
fncel-12-00323 September 25, 2018 Time: 18:1 # 1

REVIEW
published: 27 September 2018
doi: 10.3389/fncel.2018.00323

Edited by:
Alessandro Tozzi,

University of Perugia, Italy

Reviewed by:
Alfonso Grimaldi,

Istituto Italiano di Tecnologia (IIT), Italy
Arianna Bellucci,

Università degli Studi di Brescia, Italy

*Correspondence:
Tomas Deierborg

tomas.deierborg@med.lu.se

Received: 31 May 2018
Accepted: 06 September 2018
Published: 27 September 2018

Citation:
Szepesi Z, Manouchehrian O,

Bachiller S and Deierborg T (2018)
Bidirectional Microglia–Neuron

Communication in Health
and Disease.

Front. Cell. Neurosci. 12:323.
doi: 10.3389/fncel.2018.00323

Bidirectional Microglia–Neuron
Communication in Health and
Disease
Zsuzsanna Szepesi, Oscar Manouchehrian, Sara Bachiller and Tomas Deierborg*

Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden

Microglia are ramified cells that exhibit highly motile processes, which continuously
survey the brain parenchyma and react to any insult to the CNS homeostasis. Although
microglia have long been recognized as a crucial player in generating and maintaining
inflammatory responses in the CNS, now it has become clear, that their function are
much more diverse, particularly in the healthy brain. The innate immune response and
phagocytosis represent only a little segment of microglia functional repertoire that also
includes maintenance of biochemical homeostasis, neuronal circuit maturation during
development and experience-dependent remodeling of neuronal circuits in the adult
brain. Being equipped by numerous receptors and cell surface molecules microglia can
perform bidirectional interactions with other cell types in the CNS. There is accumulating
evidence showing that neurons inform microglia about their status and thus are capable
of controlling microglial activation and motility while microglia also modulate neuronal
activities. This review addresses the topic: how microglia communicate with other
cell types in the brain, including fractalkine signaling, secreted soluble factors and
extracellular vesicles. We summarize the current state of knowledge of physiological role
and function of microglia during brain development and in the mature brain and further
highlight microglial contribution to brain pathologies such as Alzheimer’s and Parkinson’s
disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric
diseases (depression, bipolar disorder, and schizophrenia).

Keywords: fractalkine, extracellular vesicles, neuroinflammation, neurodegeneration, microglia, neuron,
cytokines

MICROGLIA – GUARDS OF THE CNS HOMEOSTASIS

Microglia are the resident immune cells of the central nervous system, which represent about 5–
12% of total CNS cells in the healthy brain and the spinal cord. Microglia are derived from the
myeloid precursors cells in the embryonic yolk sac and they travel to the area of the developing
CNS during early embryogenesis (Schulz et al., 2012; Ginhoux et al., 2013; Kierdorf and Prinz,
2013; Ginhoux and Prinz, 2015; Wieghofer and Prinz, 2016; Hoeffel and Ginhoux, 2018). Microglial
progenitors are already present around the neural tube at embryonic day 9 in mice, and from the
fifth gestational week in humans. After neural entry, microglia progenitors migrate through the
developing nerve tissue and undergo massive proliferation before they reach their final density
(Ginhoux et al., 2010; Verney et al., 2010). Embryonic microglia develop into highly ramified
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mature microglia via regulatory factors such as Pu.1, IL-34, and
CSF-1 (Schulz et al., 2012; Kierdorf et al., 2013). Microglia are
broadly distributed throughout the CNS although quantity and
location among species varies (Lawson et al., 1990; Mittelbronn
et al., 2001). Despite their broad distribution, microglia represent
a rather heterogeneous community with different subpopulation
based on specific brain regions. Each microglia subpopulation
develop unique features and they can be distinguished by
capacities and functions (Gertig and Hanisch, 2014; Neiva et al.,
2014; Doorn et al., 2015; Grabert et al., 2016; De Biase et al., 2017).
Microglia are considered to be the resident macrophages in the
CNS and are long-lived, self-renewing cells, autonomous from
peripheral monocytes that normally do not enter the brain.

Phenotypically, ramified microglia have been described as
‘quiescent’ or remaining in a ‘resting’ state. However, these views
radically changed after in vivo imaging studies have revealed the
extraordinary active nature of microglia processes in the healthy
brain (Davalos et al., 2005; Nimmerjahn et al., 2005). Microglia
are constantly restless and their processes undergo continuous
cycles of extension and withdrawal and de novo formation to scan
their environment for disruptions in brain homeostasis thereby
‘resting’ microglia are able to acquire numerous phenotypes. Each
microglia process seems to have a defined territory and they are
able to scan their environment within several hours. Microglia
process movement is systematically aimed at synapses to monitor
and regulate neuronal activity, indicating the presence of specific
signaling mechanisms that direct microglial processes to synapses
(Li et al., 2012, 2013; Dissing-Olesen et al., 2014). When microglia
detect ‘danger’ signals that compromise CNS homeostasis- for
instance through pathogen recognition receptors- they rapidly
change their appearance by shortening of cellular processes,
enlargement of their soma and they transform into a reactive
phenotype. Reactive microglia can further evolve into phagocytic
or amoeboid microglia that completely lack cellular processes
(Streit, 2000; Stence et al., 2001; Ransohoff and Perry, 2009;
Graeber and Streit, 2010; Kettenmann et al., 2011). In response
to CNS injury or infections, microglia are able to upregulate
expression of many cell surface receptors including toll-like
receptors (TLRs), phagocytic receptors (CR3, CR4), scavenger
receptors (CD36, CD91) and release various complement factors
(Tian et al., 2012). However, microglia activation does not refer
to a single phenotype, and a continuum of microglia activation
is rather considered. They are able to acquiring numerous
phenotypes upon activation ranging from a phagocytic to an
antigen presenting phenotype that mainly depends on the type
of stimuli provided in their environment (Town et al., 2005;
Schwartz et al., 2006; Boche et al., 2013). Once activated,
microglia can be potent immune effector cells and initiate both
innate and adaptive immune responses and produce a number
of cytokines, chemokines and growth factors (Ransohoff and
Perry, 2009; Loane and Kumar, 2016; von Bernhardi et al.,
2016). Microglia accept a wide variety of inputs and they are
also able to provide an appropriate response to a multitude of
reactions. Therefore, microglia activation is considered to be
a flexible and adaptive process rather than being stereotypic
and granted (Schwartz et al., 2006; Hanisch and Kettenmann,
2007; Deczkowska et al., 2018). Importantly, microglia are also

capable of morphological remodeling without any indication
of an insult or neurodegeneration. Chronic stress, enhanced
glutamatergic neurotransmission or light deprivation can lead
to hyper-ramification of microglia and more frequent neuron–
microglia contacts (Tremblay et al., 2010; Hinwood et al., 2012;
Walker et al., 2013; Torres-Platas et al., 2014; Yirmiya et al., 2015).
These observations suggest that there is information transmission
between microglia and neurons and microglia are continuously
informed about the actual activity or state of neurons in their
vicinity.

RECIPROCAL NEURON–MICROGLIA
COMMUNICATION

Microglia are in close contact with neurons as well as
oligodendrocytes and astrocytes. Astrocytes are the most
abundant glial cells in the CNS and they show significant
contribution to synapse formation, maintenance and elimination,
thus regulating the overall architecture and activity of neuronal
circuits. Astrocytes perform direct contacts with their neuronal
pre- and postsynaptic counterparts and they also release soluble
factors to modulate synaptic transmission of both excitatory and
inhibitory synapses. This led to the concept of the ‘tripartite
synapse,’ a synapse composed of two neurons and an astrocyte
as an integrated functional unit (Perea et al., 2009; Nistico et al.,
2017; Farhy-Tselnicker and Allen, 2018). The tripartite synapses
are supplemented by microglia, which are specially attracted
by synapse activity, location of crosstalk between neurons and
glial cells. In the healthy brain, microglia exhibit an actively
repressed ‘surveying’ phenotype that is dependent on a dynamic
crosstalk between microglia and neurons (Biber et al., 2007;
Kettenmann et al., 2011; Kierdorf and Prinz, 2017). It has been
proposed that the removal of this neuronal derived inhibitory
control represents a type of danger signal for microglia, indicating
that neuronal function is impaired and leads to alterations of
microglia morphology and function. The reciprocal neuron–
microglia communication is mediated by numerous soluble
factors, extracellular vesicles (EVs) as well as contact-dependent
mechanisms, and is essential for adaptive neuroplasticity and
learning (Posfai et al., 2018).

CLASSICAL CELL-TO-CELL
COMMUNICATION

In the healthy brain microglia remain remarkably quiescent
or ‘unactivated’ while undertaking surveillance roles. It is now
recognized that this ‘unactivated’ state is under the control, at
least in part, of neuronal factors, including CD200 and fractalkine
(CX3CL1) as the most studied cell-to-cell proteins (Eyo and Wu,
2013) (Figures 1, 2). CD200 is a glycoprotein widely found on
the cell membranes of neurons, astrocytes and oligodendrocytes
in the CNS (Wright et al., 2001; Barclay et al., 2002; Koning et al.,
2009). The target receptor of CD200, CD200R, is only found on
macrophages and microglia (Hernangomez et al., 2012). When
neuronal CD200 interacts with microglial CD200R, the microglia
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FIGURE 1 | Bidirectional signaling between microglia (green) and neuron (purple). Neuron–microglia communication is mediated by receptor–ligand interactions as
well as by various soluble factors. Microglia are equipped with a group of surface receptors, which trigger signals and regulate specific microglia function like
phagocytosis, motility and viability. Many of the receptor ligands, such as CX3CR1, CD200R, and CD172a are released or expressed on the surface of neurons.
Receptor–ligand interactions represent a classical contact dependent communication between microglia and neurons. Microglia and neurons reciprocally release
soluble factors that can modulate cell functions and promote tissue homeostasis.

will be kept in its inactivated, resting state (Hoek et al., 2000; Biber
et al., 2007) thus CD200 signaling plays a critical role in neuronal
protection. Defaults in CD200 signaling have been observed in
several neuroinflammatory conditions like in multiple sclerosis
(MS), Alzheimer’s disease, or in the aging brain (Hernangomez
et al., 2012; Varnum et al., 2015; Xie et al., 2017).

The lack of CD200 in an experimental animal model for MS
(EAE) revealed an accelerated progression of the MS symptoms,
indicating that microglia attain a dysregulated activation in
absence of CD200-signaling (Hoek et al., 2000).

Fractalkine, also known as CX3CL1, is a unique chemokine
that is constitutively expressed in neurons (mainly in the
prosencephalon) (Tarozzo et al., 2003). The fractalkine receptor,
CX3CR1, is predominantly found on microglia and on neurons
in less amount in the normal CNS (Harrison et al., 1998; Meucci
et al., 2000; Hatori et al., 2002; Paolicelli et al., 2014) and
CX3CL1–CX3CR1 signaling has been considered a neuronal ‘off
signal’ that keeps microglia in a surveying phenotype (Nishiyori
et al., 1998; Maciejewski-Lenoir et al., 1999; Biber et al., 2007).
It should be noted that under chronic inflammatory conditions,
glial cells also express CX3CL1 (Hughes et al., 2002).

CX3CL1 is found both as membrane-bound, to neuronal
membranes, and cleaved (soluble) into the extracellular space
(Figure 2). The cleavage of CX3CL1 in its heavily glycosylated
chemokine domain is performed by metalloproteinases (MMPs)
(Garton et al., 2001). CX3CL1 bound to the membrane is
believed to be important for adhesion, while the soluble
CX3CL1 acts a chemo-attractant, recruiting inflammatory cells
(Bazan et al., 1997; Schall, 1997; Mizoue et al., 2001). The

G-protein-linked receptor CX3CR1 triggers several intracellular
secondary messengers, such as P13K, AKT, and NF-κB, and thus
regulates apoptotic, proliferative, transcriptional and migratory
functions in microglia (Al-Aoukaty et al., 1998; Chandrasekar
et al., 2003). The fractalkine receptor is expressed by other cell
types than microglia, such as monocytes, dendritic cells and
natural killer cells, but because these cells don’t frequently cross
the brain–blood barrier (BBB) in healthy brains, microglia are
believed to be the main recipient of CX3CL1-signaling in the
normal CNS (Imai et al., 1997; Harrison et al., 1998; Truman
et al., 2008; Mizutani et al., 2012; Wolf et al., 2013).

Expression of fractalkine increases in the CNS during
embryonic and postnatal maturation and promotes microglial
recruitment to neuronal circuits that need rewiring during a
period of activity-dependent remodeling. In return, microglia
modulate neuronal function and survival via the release
of trophic factors (Ueno et al., 2013). In the absence of
fractalkine signaling, microglial colonization is impaired in the
somatosensory, motor cortex and the hippocampus during the
early postnatal development (Paolicelli and Gross, 2011; Hoshiko
et al., 2012) (Figure 2).

Replacing the CX3XR1-gene with GFP, in the CX3CR1-GFP
knock-in mouse line (Jung et al., 2000), has been proved to be
a very useful tool to study microglial function and fractalkine
signaling in the healthy brain. Experimental paradigms
comparing CX3CR1-GFP homozygous mice (CX3CR1−/−) that
entirely lack CX3CR1, and therefore of fractalkine signaling
in the brain, with heterozygotes (CX3CR1−/+) proved to be
extremely useful strategy to disclose the molecular players in
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FIGURE 2 | Fractalkine (CX3CR1–CX3CL1) signaling between microglia (green) and neuron (purple) in normal (green square) and pathologic (red square) states.
CX3CL1 is either membrane-bound or cleaved by metalloproteinases to become soluble. Membrane bound CX3CL1 is an OFF-signal, that keeps microglia in a
surveying state, and soluble CX3CL1 is believed to act as a chemoattractant, stimulating migration of inflammatory cells. Fractalkine signaling has many roles in both
healthy and pathologic conditions. Black triangles indicate increase (N), decrease (H) or not specified (�).

neuron–microglia communication in a non-invasive way related
to fractalkine signaling.

Besides fractalkine, numerous other chemokines are produced
and released by neurons and glial cells (by both astrocytes and
microglia) in the CNS. CCL2/MCP-1 is expressed in the neurons
principally during pathological conditions as most studies have
shown, although some observations support the notion of a
constitutive neuronal CCL2 expression (Coughlan et al., 2000;
Banisadr et al., 2005; Conductier et al., 2010). The receptor for
CCL2 is found in microglia and its activation trigger chemotaxis
of cultured microglia. An induction of neuronal CCL2 expression
was described in response to various types of injury and
degeneration such as ischemia, Alzheimer’s disease, MS, axonal
injury, amyotrophic lateral sclerosis (ALS) or peripheral nerve
injury (Barna et al., 1994; Che et al., 2001; Pang et al., 2001;
Rancan et al., 2001; Schreiber et al., 2001; Baron et al., 2005;

Bose and Cho, 2013; Perner et al., 2018). The chemokine CCL2
is also produced by glial cells (Barna et al., 1994; Hanisch, 2002;
He et al., 2016) as perivascular astrocytes have been identified as
the most common and predominant source of CCL2 in the CNS
in various neuroinflammatory conditions (Andjelkovic et al.,
2002; Guillemin et al., 2003). Another chemokine, CXCL12/SDF-
1 (stromal cell-derived factor 1) and its receptor CXCR4 have
been reported to be produced and expressed predominately
by astrocytes and neurons. Astrocytic activation of CXCR4
can lead to the release of pro-inflammatory cytokines and
prostaglandins, and it is able to trigger glutamate exocytosis
from astrocytes thereby modulate neuronal activity. A unique
chemokine, CCL21, is exclusively expressed on endangered
neurons after injury and activate microglia through chemokine
receptor CXCR3 (Biber et al., 2001; Dijkstra et al., 2004; van
Weering et al., 2010).
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Overall, chemokines are able to control neuron–microglia
interactions through diverse intracellular signaling upon
chemokine receptor activation and contribute to a variety of
cellular functions such as modulation of neurotransmission,
regulating cell survival and BBB permeability, exert
neuroprotection, migration of neuronal progenitors, stem
cells and axonal sprouting (Mackay, 2001; Mellado et al., 2001;
Reaux-Le Goazigo et al., 2013; Zheng et al., 2017).

Furthermore, many other inhibitory receptors/molecules can
be found on microglial surfaces that interact with ligands from
neurons (both secreted and membrane-bound). An example is
the integrin CD47, which communicates a “don’t eat me”-signal
to microglial CD172a (van Beek et al., 2005; Biber et al., 2007)
(Figure 1) by recruiting tyrosine-protein phosphatases SHP-1
and SHP-2, down-regulating phagocytosis as well as by increasing
the synthesis of TGF-β (reviewed in Griffiths et al., 2007).

FRACTALKINE SIGNALING REGULATES
SYNAPSE DEVELOPMENT AND
SYNAPTIC PLASTICITY

During the first week of postnatal life vast amounts of synapses
are generated during an intensive period of synaptogenesis
and this is also when microglia density reaches its maximum
(Dalmau et al., 2003). Neuronal networks are refined by synaptic
pruning, a selective and activity-driven process that eliminates
redundant, developing synapses. Microglia make contacts with
presynaptic axon terminals and postsynaptic dendritic spines that
can be followed by a complement-dependent phagocytosis and
elimination (Wakselman et al., 2008; Tremblay and Majewska,
2011; Cunningham et al., 2013; Jung and Chung, 2018).

Fractalkine signaling has been implicated in microglial
pruning of dendritic spines during normal brain development
(Figure 2). Paolicelli and Gross (2011) and Paolicelli et al. (2011)
showed that a decreased microglial density in the hippocampus
of CX3CR−/− mice was associated with a temporary boost in
dendritic spine numbers on pyramidal neurons and an excess
of immature synapses compared with CX3CR−/+ littermates.
It is suggested that microglia lacking the CX3CR1 receptor
fail to recognize synapses displaying fractalkine. Comparing
homozygous CX3CL1−/− and heterozygous CX3CL1−/+ mice,
microglial fractalkine signaling was shown to play a crucial
role in the maturation of excitatory glutamatergic synapses and
remodeling of neuronal circuits during postnatal development
(Bertollini et al., 2006; Ragozzino et al., 2006; Hoshiko et al.,
2012; Zhan et al., 2014) (Figure 2); although, the role of
neuron–microglial crosstalk in this context is still not fully
understood. In the developing barrel field of the somatosensory
cortex, fractalkine (CX3CL1/CX3CR1) signaling has been also
shown to regulate microglial recruitment to the location where
developing thalamocortical synapses are concentrated (i.e., barrel
centers). Hoshiko et al. (2012) showed that microglia entry into
the barrel centers is temporally delayed in CX3CR1−/− mice
compared with WTs at the developmental stage, when fractalkine
is overexpressed within the barrels. CX3CR1 deficiency also
delays the functional maturation of glutamate receptors and

results in a significantly lower proportion of postsynaptic
AMPARs in CX3CR1−/− than in CX3CR1−/+ mice. Moreover,
the developmental switch from GluN2B to GluN2A-containing
NMDA receptors, which are known to occur during the
early weeks of postnatal development of thalamocortical area,
was delayed in CX3CR1−/− mice but this delay was only
transient. These observations support to the notion that
microglia influence synaptic maturation during development and
fractalkine signaling deficiency induced a transient impairment
in the maturation of glutamate receptor functional expression
at thalamocortical synapses. However, the exact mechanism by
which microglial cells influence synapse maturation is complex
and it is not fully understood. Microglia release several signaling
molecules known to modulate the functional expression of
glutamate receptors. For instance, glia-derived TNF-α facilitates
AMPA receptors trafficking and membrane insertion (Beattie
et al., 2002; Stellwagen et al., 2005). Also, TNF-α specifically
controls the glutamate release step of gliotransmission in the
hippocampal dentate gyrus (Santello et al., 2011). Similarly,
brain-derived neurotrophic factor (BDNF) released by microglia
has been demonstrated to modulate spine density and the
expression of AMPA and NMDA receptors in cortical neurons
of adult mice (Parkhurst et al., 2013). Pascual et al. (2012) have
showed in vitro that microglia are able to regulate synaptic
neurotransmission by releasing ATP, which binds to P2Y1R
located on astrocytes and enhances excitatory postsynaptic
current. Also, microglia regulate synaptic functions and neuronal
development of cultured neurons through the interactions of the
microglia-released interleukin 10 (IL-10) with IL-10 receptors
(IL-10R) expressed by neurons (Lim et al., 2013). Thereby,
fractalkine-dependent recruitment of microglia within the barrel
centers might induce the release of microglia-derived signaling
factors necessary for alterations of the functional expression of
glutamate receptors at thalamocortical synapses.

Moreover, a lack of CX3CL1-signaling, and therefore a
weakened crosstalk between neurons and microglia, affects
transmission efficiency in synapses of the adult brain. It was
observed that CX3CR1−/− had fewer multi-synaptic boutons in
the hippocampus CA1 region compared to wild-type littermates
indicating a lasting impairment of synaptic connectivity (Zhan
et al., 2014). Changes in long-term potentiation (LTP) have
been found in CX3CR1−/− mice, and were accompanied with
deficits in behavior related to learning and memory (Rogers et al.,
2011). The Rotarod test revealed that motor control in particular
was negatively affected in these mice, compared to control
animals. However, the CX3CR1−/− mice also appear to have
deficits in associative learning, measured by fear-conditioning
tests, and in hippocampal-dependent memory formation – as
revealed with Morris water maze. These findings indicate that
fractalkine signaling plays a significant role in learning and
memory, and the effects appear to be dependent on the activity
of interleukin 1β (IL-1β). The expression of IL-1β was increased
in both heterozygous and homozygous CX3CR1 knockouts,
and the hippocampal infusion of the IL-1β antagonist, IL-
1ra, reversed the behavioral deficits in the CX3CR1−/− mice,
indicating that IL-1β, released from microglia, could mediate
these effects (Rogers et al., 2011). The dose-dependent inhibitory
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effects of IL-1β on LTP in the hippocampus are supported by
other studies and this inhibition is consistent with the high
distribution of IL-1R1 on hippocampal neurons (Lynch, 2015).
The inhibitory effects of IL-1β in hippocampus have been linked
with stimulation of the stress-activated kinases, p38 and JNK
(O’Donnell et al., 2000; Vereker et al., 2000). Interestingly,
the anti-inflammatory IL-10, which could be also released by
microglia, has been demonstrated to antagonize certain actions
of IL-1β. IL-10 is able to abrogate the IL-1β -induced inhibition
of glutamate release and LTP and its stimulatory effect on JNK
signaling (Kelly et al., 2001).

Although fractalkine signaling has a significant role in
synapse pruning, it is not the only signaling pathway involved
in this complex process. Microglial complement 3 receptor
(C3R) has been also determined participating in developmental
synaptic pruning. In the healthy developing brain, C1q, the
protein that initiates the classical complement pathway of the
complement system, promotes activation of C3, which opsonizes
subsets of synapses for elimination and promote microglial
engulfment and phagocytosis of synaptic elements. This process
is significantly downregulated in the mature brain (Stevens et al.,
2007; Schafer et al., 2012; Bialas and Stevens, 2013). However,
in an early phase of AD this normal developmental synaptic
pruning pathway can be locally reactivated and it mediates
synapse loss. Hong et al. (2016) demonstrated that in an AD-
like mouse strain, C1q was increased and co-localized with
synapses even before visible plaque deposition, and blocking
C1q, C3 or the microglial receptor CR3, decreased microglial
phagocytosis and early synapse loss. The possible relationships
between fractalkine signaling and the classical complement
pathway could further complicate the topic of developmental and
pathological synaptic pruning and it demands more research.
Microglia-synapse interactions and synapse removal has also
been discovered in many brain pathologies. Synaptic dysfunction
and loss, as well as microglial activation, are early events
in neurodegenerative diseases such as AD and Huntington’s
disease (Perry and O’Connor, 2010). Despite the extensive
research of the topic, the question is remaining: are microglia
initiating synapse defects and loss in neurodegenerative diseases
or is their activation just a secondary phenomenon during
pathogenesis?

Apart from the fractalkine and complement signaling, a
role for microglial DAP12 (DNAX-activation protein 12) has
also been reported in the development of functional neuronal
synapses. Intriguingly, in genetically deficient DAP12 mice,
developmental apoptosis of neurons was decreased (Wakselman
et al., 2008) but synaptic plasticity was enhanced (Roumier
et al., 2004). Interestingly, DAP12 function has also been linked
to TREM2 (triggering receptor expressed in myeloid cells 2)
both are expressed on microglia in the brain and form a
receptor-adaptor complex. TREM2/DAP12 signaling is known
to regulate microglial phagocytosis and connected to numerous
other intracellular signaling pathways implicated in regulation
of synaptic plasticity (Kiialainen et al., 2005; Hsieh et al., 2009)
(Figure 1).

Overall, the proper microglia functions and their interactions
with synaptic elements are considered to be instrumental

for appropriate neuronal development and also support the
homeostasis of neuronal networks in adults.

SOLUBLE FACTORS MEDIATING
NEURON–MICROGLIA
COMMUNICATION

Neurons are able to release further immune-related soluble
factors that bind to cognate receptors on microglia and
promote specific microglia phenotype (Figure 1). These
comprise neurotrophins, neuropeptides, neurotransmitters,
anti-inflammatory cytokines and chemokines (Biber et al., 2007;
Kerschensteiner et al., 2009).

For instance, the multifunctional cytokine, transforming
growth factor beta (TGF-β), which is expressed by both neurons
and glial cells, has been recognized as a vital regulator for
microglia differentiation that promotes a unique transcription
profile and surface structure of adult microglia (Butovsky
et al., 2014). Also, TGF-β is a potent regulator of cytotoxicity
and neuroinflammation in the nervous system (John et al.,
2003; Saud et al., 2005). Its importance is to down-regulate
microglial responses as showed by increased microglial activity
and neuronal loss in the brains of TGF-β-deficient mice (Brionne
et al., 2003). Smad pathway has been considered as one of the
main signal transduction pathway activated by TGF-β receptors,
which is responsible for the regulatory and neuroprotective
effects of TGF-β. TGF-β-Smad signaling is involved in the
induction of the quiescent phenotype of microglia within
the CNS (Abutbul et al., 2012). Binding of TGF-β and its
receptor induces ligand dependent assembly of a heteromeric
receptor complex, receptor-kinase activation and subsequent
phosphorylation and activation of SMAD proteins. SMADs are
transcriptional regulators that accumulate in the nucleus and
directly regulate gene transcription to evoke cell-type-specific
and context-dependent transcriptional programs (Schmierer and
Hill, 2007). Besides Smad proteins, there are additional signaling
pathways activated by TGF-β, including ERK, p38 and PI3K
those can mediate synergistic or antagonistic effects thereby, the
responses of activated microglia are the end result of interactions
of different signaling pathways (Derynck and Zhang, 2003; Lee
et al., 2007).

Furthermore, CD45, a leukocyte common antigen, is
constitutively expressed at moderate levels on microglia. Its
activation leads to inhibition of microglia activity via negative
regulation of the Src/p44/42 MAPK cascade (Tan et al., 2000).
The endogenous ligand of CD45 is CD22 has been found at
neuronal membranes and neurons secrete CD22 following
neuronal injury in order to inhibit microglial proinflammatory
cytokine production (Mott et al., 2004).

Electrically active neurons can suppress the interferon-gamma
(IFNγ)-induced increase in the expression of pro-inflammatory
MHC class II molecules on microglia in the intact CNS (Vass and
Lassmann, 1990) and in cultured hippocampal slices (Neumann
et al., 1996). The neurotransmitter glutamate, which is released
during synaptic activity, is involved in the regulation of microglial
cells via glutamate receptors, including metabotropic receptors
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(Fazio et al., 2018). Glutamate does not necessarily act directly on
microglial cells. Instead neuronal released trophic factors such as
neurotrophin-3 (NT-3), BDNF and nerve growth factor (NGF)
were identified as activity-dependent regulators of microglial
MHC class II expression and induction of pro-inflammatory
molecules. Neuron-derived glutamate stimulates BDNF and NGF
production or release while the regulation of NT3 production by
synaptic activity appears to be indirect. Neurotrophins bind to
two different classes of receptors: the tyrosine kinase receptors
(trkA, trkB, or trkC) or the p75 neurotrophin receptor (also
known as the low-affinity NGF receptor). Neumann et al.
(1998) and Neumann (2001) have showed that NGF and, to
a lower extent, NT3 but not BDNF acted directly on isolated
microglia through the p75 neurotrophin receptor as MHC
class II inducibility could be enhanced by neutralizing locally
released neurotrophins (NGF, BDNF, and NT3) or blocking
the p75 neurotrophin receptor. Thus, neurotrophins secreted
by electrically active neurons are able to control the antigen-
presenting potential of microglia, which is mediated partly via the
p75 neurotrophin receptor.

Several neurotransmitters have modulatory effects on
microglial activity and proliferation that are related to local
neurochemical environment and could differ across various
brain regions (McCluskey and Lampson, 2001). As mentioned,
glutamate can exert an inhibitory regulation of microglial
cells via metabotropic glutamate receptors (mGluRs; Fazio et al.,
2018). Microglia also express GABA-B receptors which activation
strongly decreases the LPS-induced secretion of certain but not all
inflammatory cytokines (Kuhn et al., 2004). Glycine, which is the
other inhibitory neurotransmitter, also attenuates the production
of inflammatory cytokines and the phagocytic activity of brain
macrophages (Zeilhofer, 2008). Similarly, noradrenalin reduces
the LPS-stimulated release of NO, IL-6, and TNF-α. Dopamine
has also been reported to modulate the activation, proliferation,
and cytokine release in immune cells (Sarkar et al., 2010). Both
D1 and D2 dopamine receptors mediate anti-inflammatory
effects and inhibit neuroinflammation and attenuate brain injury
after intracerebral hemorrhage in mice (Zhang et al., 2015; Wang
et al., 2018).

In response to any disturbance of their microenvironment,
microglia are able to respond rapidly and these responses are
mediated, in part, by neuron-released nucleotides such as ATP
and UDP (Figure 1). The role of the nucleotides for microglial
activation and proliferation has been established, particularly
during the early phase of brain injury (Haynes et al., 2006;
Ohsawa et al., 2012; Ulmann et al., 2013). The chemotactic
properties of ATP are mediated by microglial P2Y12 purinergic
receptors and the absence of P2Y12 leads to impaired microglia
process motility during injury. Davalos et al. (2005) confirmed
the relevance of ATP-induced microglial chemotaxis in vivo in
the mouse cortex. The authors showed that laser-induced injury
to brain tissue resulted in robust microglial branch extension
toward the site of injury and the process of the chemotaxis was
abolished by an ATP/ADP degrading enzyme (Davalos et al.,
2005). ATP-induced microglial chemotaxis was then confirmed
in acute mouse brain slices in the mouse spinal cord (Chen et al.,
2010; Dibaj et al., 2010) and retina (Fontainhas et al., 2011) as

well as in other animal models. Another purinergic receptor,
P2Y6, is also expressed by microglia and UDP signaling through
P2Y6 receptors triggered microglial phagocytosis following
hippocampal excitotoxicity (Koizumi et al., 2007). Extensive
and prolonged neuronal release of glutamate directly leads to
neuronal death but also serves as activation signal for microglia
through a variety of microglial glutamate receptors like AMPA,
kainate, and mGluRs (Biber et al., 1999; Hagino et al., 2004). It
has been demonstrated that the activation of microglia mGluR2
triggers TNF-α-induced neurotoxicity through activation of
TNF receptor-1 and facilitating the activation of caspase-3.
Microglia also released FasL, which further potentiated TNF-α
neurotoxicity after mGlu2 stimulation (Taylor et al., 2005).

In return, microglia influence and modulate neuronal
function by the release of soluble factors, including cytokines,
prostaglandins and neurotrophic factors, which bind to neuronal
receptors. IL-1β, prostaglandins (PGE2), BDNF and tumor
necrosis factor-alpha (TNF-α) are often released by microglia in
response to variations in neuron-derived signals.

Brain-derived neurotrophic factor plays and important role in
neuronal survival and differentiation and as a neuromodulator,
directly involved in the control of neuronal activity and synaptic
plasticity (Santos et al., 2010) (Figure 1). The neuromodulatory
effect of BDNF has been recognized both on glutamatergic and
GABAergic synapses in the CNS (Gottmann et al., 2009). Apart
from neuron and astroglia, microglia also release BDNF as it
was first shown in microglia cultures (Elkabes et al., 1996) and
then confirmed in different regions of the CNS during the
course of various neurological disorders such as traumatic injury,
Parkinson’s disease, MS, and neuropathic pain (Batchelor et al.,
1999; Knott et al., 2002; Stadelmann et al., 2002; Trang et al., 2011;
Song et al., 2016). The synthesis and release of BDNF in microglia
appear to be tightly associated with the activation of ATP sensitive
purinergic receptors, such as P2X4R. The activation of P2X4R
leads a significant intracellular Ca2+ flow and the downstream
activation of signaling pathways like p38 MAP kinase, which
controls the synthesis and release of BDNF (Trang et al., 2009).
Then, microglia-derived BDNF rapidly downregulates K+-
Cl− co-transporter KCC2 expression in neuronal membranes
through tyrosine kinase B receptor (TrkB) which, disrupting Cl−
homeostasis and the strength of GABAA

− and glycine receptor-
mediated inhibition thereby leads to an altered neuronal network
activity (Ferrini and De Koninck, 2013). Although the low
levels of microglia-derived cytokines are demonstrated to support
homeostatic neuroplasticity, these signaling pathways could be
further augmented during inflammatory conditions and mediate
neurotoxicity (Stellwagen et al., 2005; Parkhurst et al., 2013;
Pribiag and Stellwagen, 2014; Stellwagen and Lewitus, 2014).

MICROGLIAL COMMUNICATION BY
EXTRACELLULAR VESICLES

Extracellular vesicles are recently discovered way of
communication between cells in the CNS that are providing new
insights into the brain physiology and pathophysiology of several
diseases (Basso and Bonetto, 2016; Rufino-Ramos et al., 2017;
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Paolicelli et al., 2018; Trotta et al., 2018). Indeed, we found
recently that inflammatory stimuli to microglia leads to distinct
populations of released EVs, both in terms of size and protein
content (Yang et al., 2018a).

In one of the earliest study on EVs in the CNS, membrane
exovesicles were identified as vehicles for spreading morphogens
through epithelia during Drosophila melanogaster development
(Greco et al., 2001). Since then the influence of EVs in tissue
development has also been observed in the developing mouse
brain and undifferentiated neuronal culture (Marzesco et al.,
2005; Faure et al., 2006; Marzesco, 2013).

The family of EVs contains different types of vesicles that are
distinguishable by their size, biological origin and function. The
EV family comprises exosomes (40–120 nm) that are released
from multivesicular endosomes, microvesicles (100–1,000 nm)
that are budding from the plasma membrane and apoptotic
bodies (800–5,000 nm) that are released by cells during apoptosis
(Cocucci et al., 2009; Gyorgy et al., 2011; Colombo et al., 2014;
Cocucci and Meldolesi, 2015; Dozio and Sanchez, 2017).

All brain cells, including neurons (Faure et al., 2006; Lachenal
et al., 2011) astrocytes (Dickens et al., 2017) microglia (Hooper
et al., 2012; Prada et al., 2013; Glebov et al., 2015) and
oligodendrocytes (Kramer-Albers et al., 2007; Fitzner et al., 2011;
Fruhbeis et al., 2013) secrete EVs. EVs contain different bioactive
compounds including cell surface receptors, mitochondrial and
cytosolic proteins, metabolic enzymes and genetic materials such
as microRNAs and mRNAs (Abels and Breakefield, 2016; Dozio
and Sanchez, 2017; Prada et al., 2018). Additionally, EVs could
carry pathological markers, such as α-synuclein, tau, amyloid beta
(Aβ) (Rajendran et al., 2006; Ngolab et al., 2017; Valdinocci et al.,
2017) and pathogenic prion proteins (Schneider and Simons,
2013; Vilette et al., 2018) as well as huntingtin (Zhang et al., 2016;
Deng et al., 2017) that implicate exchange of EVs in pathological
conditions. EVs are able to influence the behavior of recipient
cells in multiple ways: they may transfer receptors and/or
bioactive lipids between cells; they can modulate functional target
cells by delivering intracellular proteins or transferring mRNA;
and may act as signaling complexes through the stimulation of
target cells (Basso and Bonetto, 2016). In the CNS, there is an
extensive cross talk between neurons and microglia and alongside
the actual cell-to-cell contact and the cellular release of soluble
factors, microglia and neurons can communicate by bidirectional
release of EVs, which permits an exchange of a wide range of
biomolecules across long distances (Garzetti et al., 2014; Lai et al.,
2014; Rajendran et al., 2014; Zaborowski et al., 2015; Budnik et al.,
2016; Kramer-Albers and Hill, 2016).

Microvesicles released by microglia are known to differ
in shape and size (100 nm – 1 mm) and they are able to
modulate the activity of neighboring microglial population
and/or neurons in the surroundings. For instance, microglia-
derived EVs can increase glutamate release at the presynaptic
sites of neuronal synapses thereby enhances excitatory synaptic
transmission. The stimulation of synaptic activity occurs via
enhanced neuronal sphingolipid metabolism (Antonucci et al.,
2012). Gabrielli et al. (2015) demonstrated that microglial EVs
are also able to modulate synaptic transmission through the
modulation of the endocannabinoid system. Endocannabinoids

are secreted through microglial EVs that have on their surface
N-arachidonoylethanolamine (AEA), which can stimulate
type-1 cannabinoid receptors (CB1), and inhibit presynaptic
transmission of GABAergic neurons.

Microvesicles shedding from microglia is an intriguing
topic but little is yet known and therefore warrants further
investigations. Extracellular ATP is a key stimulant for vesicles
shedding from microglia via the P2X7 ATP receptor (P2X7R) that
activates the p38 MAPK cascade through src kinase-mediated
phosphorylation. Phosphorylated p38 triggers microvesicle
shedding and IL-1β release from glia cells via a process that
requires activation of acid sphingomyelinases (Bianco et al.,
2005, 2009). Additionally, IL-1β-loaded microvesicles released
by microglia via P2X7-p38 pathway can enhance the sensitivity
of mechanical allodynia and thermal hyperalgesia induced by
nerve injury (Li et al., 2017). Microglial P2X7R is also responsible
for the release of glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) into the extracellular space, which could be involved
in the regulation of neuroinflammation and/or neuritogenesis
in the brain (Takenouchi et al., 2015). Others and we have
applied a proteomic approach to characterize the proteome
of EVs released by microglia. Several proteins involved in
protein translation, transcription, cell adhesion/extracellular
matrix organization, autophagy-lysosomal pathway and cellular
metabolism, that may influence the response of target cells to
EVs were identified (Drago et al., 2017; Yang et al., 2018a).
Interestingly, upon LPS stimulation proteins related to RNA
processing and protein translation were upregulated in the EVs
(Yang et al., 2018a). Furthermore, glial microvesicles can contain
purine nucleoside phosphorylase, a crucial enzyme in purine
metabolism which converts ribonucleosides into purine bases
and it can be released into the extracellular space through
P2X7R activation, indicating that glial cells may support neuronal
activity by maintaining the homeostasis of the purinergic system
(Pena-Altamira et al., 2018). Serotonin can also stimulate
exosome release both in primary microglia cultures and BV2
cell lines (Glebov et al., 2015). Additionally, stimulation with
lipopolysaccharide induces microvesicles release from microglia
that can carry proinflammatory mediators (Jablonski et al., 2016;
Kumar et al., 2017). We found LPS stimulation of microglia
specifically upregulated TNF, and to a lower extent IL-6, in EVs
released (Yang et al., 2018a).

Accumulated research confirms the role of microglia-released
EVs in neurodegenerative conditions. For instance, shedding
of microglia-derived microvesicles was demonstrated after
traumatic brain injury (TBI), ischemic stroke, spinal cord injury
and in neuropathic pain (Kumar et al., 2017; Huang et al., 2018;
Mondello et al., 2018; Osier et al., 2018). Microvesicle from the
animals with TBI are loaded with pro-inflammatory mediators
(IL-1β and microRNA-155) and can activate additional glial cells
that may contribute to progressive neuroinflammatory response
in the injured brain (Kumar et al., 2017). ALS is a fatal disease
characterized by progressive degeneration of motor neurons and
by the formation of inclusions consisting of SOD1 and TDP-
43 in motor neurons. Recently, exosomes from astrocytes have
been noted that are able to transfer misfolded SOD1 to spinal
neurons and subsequently cause selective motor neuron death
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(Basso et al., 2013). In AD, toxic Aβ and hyperphosphorylated
tau can be spread between cells by exosomes and therefore they
have been known for contributing to apoptosis and neuronal
loss. Rajendran et al. (2006), have shown (in N2a and Hela cells)
that Aβ is present in multivesicular bodies (MVBs), and it is
released into the extracellular space in exosomes upon MVBs
fusion with the plasma membrane. Extracellular Aβ also activates
microglia, and activated microglia-shed microvesicles into their
environment. α-Synuclein exposure to murine microglial cell
line BV2 increased the secretion of EVs enriched in TNF-
α and MHCII molecules and promotes neuronal apoptosis
(Chang et al., 2013). Furthermore, Joshi et al. (2014) have
demonstrated that microglia-shed microvesicles promote the
extracellular formation of highly toxic soluble form of Aβ thereby
induces neurotoxicity. They have also found that microglia
generate neurotoxic species following Aβ internalization, which
are delivered to neurons possibly on the external membrane of
microvesicles, which leads to neuronal damage.

On the other hand, microglia are able to clear Aβ by
phagocytosis of the EVs loaded with Aβ. Yuyama et al. (2015)
and Yuyama and Igarashi (2016, 2017) have demonstrated that
neuronal exosomes can sequester Aβ through its abundant
glycosphingolipids and then Aβ could be taken up and digested
by microglia. The administration of neuronal exosomes into the
brain of APP transgenic mice results in a decreased amyloid
deposition and neuronal exosomes can effectively ameliorates
AD pathology (Yuyama et al., 2015; Yuyama and Igarashi,
2016, 2017). Tamboli et al. (2010) have described another
possible way by which microglia-shed exosomes could digest
extracellular Aβ and thereby promote amyloid clearance. The
insulin degrading enzyme (IDE) that is known to be effectively
degrade extracellular amyloid deposits was found to be associated
and released by exosomes shed by microglia (Tamboli et al.,
2010). Microglial exosomes are also involved in the spread of
tau pathology as was shown by numerous studies (Saman et al.,
2012; Medina and Avila, 2014; Asai et al., 2015; Wang et al.,
2017; DeLeo and Ikezu, 2018; Guix et al., 2018). Thus, in the
context of neurodegeneration, microglia-derived EVs could play
complex and also controversial roles. Microglial EVs have been
demonstrated to spread toxic and mutant proteins, while other
studies indicated their positive impact on protein aggregates
clearance and regulation of neuronal viability. In line with this,
various studies demonstrated that microglia activation in early
stages of AD pathogenesis could be neuroprotective. However,
in the late stage of the disease, microglial MVs have been found
responsible for the transportation and distribution of soluble
toxic proteins like Aβ and α-synuclein peptides, and to promote
the spread of the disease (Benilova et al., 2012; Tofaris, 2017;
Croese and Furlan, 2018; Zhang S. et al., 2018).

MICROGLIA IN PATHOLOGICAL
CONDITIONS

It has become evident that microglial cells are involved in
essentially all brain diseases ranging from AD and PD, TBI,
brain ischemia and psychiatric diseases such as schizophrenia

(Wohleb, 2016; Joe et al., 2018; Perea et al., 2018; Stephenson
et al., 2018). The outcome of many pathologies of the
CNS appear to rely heavily on the activity of microglia,
including their release of cytokines, chemokines and growth
factors (Ransohoff and Cardona, 2010). Importantly, microglial
functions are largely dependent on the type of activation stimuli,
time after stimulation and local factors during pathological
conditions. Microglia responses are not inevitably neurotoxic
and various neuroprotective effects of activated microglia have
been observed in vivo (Turrin and Rivest, 2006; Szalay et al.,
2016). In general, rapid and acute activation of microglia is
associated with inflammatory changes but these are designed
to combat the immediate insult and ultimately return the
tissue homeostasis. This acute reaction could therefore be
considered to be neuroprotective in the longer perspective,
unless the acute response is augmented and prolonged. Persistent
microglial activation with the associated increase in expression
of inflammatory cytokines and chemokines, accompanied by
recruitment of peripheral cells into the brain, is typically
characterized as detrimental chronic neuroinflammation (Lynch,
2009; Lynch et al., 2010). This prolonged and chronic microglia
activation is considered to be neurotoxic and can impair neuronal
activity. This ambivalent role of microglia in neurodegenerative
diseases has been extensively reviewed in the literature, searching
for a consensus amidst conflicting data and summating whether
the activity of microglia is helpful or not in pathologies of the
brain (Hu et al., 2012; Jiang et al., 2014; Loane and Kumar, 2016;
Szalay et al., 2016; Du et al., 2017).

Neuroinflammation occurs not only in the brain, but also in
the retina and optic nerve – which are outgrowths from the
diencephalon and thus considered parts of the CNS (London
et al., 2013). In fact, retinal homeostasis is dependent on many
of the same bidirectional signaling pathways between brain
microglia and neurons, such as fractalkine signaling (Karlstetter
et al., 2015). The retina and the brain are affected in several
neurodegenerative diseases and because they are similar, they
respond similarly to any disturbances of tissue homeostasis and
share common pathogenic mechanisms (London et al., 2013).
For instance the extracellular deposits of beta-amyloid and
intraneuronal accumulation of hyperphosphorylated tau protein
reported in AD are also found in the retina and optic nerve.
Similarly, PD involves the degeneration of dopaminergic cells in
the retina (Ramirez et al., 2017). Excellent reviews are available
covering the topic of microglia involvement in retinal physiology
and pathology (Wang J.W. et al., 2016; Akassoglou et al., 2017; Jin
et al., 2017; Rathnasamy et al., 2018).

CONTRIBUTION FACTORS OF
MICROGLIA AND FRACTALKINE
SIGNALING IN AD AND PD

Alzheimer’s disease is a progressive neurodegenerative disorder
characterized by the plaque-forming accumulation of amyloid-
β (Aβ) and the deposition of neurofibrillary tangles (NFTs,
composed of hyper-phosphorylated tau protein) within the brain
parenchyma. Beta-amyloidosis is a result from an imbalance
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production versus clearance of Aβ peptides. Microglia are able
to engulf and phagocyte the extracellular Aβ via stimulation
of triggering-receptor-expressed on myeloid cells 2 (TREM2).
TREM2 is a cell surface protein that is selectively and highly
expressed by microglia and it is linked to an anti-inflammatory
phenotype (Colonna and Facchetti, 2003; Mecca et al., 2018).
TREM2 interacts with the adaptor protein DNAX-activating
protein of 12-kDa (DAP12), which initiate intracellular signal
transduction pathways that regulate microglial phagocytosis
and activation. TREM2 is critical for microglial phagocytosis
of for example, cellular debris in order to maintain tissue
homeostasis (Neumann and Takahashi, 2007). In AD condition,
TREM2-deficient microglia demonstrated a reduced uptake of
Aβ-lipoprotein complexes in vitro (Yeh et al., 2016) and a less
effective Aβ internalization in vivo (Wang et al., 2015; Wang Y.
et al., 2016; Yuan et al., 2016). Microglia also have an ability
to build a protective barrier around amyloid deposits, that is
composed of tightly packed and thereby less toxic amyloid fibrils
(Condello et al., 2015).

On the other hand, microglia have significant role in
complement-mediated synapse loss in AD (Hong et al.,
2016; Fonseca et al., 2017; Jiang and Bhaskar, 2017). In
line with this, disabled microglial proliferation and microglial
depletion protects against synapse loss in amyloidosis mouse
models but does not necessarily have effect on the formation
and maintenance of β-amyloid plaques (Grathwohl et al.,
2009; Olmos-Alonso et al., 2016; Spangenberg et al., 2016).
Complement activation also appears to exacerbate tau pathology
and induces NFTs in AD mouse models via unclear mechanisms
(Britschgi and Wyss-Coray, 2007; Fonseca et al., 2009). Asai
et al. (2015) have showed that microglia are able to spread tau
pathology across the brain by microglial uptake and exosomal
release of tau in a mouse model of tauopathy. In addition to
synapse elimination and aggravation of tau pathology, activated
microglia release proinflammatory mediators in response to
extracellular protein aggregates and thereby causing harm to
neurons (Heneka et al., 2013; Shi et al., 2017).

Microglial fractalkine signaling plays variable roles in
different stages of AD pathogenesis in association with
neuroinflammation, neurotoxicity, and synaptic plasticity (Chen
et al., 2016; Zhang L. et al., 2018). The neuronal soluble
CX3CL1 is likely to keep the microglial phenotype in a
rather neuroprotective state by acting on CX3CR1 in microglia,
since the disruption of CX3CL1–CX3CR1 signaling leads to
dysregulate microglial responses and neuronal damage (Cardona
et al., 2006; Febinger et al., 2015) (Figure 2). Indeed, hAPP-
CX3CR1−/− mice as well as hTau-CX3CR1−/− mice showed
increased expression of inflammatory factors, enhanced tau
phosphorylation, and exacerbated neuronal dysfunction and
cognitive deficits (Bhaskar et al., 2010; Cho et al., 2011)
(Figure 2). However, others have demonstrated that both
APP-PS1/CX3CR1−/− and CRND8/CX3CR1−/− mice showed
reduction in Aβ deposition with increased number of microglia
(Lee et al., 2010; Liu et al., 2010). Moreover, in some cases
the suppression of CX3CL1–CX3CR1 alleviated Aβ-induced
neurotoxicity and memory deficiency (Wu et al., 2013; Dworzak
et al., 2015). Additionally, the level of plasma soluble CX3CL1

was found to be significantly greater in the patients with mild
to moderate AD than in the patients with severe AD, and the
level of CX3CL1 is inversely correlated to AD severity (Kim
et al., 2008), suggesting an early neuroinflammatory role in
AD pathogenesis. Thus, CX3CL1/CX3CR1 signaling may play
a beneficial role in controlling AD progression by inhibiting
the inflammation and tau phosphorylation but at a cost of the
increased Aβ deposition. One possible hypothesis is that, in
early AD the intra-neuronal Aβ accumulation causes a mild
decrease in neuron–microglia crosstalk via CX3CL1–CX3CR1
signaling that leads to an enhanced microglial phagocytosis of
Aβ while resulting in tau hyper-phosphorylation. Later as AD is
progressing, the communication between neurons and microglia
is further exacerbated and the CX3CL1–CX3CR1 signaling is
severely downgraded that gives rise to deregulated microglia
and abnormally excited neuron, which leads to neuron damage
and loss. Indeed, we have found remarkable early activation of
inflammatory pathways in microglia at 6 weeks of age, before
plaque deposition, in the 5xFAD mouse model of AD using a
proteomic approach (Boza-Serrano et al., 2018).

Parkinson’s disease is characterized by the selective
loss of dopaminergic neurons in substantia nigra. The
pathological hallmarks are the formation of Lewy-bodies
and intraneuronal protein inclusions mainly consist of
α-synuclein. Microglial activation and neuroinflammation
clearly contribute to neurodegeneration seen in PD, although the
exact cellular mechanisms are not known yet. Neuron–microglia
communication via fractalkine signaling provides an effective
endogenous mechanism to moderate microglia activation and
suppress the release of pro-inflammatory factors during the
course of the disease (Grimmig et al., 2016). Maintaining or
enhancing CX3CL1-CX3CR1 communication has been proved
to be neuroprotective in multiple rodent models of PD (Pabon
et al., 2011; Morganti et al., 2012; Nash et al., 2015). However, the
action of fractalkine is intricate and regulated on multiple levels;
for example, the CX3CR1−/− mice have been demonstrated
an enhanced Aβ phagocytosis and at the same time a decline
in α-synuclein degradation (Thome et al., 2015) (Figure 2). It
remains to be determined if this action is mediated by membrane
bound fractalkine or the cleaved, soluble form.

MICROGLIA IN TRAUMATIC BRAIN
INJURY

Injuries to the CNS, including TBI, are the leading causes of
death and severe disability for people under 40 years of age in the
developed world (Donat et al., 2017). The clinical consequences
of TBIs are very diverse including immediate death, complete
recovery and permanent cognitive, emotional and physical
impairments. TBIs are major risk factors for dementia (Donat
et al., 2017; Saber et al., 2017) and chronic traumatic encephalitis
(CTE) (Omalu, 2014). The primary injury of TBIs, caused by
trauma to the head which for example might stretch, compress
or tear blood vessels and axons, is not the only reason why
patients die or are disabled (Prins et al., 2013). A lot of the
damage is also caused by the secondary events such as edema,
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metabolic and blood flow disturbances, free radical formation,
glutamate excitotoxicity, blood–brain barrier breakage, as well as
neuroinflammation, i.e., activation of microglia and subsequent
recruitment of peripheral leukocytes (Prins et al., 2013; Donat
et al., 2017; Saber et al., 2017). Microglial activation in this context
is multifactorial, e.g., primed by pro-inflammatory cytokines
(Donat et al., 2017) or triggered through purinergic receptors by
ATP released from necrotic neurons (Davalos et al., 2005; Fang
et al., 2009), and could persist for years if not resolved (Braun
et al., 2017). The methods for investigating the role of microglial
activity following TBI, have been utilizing the same mouse
models as have been discussed earlier in this review. Subjecting
CX3CR1GFP/GFP mice to experimental TBI have enabled studies
of the fractalkine axis between microglia and neurons in a context
of TBI (Febinger et al., 2015; Erturk et al., 2016; Zanier et al.,
2016). Similar methods have also been applied for exploring the
role of other signaling pathways in TBI, such as TREM2/DAP12,
etc. (Saber et al., 2017). However, while these models could
be beneficial in understanding the role of specific molecular
pathways, it remains difficult to specify their cellular source,
which could be microglial or peripheral macrophages (Sewell
et al., 2004).

However, microglial signaling in neurodegeneration caused by
TBI remains controversial (Bennett and Brody, 2014). A study
by Bennett and Brody (2014) showed that in a mouse model
of repetitive closed skull TBI (rcTBI) the partial depletion of
Cd11b+microglia did not affect axon degeneration at 7 or 14 days
post injury (Bennett and Brody, 2014). Another study observed
a big therapeutic effect of deleting or inhibiting complement
system proteins C3 and C5 after traumatic brain cryoinjury –
which was not attributed directly to the activity of microglia –
but instead to a lesser invasion of neutrophils (Sewell et al., 2004).

So far, four peer reviewed studies have investigated the effects
of the absence or partial absence of fractalkine signaling after
experimental TBI, with some conflicting results (Febinger et al.,
2015; Erturk et al., 2016; Zanier et al., 2016; Makinde et al., 2017).
In one study, CX3CR1GFP/GFP mice demonstrated a decrease of
pro-inflammatory cytokines after the controlled cortical impact
(CCI) model of TBI (Febinger et al., 2015). However, in another
investigation with CX3CR1−/−mice subjected to CCI, the trends
in cytokine expression were not as clear (Zanier et al., 2016),
although in both studies, early after insult, the mice lacking
CX3CR1 performed the neuroscore test better than WT controls
(Febinger et al., 2015; Zanier et al., 2016). This effect was
reversed at a later stage (Febinger et al., 2015; Zanier et al.,
2016), indicating that fractalkine signaling might exert negative
influence at an early stage, but protective at later stages after TBI.
It should be noted that, while fractalkine signaling is important
in microglia–neuron bidirectional communication, CX3CR1 is
also expressed in peripheral macrophages, and could contribute
to their infiltration into the CNS (Erturk et al., 2016). A third
study examined the effects of CCI in mice missing one allele of
CX3CR1 and found that the female mice, but not the male mice,
showed significantly better symptoms post-injury, including less
neurodegeneration, leukocyte infiltration and cognitive deficits
(Erturk et al., 2016). Here it was also shown that WT mice
revealed neurodegeneration one year after insult, even in areas

far from the lesion, indicating that targeting chronic fractalkine
signaling is a promising, albeit sex-specific, way of combating
detrimental events after TBI (Erturk et al., 2016). A fourth study
subjected CX3CR1 null mice to CCI and observed that neutrophil
infiltration was significantly reduced (Makinde et al., 2017).

The receptor adaptor complex TREM2/DAP12, important
in synapse formation (Filipello et al., 2018), is also involved
in microglial activation and phagocytosis (Mecca et al., 2018).
A massive upregulation of TREM2 has been demonstrated in a
mouse model of TBI and the absence of TREM2 was shown to
improve hippocampal survival and cognition, lower disinhibitory
behavior, as well as to decrease the immune cell activation
throughout the brain, except in proximity to the lesion (Saber
et al., 2017). However, the TREM2-dependent immune cell
activity, believed to be negative in the TBI setting, was not
primarily associated with microglia, but rather with peripherally
derived macrophages (Saber et al., 2017).

TBI is associated with a wide range of deleterious events for
cerebral vasculature and tissues that cause immune reactions and
leukocyte infiltration in the brain (Saber et al., 2017; Monson
et al., 2018). The activity of macrophages appears to be a
potential therapeutic target in different TBI settings in adult, but
not young, rodents (Febinger et al., 2015; Erturk et al., 2016;
Hanlon et al., 2016; Zanier et al., 2016; Chhor et al., 2017; Saber
et al., 2017). However, it appears that the peripherally derived
macrophages, rather than macrophages derived from the resident
microglial population, are the primary targets for attenuating
detrimental effects after TBI (Bennett and Brody, 2014; Morganti
et al., 2015; Saber et al., 2017). More research is required to
elucidate the specific role of microglia and microglial pathways
in the very multi-facetted context of TBI.

MICROGLIA–NEURON
COMMUNICATION IN BRAIN ISCHEMIA

Brain ischemia, or stroke, is one of the leading cause to death
and disability in adults (American Heart Association, 2017).
Brain ischemia is typically characterized as focal or global brain
ischemia. The most common type of brain ischemia is stroke
(focal ischemia), which to 85% is related to an occlusion of a
cerebral artery or to less extent (15%) rupture of an cerebral
artery and few treatment options is currently available and then
related to clot removal or to resolve to clot in the immediate
phase (Siegel et al., 2017). In global ischemia, the entire brain
is ischemic, where most common condition leading to global
brain ischemia is cardiac arrest with successful resuscitation
(Joundi et al., 2016). In this section, we will focus on focal
ischemia, which is characterized by an ischemic core, which
in the acute phase is surrounded by a penumbra region, with
impaired function, and injured tissue that is amenable for
tissue protection. Neuroinflammation and microglia reactions
are involved in all stages of the ischemic cascade: from the
acute event leading to the first neuronal cell death to later
stages of parenchymal processing including phagocytosis of cell
debris and tissue remodeling. In this section, we will focus on
the direct interaction between microglia–neuron, i.e., CD200
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and fractalkine. Other recent reviews cover the broader aspect
of inflammation in stroke and ischemia pathogenesis (Dirnagl,
2012; Benakis et al., 2014; Chamorro et al., 2016). As mentioned,
several messengers are involved in the communication between
microglia and neurons, for example cytokines and purines.
The glycoprotein CD200 is mainly expressed by neurons and
its receptor CD200R is expressed on myeloid cells including
microglia. This interaction is involved in maintaining microglial
cells in a quiescent homeostatic stage. Lower expression of CD200
has been related to proinflammatory activation of microglia and
increased influx of inflammatory cells into the brain (Denieffe
et al., 2013). Autocrine release of CD200 from microglia is
also suggested to keep the microglia in an alternative/non-
inflammatory activation state, involving IL-4 signaling (Yi et al.,
2012). The endocannabinoid anandamide (AEA) which can be
released by microglia in neuroinflammatory conditions and have
an anti-inflammatory effect in stroke (Capettini et al., 2012), is
also reported as a mechanism for upregulation of CD200R on
microglia (Hernangomez et al., 2012). Additionally, peroxisome
proliferator-activated receptor gamma (PPAR-γ), which is a
transcription factor controlling the inflammatory response, has
been reported to regulate CD200 and CD200R1 gene expression,
which could be related to the neuroprotective action of PPAR-
γ agonists (Dentesano et al., 2014). Recently, Yang et al. (2018b)
investigated the acute effect, up to 48 h after ischemia, of CD200
following permanent focal ischemia in mice. They found CD200
expression on neurons, but not on microglia, and a negative
correlation with neuronal death in cortical tissue. Injection of
recombinant CD200 intracerebroventricular, performed right
after pMCAO induction, reduced microglial activation and
expression of cytokine TNF, IL-1β, and IL-10 (Yang et al., 2018b).
To be able to use the beneficial effect of CD200 signaling in
ischemic stroke, Kong et al. (2018) used human mesenchymal
stem cells with high CD200 expression from human placenta
which they transplanted intracerebrally 24 h after transient
middle cerebral artery occlusion (tMCAO). Interestingly, they
report reduced microglia activation in the infarct boundary area,
smaller infarct and improved behavior. Silencing of CD200 in the
mesenchymal stem cells also reduced the inflammatory response
in BV2 microglia when applying a co-culture system (Kong et al.,
2018). Using a similar rat stroke model, Matsumoto et al. (2015)
investigated if the CD200 could be used to distinguish M1 or M2
macrophage/microglia in the infarct at 7 days after ischemia, but
were not able to make this distinction in M1/M2 based on CD200
expression. However, using rat macrophages Hayakawa et al.
(2016b) used CD200 stimulation induced alternative activation
(M2) via CREB-C/EBP-beta signaling.

Focal white matter ischemia, where a small ischemic lesion
can generate large neurological deficits, has also been studied
in the context of CD200 signaling using endothelin injections
in mice (Hayakawa et al., 2016a). Hayakawa et al. (2016a)
used CD200-Fc treatment to target CD200R and found a
reduction in the macrophage phagocytosis of oligodendrocyte
progenitors, which was related to reduced TLR4 expression in
macrophages. Indeed, they could even detect an enhancement
of remyelination following CD200-Fc treatment (Hayakawa
et al., 2016a). Microglia studies of CD200-deficient mice reveal

increased classical activation, which could be related to increased
infiltration of T cells and macrophages (Denieffe et al., 2013).
Using CD200-deficient mice, or overexpression of CD200, using
conditional systems in various experimental stroke models with
long-term recovery would be interesting to further elucidate its
function in neuroinflammation and potential as a therapeutic
target.

CD200 signaling has been discussed for decades as an
important mechanism in neuroinflammatory conditions
(Neumann, 2001), but the jury is still out on whether CD200
could be important target to use in ischemic brain injury and
neurodegenerative diseases.

Crosstalk between microglia and neuron via
fractalkine/CXCR1 has also been studied in experimental
stroke models and been a target for neuroprotection. CXCR1
knockout mice subjected to focal brain ischemia was reported by
Denes et al. (2008) to surprisingly have reduced IL-1B and TNF
production together with reduced infarct size, better recovery
and ameliorated neuronal cell death.

Soriano et al. (2002) used the CX3CL1 deficient mice and
confirmed the results with the tMCAO model, showing reduced
infarct size and reduced mortality when CX3CL1/CX3CR1
signaling was absent.

In stark contrast to these results, when CX3CL1 was
administered to naive mice (wt) in combination with pMCAO
a reduction in infarct size was reported. In this study, Cipriani
et al. (2011) found that the adenosine receptor 1 (A1R) was
implicate in this neuroprotection and using A1R antagonist or
A1R−/− mice abolished the positive effect of CX3CL1 (Cipriani
et al., 2011). However, when they administering CX3CL1 to the
CX3CL1 deficient mice they found aggravated the brain ischemia,
possibly related to the constitutive lack of CX3CL1 leading to a
maladaptation of the CX3CL1/CX3CR1 signaling axis (Cipriani
et al., 2011). Clinical data though suggest a potential protective
role of CX3CL1, where patients with better clinical outcome
after 6 months had higher levels of CX3CL1 in blood plasma
(Donohue et al., 2012).

In a recent rat study, Liu et al. (2017) used a pMCAO
model to study the effect of CXCR1 inhibitor (day 3–14 systemic
administration) and found increased expression of BDNF and
NGF, neuroprotection and improved neurology up to 14 days
after ischemia.

In view of the dispersed data related to CX3CL1/CX3CR1
and ischemic stroke it is difficult to judge the neuroprotective
role of CX3CL1/CX3CR1 signaling and the future possibility to
manipulate this pathway pharmaceutically to reduce the sequel
of stroke.

MICROGLIA IN BRAIN TUMORS

Prolonged microglia activation has also been observed in the
environment of malignant brain tumors. In contrast to what
is known in neurodegenerative conditions, tumor-infiltrated
microglia exhibit immunologically suppressed phenotypes
and they have been demonstrated rather promoting tumor
proliferation and progression than exert an anti-tumor activity
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(Bettinger et al., 2002; Yang et al., 2010; Zhai et al., 2011; Schiffer
et al., 2017). The pathological hallmarks of malignant brain
tumors involve rapid tumor proliferation, diffuse brain invasion,
tumor-induced brain edema and neuronal cell death. Gliomas are
the most common and aggressive primary brain tumors that are
composed of neoplastic and non-neoplastic cells. The majority
of the non-neoplastic cells are tumor-associated macrophages
along with fibroblast and endothelial cells (Morantz et al.,
1979; Rossi et al., 1987; Simmons et al., 2011). Histopathologic
studies of glioblastomas have revealed high number of microglia
and macrophages (with peripheral origin) in and around of
glioma tissue. This is due to the local release of numerous
factors by tumor cells which mediate microglia chemoattraction
including chemokines, ligands of complement receptors,
ATP and neurotransmitters. Monocyte chemoattractant
protein-1 (MCP-1, also known CCL2) was among the first
chemoattractant factors, which has been identified to contribute
tumor proliferation and progression (Platten et al., 2003; Vakilian
et al., 2017). The chemokine stromal-derived factor-1 (SDF-1,
also known as CXCL12) has been described as another potent
microglia and macrophage recruiting molecules (Wang et al.,
2012; Jiang et al., 2013). The growth factor glial cell–derived
neurotrophic factor (GDNF), is secreted in mouse and human
gliomas, which serves as a strong chemoattractant for microglia
(Ku et al., 2013). Colony stimulating factor-1 (CSF-1) is released
by glioma cells and acts as a microglial chemoattractant. Blockade
of CSF-1R signaling using RNA interference or pharmacological
inhibitors have been shown to significantly reduce the number
of tumor-associated microglia and glioblastoma invasion
(Coniglio et al., 2012). Additionally, CSF-1 is also able to
convert microglia into a pro-tumorigenic anti-inflammatory
phenotype (Pyonteck et al., 2013). Furthermore, granulocyte-
macrophage colony-stimulating factor (GM-CSF) can also serve
as a chemoattractant for microglia, as GM-CSF knockdown
reduces microglia-dependent invasion in organotypic brain slices
and attenuates the gliomas growth in vivo (Sielska et al., 2013).
Although the tumor-associated microglia are high in numbers,
they exert suppressed functions that involves reduced phagocytic
activity and defective antigen presentation for cytotoxic and
helper T cells activation. Therefore, microglia associated with
malignant gliomas appear incapable of inducing an effective
anti-tumor T cell response (Wu et al., 2010; Hambardzumyan
et al., 2016). Additionally, glioma cells produce numerous
anti-inflammatory cytokines (e.g., IL-10, IL-6, TGF-β2, PGE2)
that can revert activated microglia to an anti-inflammatory
phenotype (Hishii et al., 1995; Pyonteck et al., 2013). For
instance, TGF-β2 released by glioma cells inhibits proliferation
and secretion of proinflammatory cytokines by microglia and
lymphocytes (Suzumura et al., 1993).

In return, microglia secrete tumor proliferation promoting
factors including epidermal growth factor (EGF) (Coniglio et al.,
2012) and vascular endothelial growth factor (VEGF), TGF-
β, arginase-1 (ARG1), and IL-10 (Gabrusiewicz et al., 2011; Li
and Graeber, 2012). Additionally, TGF-β released predominantly
from microglia are able to enhance tumor growth and invasion as
the downregulation the TGF-β type II receptor expression with
shRNAs abolished TGF-β-induced glioblastoma invasiveness

and migratory responses in vitro (Wesolowska et al., 2008).
Furthermore, microglia can help increase the spread of tumors
by releasing of extracellular matrix degrading enzymes such as
MMP-2, MMP-9, and MT1-MMP, into the tumor environment
which support tissue remodeling and angiogenesis (Belien et al.,
1999; Markovic et al., 2005; Konnecke and Bechmann, 2013).

Neurodegenerative actions of malignant gliomas resemble
mechanisms also found in neurodegenerative diseases (e.g., AD,
PD, ALS) and brain tumors can affect neuronal survival directly
or by microglia-mediated factors. Tumor environments include
elevated level of extracellular ATP, which can recruit microglia
and macrophages into tumor regions and induce cellular release
of inflammatory mediators initiating and sustaining tumor
development. ATP is able to activate P2X7 purinergic receptors
(P2X7R) expressed on glioma and immune responsive cells
(microglia/macrophages). A critical point of ATP signaling in
tumors is the prolonged duration in effect due to the inefficient
hydrolysis of ATP. The high concentration of extracellular
ATP is toxic for neurons and contributes to neuronal cell
death (McLarnon, 2017). Additionally, the prolonged activation
of microglial P2X7R leads to excessive inflammation by the
release of inflammatory factors (IL-1β and TNF-α) and the
activation of caspase activity in apoptosis, which can put
neuronal survival at risk (Ferrari et al., 1997, 1999). Furthermore,
gliomas have been shown to seize neuronal glutamate signaling
for their own growth advantage (Savaskan et al., 2015).
The cystine/glutamate antiporter xCT is expressed in various
malignant tumors including brain tumors (Kim et al., 2001).
The protein complex transports Na+-independent glutamate
out of cells in exchange for cysteine thereby, releases high
amounts of glutamate in the extracellular microenvironment.
Extracellular glutamate represents a potent signaling molecule
and neurotransmitter in the bran tissue and triggers membrane
depolarization. However, excessive glutamate release and hence
glutamate receptor activation can lead to excitatory neuronal
cell death. In brain tumors, the cystine/glutamate antiporter
expression is elevated that is consequently causes an increased
extracellular glutamate levels in the peritumoral zone. The
high extracellular glutamate concentration results in tumor-
associated seizures, brain swelling and neuronal damage (Ye
and Sontheimer, 1999; Savaskan et al., 2008; Buckingham et al.,
2011). In line with this, other experimental and clinical studies
have demonstrated that glioma cells secrete high levels of the
neurotransmitter glutamate, resulting in neuronal damage and
antagonizing ionotropic glutamate receptors alleviate neuronal
degeneration in the tumor vicinity and lessen glioma growth
in vivo (Behrens et al., 2000; Marcus et al., 2010).

MICROGLIA–NEURON INTERACTION IN
PSYCHIATRIC DISEASES

As previously mentioned, microglia are one of the key mediators
of neuroplasticity, acting in the remodeling of synaptic processes
and circuitry formation during normal physiological conditions.
Therefore, the bidirectional communication between neurons
and microglia may be critical for preserving the homeostatic
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environment in the central nervous system and defects in
microglia-neuronal activities have been suggested as potential
contributors to neurodevelopmental alterations, resulting in
psychiatric disorders such as schizophrenia, bipolar disorder
(BD), and depression (Yirmiya et al., 2015; Laskaris et al., 2016).

SCHIZOPHRENIA

Schizophrenia is a severe neurodevelopmental disorder
characterized by psychosis, apathy and withdrawal, and
cognitive impairment, which cause abnormal social behavior and
self-care (Mueser and McGurk, 2004; Blank and Prinz, 2013).
This disease affects ∼1% of the entire population (Yamamuro
et al., 2015), emerges between 16 and 30 years and persists
throughout the patient’s life (Mueser and McGurk, 2004). The
origin of this disease is still unknown, but some evidences
suggest that schizophrenia can arise from an interaction between
neurodevelopmental processes, such as prenatal viral infections
(Allswede and Cannon, 2018), and environmental factors
(Davalieva et al., 2016). Brain structural irregularities have
been reported in schizophrenic patients, such as the loss of
gray matter in prefrontal, temporal and subcortical structures
(Ellison-Wright and Bullmore, 2009; Fornito et al., 2009), the
presence of white matter tracts connecting these areas (Bora
et al., 2011; Zalesky et al., 2011), as well as an enlargement of
ventricle (Olabi et al., 2011). Additionally, this disease presents
multiple biochemical irregularities in the dopamine, serotonin,
acetylcholine, glutamate, and GABA systems (Mueser and
McGurk, 2004), as well as changes in the immune system (Nawa
et al., 2000).

In the last few years, microglial cells have appeared as
important players in the development of schizophrenia (Brown,
2011). Owing to their participation in inflammatory processes
as well as in the modification of neuronal networks (Tremblay
et al., 2010; Chew et al., 2013; Zhan et al., 2014b), microglial
cells have been proposed as a possible mechanism that participate
in the structural brain changes that appear in schizophrenia
(Munn, 2000; Monji et al., 2009). Postmortem studies have
shown an increased density of microglial cells in the brain of
patients with schizophrenia specifically in frontal and temporal,
but not in cingulate cortex (Garey, 2010). In addition, positron
emission tomography (PET) imaging studies have shown that
microglia are activated in these patients (van Berckel et al., 2008;
Hercher et al., 2014). These microglia features have been also
related with differences in behavior in animal studies, where
specifically, schizophrenic rodent models present deficits in pre-
pulse inhibition and working memory impairments (Ribeiro
et al., 2013).

During the development of the nervous system, the
communication between microglia and neuron is fundamental
in the synaptic formation and maturation (Penzes et al., 2011)
and persistent microglial activation has been used to explain how
this process might cause neuronal degeneration and synaptic
dysfunction (Monji et al., 2009). CX3CR1 is expressed on
microglia during embryogenesis and throughout murine lifespan
(Ginhoux et al., 2010; Paolicelli et al., 2011) and it has been

proposed as a key mediator of neuron–microglia interactions.
In fact, the CX3CR1-knockout mice model presents a reduction
of microglia which resulted in deficits of synaptic pruning and
a decreased functional brain connectivity (Zhan et al., 2014), as
well as behavioral impairments measured by fear conditioning,
Morris water maze and motor learning deficits (Rogers et al.,
2011). Furthermore, meta-analysis using human blood and brain
samples showed a significantly down-regulation of CX3CR1
in schizophrenic patients (Bergon et al., 2015), specifically
individuals with Ala55Thr variant of this receptor present more
susceptibility to develop this neurological disorder (Ishizuka
et al., 2017). Apart from CX3CR1 receptors, secreted Neuregulin
1 (NRG1) can bind to NRG1 receptor on microglia and signal
via a type of EGF receptor, ErbB2/3, leading to proliferation
and activation of microglia (Calvo et al., 2010). Signaling
deficits in NRG1/ErbB3 has been identified in schizophrenia
patients (Corfas et al., 2004). Single nucleotide polymorphisms
in NRG1; have been associated with psychosis and enlarged
lateral ventricles and white matter disruption in schizophrenia
(Bousman et al., 2018). Another important mediator between
microglia and neuron communication is BDNF, where microglia
is one of the central source of BDNF (Ferrini and De Koninck,
2013). Alterations in this gene have been pointed out as a
responsible protein for the etiology of schizophrenia (Zhang
et al., 2008). Moreover, a single polymorphism (Val66Met) in the
BDNF gene has been related to the age of onset of this disorder
and the manifestations that persist after durable antipsychotic
treatment (Numata et al., 2006).

BIPOLAR DISORDER

Bipolar disorder is a brain disorder that provokes intense
emotion, changes in sleep patterns and activity levels and
uncommon behaviors that may go along with mood episodes
including symptoms of both manic and depression (Belmaker,
2004). This disorder affects approximately 1% of the population
(Newman et al., 2002). The etiology of this psychiatric disorder
is still unknown; however, as schizophrenia, the interaction
between genes and environment have been related to the
pathogenesis of BD (Belmaker, 2004). BD patients showed brain
white matter abnormalities (Ganzola and Duchesne, 2017), as
well as a decrease in hippocampal (Cao et al., 2016), corpus
callosum (Lavagnino et al., 2015), and frontal cortical volumes,
specifically in patients with manic (Abé et al., 2015).

Neuroinflammation has been suggested as a possible
mechanism involved in mood disorders, such as BD (Perugi
et al., 2015; Réus et al., 2015), and alterations in glial markers
have been found in postmortem frontal cortex in BD subjects
(Rao et al., 2010). Moreover, using PET imaging studies with
the microglial tracer ([(11)C]-(R)-PK11195), Haarman et al.
(2014) showed an intensification of neuroinflammation in the
hippocampus of BD patients. After an insult, microglia can
produce proinflammatory cytokines in response to activation
via damage-associated molecular patterns (DAMPs) (Heneka
et al., 2014). Indeed, numerous meta-analysis in patients with BD
showed a significantly increase in peripheral cytokines, such as
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IL-6 or TNF-α (Goldsmith et al., 2016). Also, serum analysis of
BD patients during acute manic/depressive episodes have shown
an increased in DAMPs levels (Stertz et al., 2015).

As we have already mentioned, due to their participation in
neuroinflammation and remodeling of synapses, microglial cells
may contribute in the development of neuropsychiatric disorders,
such as BD. Actually, postmortem studies showed a decreased
in glial cells in the prefrontal cortex, especially in patients with
familial history of mood disorders (Ongur et al., 1998). In
particular, it has been suggested that the microglial function is
altered in BD patients (Réus et al., 2015). The communication
between microglial cells in the brain is mediated by purinergic
signaling that includes the P2X purinergic receptor 7 for ATP
(P2RX7) (for review, see Fields and Burnstock, 2006). In fact,
a single nucleotide polymorphism in the gene that encodes for
P2RX7 receptor has been associated with a highest susceptibility
for BD pathology (Barden et al., 2006). Likewise, the role of
fraktalkines mediated neuron–microglia interaction has been
reported in BD (for review, see Pinto et al., 2018). Actually,
CX3CR1 expression has been found reduced in monocytes of BD
patients (Padmos et al., 2008).

DEPRESSION

Depression is a neuropsychiatric disorder characterized by
psychophysiological alterations in affective symptoms (sadness,
irritability, low mood, desperation, apathy, anhedonia) that
decrease of interest in all daily activities and events (Belmaker
and Agam, 2008). According to the World Health Organization,
depression affects more than 300 million people worldwide.
Conventionally, depressive symptoms have been attributed to
an imbalance in the hypothalamic-pituitary-adrenal axis (Sousa
et al., 2008) as well as a deregulation in the neuromodulation of
neurotransmitters, specially by serotonin (Krishnan and Nestler,
2008). Brain abnormalities have also been found in depressed
patients. Thus, postmortem brain studies showed reduced lobar
volumes accompanied by a decreased number of synaptic
contacts (Lampe et al., 2003; Kang et al., 2012). Moreover, it has
been described a loss and a decrease in the size of GABAergic
neurons, in occipital, prefrontal and limbic areas (Cotter et al.,
2002; Rajkowska et al., 2007; Maciag et al., 2010).

Beyond the classical impairments in the HPA and/or in
the neuromodulation by neurotransmitters, depression is also
associated with alterations of microglia activity and inflammation
(Yirmiya et al., 2015). Rodent models of depression showed
significant variations in microglial function and morphology,
specifically in brain areas sensitive to chronic stress leading
depressive-like behavior, such as hippocampus, prefrontal cortex,
amygdala and nucleus accumbens (Tynan et al., 2010; Kreisel
et al., 2014). In depressive patients, PET imaging studies revealed
a higher level of neuroinflammation in prefrontal cortex, anterior
cingulate cortex and insula (Setiawan et al., 2015). Likewise, the
communication between microglial cells also may participate
in mood disorders. To note, in rodent models, excessive P2X7
receptor activation enhance depressive-like behavior (for review,
see Stokes et al., 2015) and in humans, a single nucleotide

polymorphism in this gene is associated with the develop of major
depressive disorder (Lucae et al., 2006). Besides the alterations
in the morphology and function, failures in the microglia–
neuron communication may be involved in depression. Some
authors showed that the manipulation of this interaction in the
CX3CR1 pathway alters the stress reaction and depressive-like
behavior (Corona et al., 2010; Milior et al., 2016). Furthermore,
the CX3CR1-deficient mouse model showed resistance to stress-
induced depressive-like behavior and changes in microglia
morphology, suggesting that the hyper-ramification in microglia
is controlled by neuron–microglia interaction (Hellwig et al.,
2016). Another important mediator between microglia and
neurons is BDNF, which has also been linked to depression
(Castren, 2014; Kishi et al., 2017). Thus, in a rat model of chronic
stress-induced depression, the infusion of this neurotrophin
partially reverse the depressive-like behavior (Ye et al., 2011).

CONCLUSION

The dynamics of microglia–neuron communication in the
healthy brain has attracted great attention in the field
of neurobiology/neuroimmunology during the past decades.
The bidirectional communication between the two cell-types
involves several immunomodulatory factors and signaling
pathways including purinergic, neurotransmitter, chemokine,
and complement signaling. Many observations indicate that
microglia modulates neuronal activity and prune synaptic
elements such as dendritic spines in the healthy brain and
during neural development. In return, neurons contribute
to immune modulation through secreted and membrane
associated molecules control microglial phagocytosis, motility
and activation. Elucidating the functional significance of the
bidirectional microglial–neuronal communication in the healthy
brain is important in comprehending how the defects in
physiological microglia function could contribute to or even
trigger diseases. In brain injuries such as TBI and brain ischemia,
microglia–neuron communication is very likely important in
both the acute phase, in terms of altered neuroinflammation and
cell death, as well as in the chronic phase including the rewiring
of neuronal circuits. In neurodegenerative and neuropsychiatric
disorders, such as AD, PD, BD depression and schizophrenia, the
chronic activation of microglia is likely affecting the pathogenesis
and aberrant neuronal signaling. Thus, a deeper understanding of
microglia–neuron communication would be important in future
therapies for diseases of the brain.
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