9]. Implantation of resorbable bone substitutes reduces the
size of the defect that needs to be mended and provide mechanical support until the
tissue has naturally regenerated and remodeled [10–13]. Among various type of bone
substitutes available, particulate bovine bone grafts are one of the most common types
of bone substitutes used in dental applications [14]. These materials aim towards filling,
augmenting or reconstructing periodontal or bony defects as they offer advantages of dense
packing into the irregular and non-uniform defect sites [15]. Calcium phosphates, synthetic
and animal origin are the most common types of bone material substitutes commercially
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available [16,17]. These include Hydroxyapatite, α-tricalcium phosphate (α-TCP), and
β-tricalcium phosphate (β-TCP) or a combination mixture forming a composite [18–21].
These materials exhibit intrinsic porosity and can be tailored to form scaffolds to allow
space for the recruitment and proliferation of osteogenic cells. In addition, the degradation
products and released ions enhance cell activity and accelerate bone repair.

However, particulate bone fillers suffer from localized migration from the defect site
following implantation attributable to external compressive forces (biting and chewing) in
the oral cavity. To overcome this problem, a barrier membrane is often used to cover the
defect and contain the particulate grafts preventing its collapse. This increases the cost as
well as risk to infection while causing inconvenience and discomfort to the patient.

The two main components of adult human bone are hydroxyapatite and collagen.
Collagen, though biocompatible and biodegradable, exhibits sub-optimal mechanical prop-
erties and is usually cross-linked or mixed with other proteins, polymers and inorganic
materials to develop into an effective bone graft. A composite scaffold combining the
advantages of particulate grafts with biopolymers, such as proteins, is often used to over-
come the limitations of the use of barrier membrane and contain particulate migration [22].
Several composite bone grafts are commercially available that combine Collagen Type I,
the most abundant protein in human body, with bovine hydroxyapatite granules in various
ratios to form into spongious scaffolds with an interconnected pore structure allowing
easier migration of bone regenerative cells [23–26]. Bone predominantly constitutes of
calcium phosphate (non-stoichiometric carbonate- substituted hydroxyapatite crystals)
embedded in collagen matrix. The two components are arranged in a hierarchical structure
that defines the chemical and mechanical properties of bone. Collagen exhibits hemostatic
properties while also promote bone healing and regeneration. On the other hand, the osteo-
conductive surface of the calcium phosphate crystals bind non-specifically to negatively
charged groups of collagen protein and also prevent aggregation of small hydroxyapatite
granules. The collagen-hydroxyapatite has been shown to act as bone void filler in filling
buccal gap, ridge preservation, and spinal fusion leading to bone formation in several
preclinical and clinical studies [27–30]. Several Collagen-Hydroxyapatite composites are
commercially available. This includes Bio-Oss Collagen, OCS-B Collagen, NuOss Collagen,
Ossix bone, Collapat II, Osteon II, Z-core form Xenograft, Osteogen block and others. The
most studied composite is Bio-Oss Collagen that consists of 90% bovine hydroxyapatite
mixed with 10% porcine collagen indicated for dental bone regeneration. Bio-Oss Collagen
implanted in extraction socket showed larger bone socket volume compare to control
(untreated) group. In addition, Bio-Oss Collagen showed significant higher bone density
in the middle and apical areas of the alveolar bone [25]. A clinical study in humans as-
sessed the vertical and horizontal alterations of buccal alveolar bone after the immediate
insertion of an implant together with Bio-Oss® Collagen. It was found that the composite
reduced the vertical and horizontal gap by 99.3% and 99.1% respectively at the end of
12 months [30]. When compared to collagen only, the collagen-hydroxyapatite composite
formed 339% more new bone in defects grafted with Bio-Oss Collagen in rabbits at the end
of Day 14 [31]. Another study in a canine model implanted with the composite displayed
less wound shrinkage than the non-augmented defect [32].

Collagen-Hydroxyapatite scaffolds are formed into various shapes that conform to the
patient’s defect site. In addition, the scaffold provides excellent structural and mechanical
support that is absent in particulate bone graft materials [33]. These composite scaffolds
also provide excellent trimming and handling characteristics enhancing their use during
oral surgeries.

In this study, we have developed a composite scaffold, InterOss Collagen, combining
10% Type I Collagen of porcine origin with 90% bovine hydroxyapatite granules (weight
%). The aim of this study is to compare the physical and chemical characteristics along with
local bone implantation effects of InterOss Collagen with a commercially available product,
OCS- B Collagen, which has similar material composition. This study shows that the two
bone graft substitutes exhibit similar physiochemical properties, though InterOss Collagen
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shows higher specific surface area and lower compressive strength, properties. We also
conducted an in vivo study to evaluate the test device for local tissue responses along with
qualitative assessments of percent material resorption and bone formation in the skeletal
tissues of New Zealand White rabbits following implantation. We found that the two bone
materials are virtually indistinguishable, exhibiting somewhat similar degradation profiles
and generated similar inflammatory and healing responses following implantation.

2. Materials and Methods

Preparation of InterOss Collagen—InterOss Collagen was prepared by mixing bovine
hydroxyapatite granules to porcine derived collagen in water in 9:1 ratio (by weight). The
resulting slurry was filled in molds, freeze dried (Freezing cycle: −40 ◦C for 4 h; Primary
dry cycle: −10 ◦C for approx. 33 h and secondary cycle: 10 ◦C for 4 h) and annealed at
120 ◦C to arrive at composite scaffolds of cuboids shapes (referred to as blocks) followed
by dehydrothermal crosslinking. The resulting scaffolds (hereafter, also referred to as
composite blocks or blocks) were used throughout this study.

Scanning electron microscopy (SEM)—Thin sections of the composite block were
cut using a sterile scalpel and were coated with 3 ∗ 10 nm Pt/Pd coating (coating time
6 s/nm) prior to imaging. SEM images for InterOss Collagen were captured at various
magnifications on Tescan GAIA3 SEM/FIB using the built-in software suite. Samples for
OCS-B Collagen (blocks) were sectioned and coated with Pt/Pt (5–6 nm) before being
imaged using FEI Nova NanoSEM 450.

Differential Scanning Calorimetry (DSC)—Heat flow characteristics for InterOss
Collagen and OCS-B Collagen samples were measured using differential scanning calorime-
try (Shimadzu DSC-60 plus). The DSC curves were recorded in the range 30–300 ◦C at a
heating rate of 10 ◦C/min for InterOss Collagen and OCS-B Collagen while data for porcine
dry collagen was recorded between 30–350 ◦C.

Thermogravimetric Analyzer (TGA)–TGA (Netzsch TG 209 F3 Tarsus) was used to
determine the loss in sample mass as a function of temperature under an inert nitrogen
atmosphere. TGA curves were taken in the range 25–300 ◦C at a heating rate of 20 ◦C/min.

Compressive strength and Elastic modulus—To evaluate the strength of the compos-
ite grafts, compressive strength and elastic modulus were measured using a Universal
Testing Machine (Instron 3369). The dimensions of each specimen were measured using a
digital caliper prior to testing. These scaffolds were then placed on compression platens
and were subjected to a compressive force at the rate of 1.3 mm/min exerted from the top
surface of the scaffolds. Force and displacement data were recorded in order to generate
the stress-strain curves. Compressive strength was calculated by dividing the maximum
load applied to the original cross-sectional area of the specimen at 50% compressive strain.

Elastic modulus, a measure of a material’s elasticity or the material’s resistance to
non-permanent, or elastic, deformation, was determined using this test. The portion of the
curve in the elastic region was used to measure the slope and was determined automatically
by the Instron. Bluehill Lite, version 2.29 The software excludes the initial and final portions
of the elastic deformation where the stress-strain curve is non-linear. Both compressive
strength and elastic modulus were measured simultaneously on the same set of samples
(n = 5) and the results were displayed in the form of mean ± standard error.

Water absorption Capacity Test—The water absorption test was performed on the
two materials- InterOss Collagen and OCS-B Collagen. The samples were weighed using
an analytical balance (M0) and were then immersed in deionized water (pH = 7.25) for 30 s
to achieve complete water absorption. The samples were then removed from the water
using tweezers ensuring no drippage and were weighed after (M1). The water absorption
capacity was calculated using the formula (M1 − M0)/M0.

Porosity and specific surface area (BET)—A nitrogen gas adsorption-desorption
isotherm was plotted to measure specific surface area using a Micromeritics 3 Flex adsorp-
tion analyzer (Micromeritics, Norcross, GA, USA) at −195 ◦C. Specific surface area was
calculated according to Brunauer–Emmett–Teller (BET) method. Pore area, pore diameter,
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and porosity were measured using MicroActive AutoPore V 9600 analyzer assuming 130◦

contact angle while pressure applied ranged from 0.2–61,000 psi.
Fourier Transform Infrared Spectroscopy (FTIR)—Chemical characterization of In-

terOss Collagen, OCS-B Collagen and porcine dry collagen was carried out via the Potas-
sium bromide pellet method (sample:Kbr ratio–1:100) and infrared spectra was obtained
using FTIR spectroscopy (Nicolet Is5, ThermoFisher Scientific). The spectra of each sample
was recorded from 4000 and 400 cm−1 with 64 scans at a resolution of 4 cm−1.

Each of the tests was tested on at least three samples unless otherwise noted.
Animal preparation—Six Adult New Zealand white rabbits (Oryctolagus cuniculus)

were used for each 2 and 8-week implantation period, while seven rabbits were used for
13-week implantation period. Each implantation period consists of data from an average of
at least 10 sites per implant material. Animals were at least 12 weeks old, weighed between
3.05–3.60 kg and were chosen from a large pool of animals to minimize adverse clinical
signs. Animals were identified through an ear tattoo and were individually housed in in
suspended stainless steel cages at 22 ◦C and 30–70% humidity throughout the course of
the study. Animals were exposed to 12 h light/dark cycle under full spectrum fluorescent
lights and were provided bedding, tap water and high fiber diet ad libitum.

Experimental design and dosage—InterOss Collagen and OCS-B Collagen were sup-
plied sterile in original packaging for the study. The samples were made wet with sterile
saline prior to trimming. Both articles were cut to measure approximately 2.0 mm in width,
<1.0 mm in thickness, and 6.0 mm in length before implantation in animals.

Creation of implantation site—Hind leg of each animal was clipped free of fur and
loose hair was removed by means of a gentle vacuum. Each animal was appropriately
anesthetized before implantation. The lateral cortex of each femur was exposed and then
two holes (2.0 mm in diameter) were drilled through the lateral cortex. The femurs receiving
the bone graft substitutes had holes drilled at approximately 2.0 mm near the proximal or
distal epicondyles. The holes in the left femur of each animal received InterOss Collagen
while the holes in the right femur received OCS-B Collagen. A total of at least 10 test article
sites and 10 control article sites were implanted on Day 0 for evaluation at each of the three
time points—2 weeks, 8 weeks and 13 weeks.

Post-operative care—Following implantation surgery, the animals were allowed to
recover prior to returning to their cages. Animals were observed daily for the entire
period to ensure proper healing of the implant sites and for clinical signs of toxicity.
At the end of the observation period, the animals were weighed and sacrificed by an
injectable barbiturate.

Gross observations—The femurs, containing the test and control articles, were excised
in toto from the sacrificed rabbits. The surfaces of the excised implant sites were preserved
in 10% neutral buffered formalin and were examined macroscopically.

Histopathology—Following fixation in formalin, each of the implant sites were ex-
cised from the larger mass of tissue. The implant site, containing the implanted material,
was examined macroscopically. The bone tissues were decalcified for sectioning and pro-
cessed for histopathology. Following decalcification, each of the implant sites were excised
from the larger mass of tissue leaving at least a 4 mm envelope of surrounding bone tissue.
The implant material was left in-situ, and the site was processed. Histological slides of
an enface cross−section of the implant site were prepared using routine hematoxylin and
eosin stains. The slides were evaluated and graded by light microscopic examination.

Pathological Assessment of the Effects of the Implant—The following inflammatory
and healing responses were assessed by microscopic observation and the responses graded
according to Tables 1 and 2 for each implant site.
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Table 1. Inflammatory responses.

Cell Type/Response
Score

0 1 2 3 4

Polymorphonuclear cells 0 Rare, 1–5 phf 5–10 phf Heavy Infiltrate Packed

Lymphocytes 0 Rare, 1–5 phf 5–10 phf Heavy Infiltrate Packed

Plasma cells 0 Rare, 1–5 phf 5–10 phf Heavy Infiltrate Packed

Macrophages 0 Rare, 1–5 phf 5–10 phf Heavy Infiltrate Packed

Giant cells 0 Rare, 1–5 phf 5–10 phf Heavy Infiltrate Packed

Necrosis 0 Minimal Mild Moderate Severe

Table 2. Healing responses.

Cell Type/Response
Score

0 1 2 3 4

Neovascularization 0 Minimal capillary,
proliferation, focal buds

Groups of 4–7 capillaries with
supporting fibroblastic

structures

Broad band of capillaries with
supporting structures

Extensive band of
capillaries with

fibroblastic structures

fibrosis 0 narrow band moderately thick
band thick band extensive band

fatty infiltrate 0
minimal amount of fat

associated
with fibrosis

several layers of
fat and fibrosis

elongated and
broad

accumulation of fat cells about the
implant site

extensive fat
completely

surrounding the
implant

Qualitative assessments for the amount of material remaining and the amount of bone
growth in the vicinity of the implant was evaluated based on the scoring scale shown
in Table 3.

Table 3. Scoring scale for the area involved and bone formation.

Material Remaining Score Scale Bone Growth/Formation Score

0 = no material remaining 0 No bone regrowth/formation

1 = up to 25% of defect filled with material 1 1–25% new bone regrowth formation

2 = 25–50% of defect filled with material 2 26–50% new bone regrowth formation

3 = 50–75% of defect filled with material 3 51–75% new bone regrowth formation

4 = greater than 75% of defect filled with material 4 76–100% new bone regrowth formation

Authors had no role in selection of animals, sample preparation, imaging, data collec-
tion and reporting of the results. Only one pathologist was employed to score all the slides
for both OCS-B Collagen and InterOss Collagen. Authors were fully blinded to the implant
material as this study was conducted at a contract research organization (Toxikon Corp.,
Bedford, MA, USA) under compliance with the current US Food and Drug Administration
21 Code of Federal Regulations, Part 58 Good Laboratory Practices (GLP) for Non-clinical
laboratory studies. No unforeseen circumstances that affected the integrity of the study
were noted. The scores were reported as an average of at least 10 sites for each bone
graft material per implantation period. No other statistical analysis was performed on the
obtained scores.

3. Results
3.1. Surface Morphology Using Scanning Electron Microscopy (SEM)

The surface and pore architecture of InterOss Collagen and OCS-B Collagen was
studied using scanning electron microscopy (Figure 1). Macroscopically, the shapes of
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both the scaffolds were similar (cuboid) and displayed irregular distribution of porous
structures. SEM analysis of the both bone graft substitutes showed porous microstructure
with mineral particles distributed densely throughout the collagen fiber matrix.
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Figure 1. Scanning Electron Microscopy images of InterOss Collagen (A–C) and OCS-B Collagen
(D–F) taken at various magnifications.

3.2. Surface Area and Porosity Measurements

InterOss Collagen showed significantly higher specific surface area (77.0 ± 0.2 m2/g)
than OCS-B Collagen (49.7 ± 1.2 m2/g) measured using BET method (Table 4). Mercury
Porosimetry revealed that the total pore area, was higher in InterOss Collagen, while
porosity and average pore diameter were similar in both scaffolds.

Table 4. Surface area and porosity measurements.

Properties InterOss Collagen OCS-B Collagen

BET surface area m2/g 77.0 ± 0.2 49.7 ± 1.2
Total pore area m2/g 73.4 ± 1.3 60.2 ± 1.7

Average pore diameter (µm) 0.13 ± 0.0 0.13 ± 0.0
Porosity 79.8 ± 0.4 82.8 ± 0.8

3.3. Mechanical Properties

A universal compress tester was used to determine the maximum stress a material
can sustain under crushing load. Compressive strength was statistically lower in InterOss
Collagen (1.81 ± 0.12 MPa) when compared to OCS-B Collagen (2.92 ± 0.14 MPa) at a
significance level of 5% (p value: 0.03; T-test unequal variance). However, elastic modulus
was found to be similar for both materials (Figure 2).
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3.4. Thermal Properties

Moisture content was measured using a thermogravimetric analyzer (TGA). A TG
curve shows percent mass decrement with increasing temperature. The moisture content
was found to be 3.1% in InterOss Collagen while it was 2.3% for OCS-B Collagen. For
comparison, we also measured the moisture content of the porcine dry collagen, raw
material used to manufacture InterOss Collagen, and measured it to be 9.1%. (Table 5).
A typical TG curve for InterOss Collagen, OCS-B Collagen, and porcine dry collagen is
shown in Supplementary Materials Figure S1.

Table 5. Thermal properties of InterOss Collagen and OCS-B Collagen.

InterOss Collagen OCS-B Collagen Porcine Dry Collagen

Moisture (wt.%) 3.1 ± 0.1 2.3 ± 0.4 9.1 ± 0.8

Peak temperature ◦C 58.26 224.7 58.28 229.2 65.01 204.93 304.82
Onset temperature ◦C 26.67 214.7 26.71 221.4 19.65 198.1 275.35

We measured the heat flow characteristics of InterOss Collagen and OCS-B Collagen
using Differential scanning calorimetry. DSC curves showed characteristic broad endother-
mic peaks: peak 1 at 58 ◦C (onset temperature 26 ◦C) followed by a smaller peak between
224–229 ◦C (onset temperature 214–221 ◦C) for both bone graft materials (Table 5). These
peaks are representative of the two stage sample transformation where peak 1 represents
the collagen transition from the triple helix conformation to a random coil structure. The
configuration change involves removal of loosely bound water from the molecule and
breaking of hydrogen bonds (both intra- and intermolecular) that keeps the helix intact [34].
Peak 2 represents the complex phenomenon of thermal modification involving continued
conformational changes to the helical structure along with the release of chemically bound
water and small molecule degradation products. The slight difference in the denaturation
temperature of InterOss Collagen and OCS-B Collagen in peak 2 could be attributed to
inhomogeneous nature of dehydrothermal crosslinking that allows water to evaporate at
a varying rate. We also performed thermal analysis on the dry form of porcine collagen
and found three endothermic peaks at 65 ◦C, 204 ◦C and 304 ◦C. The two peaks above
200 ◦C are associated with evaporation of strongly bound water and continued conforma-
tional changes to the helical structure of collagen [35]. A typical DSC curve is shown in
Supplementary Materials Figure S2.



J. Funct. Biomater. 2022, 13, 28 8 of 13

3.5. Water Absorption Capacity

We measured water absorption capacity for the both bone graft substitutes and found
InterOss Collagen to exhibit significantly higher water absorption capacity, as compared
to OCS-B Collagen. InterOss Collagen exhibited a water swelling ratio of 1.79 compared
to 1.16 for OCS-B Collagen, indicating that InterOss Collagen is able to absorb fluid at a
faster rate.

3.6. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectroscopy was employed to determine functional groups of OCS-B Collagen
and InterOss Collagen along with latter’s constituent raw materials–Hydroxyapatite and
Porcine derived collagen (Figure 3). InterOss Collagen and OCS-B Collagen, composed
of collagen and hydroxyapatite, exhibited similar absorption bands with characteristic
stretching peaks of CO3

2− and PO4
3 at 1456, 1415, 1041, and 600–550 cm−1. We did not

observe distinctive peaks of collagen in InterOss Collagen due to low concentration of
collagen in the samples. For comparison, we also obtained spectra on dry collagen, which
also showed distinctive amide I and amide II frequencies at 1650 and 1550, respectively,
while also exhibiting asymmetric vibrational frequencies at 1450, 1403 and 1239 cm−1.
Similarly, asymmetric stretching of CO3

2− groups from hydroxyapatite shows spectral
peaks at 1506–1570, 1400–1477 cm−1 and 953–989 cm−1 [16].
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3.7. Rabbit Studies

Macroscopic evaluation of the test article implant sites indicated no significant signs
of inflammation, encapsulation, hemorrhage, necrosis, or discoloration at the end of study
period. Based on the microscopic inflammatory/healing responses and the amount of
residual material remaining/new bone formation, there were no significant differences
between InterOss Collagen and OCS-B Collagen (Table 6). InterOss Collagen implantation
sites had minimal amounts of residual test material surrounded by maturing bone at
the end of 13 weeks (Figure 4). Minimal inflammatory cells and thin bands of fibrosis
between test article and surrounding bone were present. Greater than 90% of the cross-
sectional area of InterOss Collagen implantation sites were filled with new bone at the
end of 13 weeks, with small areas showing marginal bone remodeling (Figure 5). Overall,



J. Funct. Biomater. 2022, 13, 28 9 of 13

appearance consistent with complete healing of implantation sites via new bone formation
with minimal amounts of residual test material remaining was observed for InterOss
Collagen. OCS-B Collagen showed similar new bone formation, inflammatory and healing
scores but displayed slightly higher amount of residual material compared to InterOss
Collagen at the end of 13 weeks. No evidence that demonstrated local toxic effects in the
skeletal tissues of the New Zealand White rabbits was observed throughout the study.

Table 6. Qualitative histological scores assessed in rabbits implanted with InterOss Collagen and
OCS-B Collagen.

2-Week 8-Week 13-Week

InterOss
Collagen

OCS-B
Collagen

InterOss
Collagen

OCS-B
Collagen

InterOss
Collagen

OCS-B
Collagen

Average score–
residual material remaining 2.1 2.3 1.7 2.0 1.4 2.3

Average score–
New bone formation 3.1 3.2 3.5 3.3 3.8 3.5

Average Inflammatory Score (polymorphs,
lymphocytes, plasma cells, macrophages, giant

cells, necrosis)
9.8 10.4 1.6 2.9 0.9 1.3

Average healing score (neovascularization, fatty
infiltrate, fibrosis) 2.9 2.7 1.5 2.0 1.7 2.3

J. Funct. Biomater. 2022, 13, x FOR PEER REVIEW 9 of 13 
 

 

weeks, with small areas showing marginal bone remodeling (Figure 5). Overall, appear-
ance consistent with complete healing of implantation sites via new bone formation with 
minimal amounts of residual test material remaining was observed for InterOss Collagen. 
OCS-B Collagen showed similar new bone formation, inflammatory and healing scores 
but displayed slightly higher amount of residual material compared to InterOss Collagen 
at the end of 13 weeks. No evidence that demonstrated local toxic effects in the skeletal 
tissues of the New Zealand White rabbits was observed throughout the study. 

Table 6. Qualitative histological scores assessed in rabbits implanted with InterOss Collagen and 
OCS-B Collagen. 

 2-Week 8-Week 13-Week 

 InterOss 
Collagen 

OCS-B  
Collagen 

InterOss 
Collagen 

OCS-B  
Collagen 

InterOss  
Collagen 

OCS-B  
Collagen 

Average score– 
residual material remaining 

2.1 2.3 1.7 2.0 1.4 2.3 

Average score– 
New bone formation 

3.1 3.2 3.5 3.3 3.8 3.5 

Average Inflammatory Score (poly-
morphs, lymphocytes, plasma cells, mac-

rophages, giant cells, necrosis) 
9.8 10.4 1.6 2.9 0.9 1.3 

Average healing score (neovasculariza-
tion, fatty infiltrate, fibrosis) 

2.9 2.7 1.5 2.0 1.7 2.3 

 
Figure 4. Local effects of implantation in rabbits post placement of InterOss Collagen (A–C) and 
OCS-B Collagen (D–F). 

Figure 4. Local effects of implantation in rabbits post placement of InterOss Collagen (A–C) and
OCS-B Collagen (D–F).



J. Funct. Biomater. 2022, 13, 28 10 of 13J. Funct. Biomater. 2022, 13, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 5. New bone formation in rabbits following implantation of InterOss Collagen (A–C) and 
OCS-B Collagen (D–F). 

4. Discussion 
Bone graft substitutes are key bone regenerative materials for dental and orthopedic 

applications. Their effect on bone regeneration is well-established and several synthetic 
or biological materials or their composites are commercially available. We have developed 
a composite scaffold, InterOss Collagen, combining animal-derived collagen and hydrox-
yapatite granules for bone grafting. We compared the material, and biocompatible prop-
erties in this study and determined that overall, InterOss Collagen displays similar phys-
iochemical properties as OCS-B Collagen. The surface area, however, is higher in InterOss 
Collagen while the compressive strength is lower, which may provide dual advantage of 
increased surface area for attachment of osteogenic cells while slightly reduced compres-
sive strength improves handling characteristics of the composite. It is known that greater 
surface area provides robust osteoblast growth and attachment that may lead to higher 
bone volume [10]. Since resorbable bone grafts such as InterOss Collagen are intended to 
degrade over 3–6 months, compressive strength is generally considered not as important 
for performance of functions such as guided bone regeneration compared to inert im-
plants. InterOss Collagen also displayed ~1.5× water absorption capacity than OCS-B Col-
lagen due to enhanced porosity that also aids in ease of trimming during oral surgeries. 
Based on the FTIR spectra of both OCS-B Collagen and InterOss Collagen, spectral peaks 

Figure 5. New bone formation in rabbits following implantation of InterOss Collagen (A–C) and
OCS-B Collagen (D–F).

4. Discussion

Bone graft substitutes are key bone regenerative materials for dental and orthopedic
applications. Their effect on bone regeneration is well-established and several synthetic
or biological materials or their composites are commercially available. We have devel-
oped a composite scaffold, InterOss Collagen, combining animal-derived collagen and
hydroxyapatite granules for bone grafting. We compared the material, and biocompatible
properties in this study and determined that overall, InterOss Collagen displays similar
physiochemical properties as OCS-B Collagen. The surface area, however, is higher in
InterOss Collagen while the compressive strength is lower, which may provide dual ad-
vantage of increased surface area for attachment of osteogenic cells while slightly reduced
compressive strength improves handling characteristics of the composite. It is known
that greater surface area provides robust osteoblast growth and attachment that may lead
to higher bone volume [10]. Since resorbable bone grafts such as InterOss Collagen are
intended to degrade over 3–6 months, compressive strength is generally considered not as
important for performance of functions such as guided bone regeneration compared to inert
implants. InterOss Collagen also displayed ~1.5× water absorption capacity than OCS-B
Collagen due to enhanced porosity that also aids in ease of trimming during oral surgeries.
Based on the FTIR spectra of both OCS-B Collagen and InterOss Collagen, spectral peaks
around 1450 cm−1 originate from carbonate groups in hydroxyapatite as well as from
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asymmetric vibrational frequencies of the amino acid groups (–CH2). The two peaks may
overlap due to non-specific chemical interactions between collagen and hydroxyapatite.
We also observed reduced peak intensities due to the presence of collagen [36].

The in vivo biocompatibility studies also determined that the two bone graft materials
do not demonstrate any significant difference in terms of local effects after implantation.
The qualitative assessment revealed that the amount of residual material remaining at
the end of 13 weeks was slightly higher for OCS-B Collagen, which suggests marginally
faster resorption of InterOss Collagen and may provide the benefit of increased space
for new bone formation. Further results of performance of InterOss Collagen in a canine
mandibular model along with quantitative assessments using microCT, histologic bone
morphometric measurements will be the subject of another publication, which is currently
under preparation. Overall, this study concludes that the InterOss Collagen is a promising
bone filler composite for applications in augmentation and reconstruction of periodontal
defects during oral surgeries.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jfb13010028/s1, Figure S1: A typical DSC curve show-
ing heat flow for InterOss Collagen, OCS-B Collagen and Porcine collagen used to make InterOss
Collagen; Figure S2: A typical TG curve representing the percent mass change following the exposure
to increasing temperature for InterOss Collagen and OCS-B Collagen.
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