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Abstract: Tissues differentially secrete multiple colony stimulating factors under conditions of
homeostasis and inflammation, orientating recruited circulating monocytes to differentiate to
macrophage with differing functional phenotypes. Here, we investigated ATP-evoked intracellular
Ca2+ responses in human macrophage differentiated with macrophage colony-stimulating factor
(M-CSF). Extracellular ATP evoked (EC50 13.3 ± 1.4 µM) robust biphasic intracellular Ca2+ responses
that showed a dependency on both metabotropic (P2Y) and ionotropic (P2X) receptors. qRT-PCR
and immunocytochemistry revealed the expression of P2Y1, P2Y2, P2Y6, P2Y11, P2Y13, P2X1, P2X4,
P2X5, and P2X7. Pharmacological analysis revealed contribution of only P2X4 and P2Y11 to the
Ca2+ response evoked by maximal ATP concentrations (100 µM). This study reveals the contribution
of P2X4 and P2Y11 receptor activation to ATP-evoked intracellular Ca2+ responses, and makes
comparison with macrophage differentiated using granulocyte colony-stimulating factor (GM-CSF).
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1. Introduction

The generation of monocyte-derived macrophage can be achieved by exposure to
colony-stimulating factors (CSFs). CSF are secreted glycoproteins which can recognize and bind
to receptors expressed on the surface of haemopoietic stem cells and stimulate proliferation and
differentiation. CSFs are classically characterised in three types, as follows: CSF1 – macrophage
colony-stimulating factor (M-CSF); CSF2 – granulocyte macrophage colony-stimulating factor
(GM-CSF); and CSF3 – granulocyte colony-stimulating factor (G-CSF). While M-CSF is expressed
in abundance by many tissues during homeostasis [1,2], GM-CSF is found at very low basal levels
but significantly elevated in response to inflammation [3]. M-CSF and GM-CSF activate different
receptors, but both are capable of promoting macrophage survival, proliferation, differentiation,
and activation [4,5]. M-CSF orientated human blood monocytes are widely used to generate
monocyte-derived macrophage and model tissue macrophage. Macrophage differentiated using
M-CSF are often referred to as M2-macrophage (alternatively activated) with an anti-inflammatory
cytokine profile [6]. M2-macrophage can also be induced by pathogens, interleukin (IL)-4, IL-10, IL-13,
and transforming growth factor (TGF-β) [7,8]. M2-macrophage were first described by Akagawa et al. as
cells resembling peritoneal macrophage [9]. Conversely, macrophage differentiated using GM-CSF have
a pro-inflammatory cytokine profile, referred to as M1-macrophage (classically activated), and resemble
tissue macrophage in lung alveoli [9]. M1-macrophage can also be induced by IL-1β, TNF, IL-12,
IL-18, and IL-23 [10]. Hence, circulating monocytes that extravasate into tissues expressing different
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CSFs can differentiate into macrophage with differing properties. The functional differences between
these two types of macrophage in human tissues remain unclear though M1-polarised macrophage
are generally associated with inflammation and M2-polarised are associated with anti-inflammatory
effects. Reversibility between these polarised states has been observed [11].

In leukocytes, adenosine 5′-triphosphate (ATP) is a danger-associated molecular pattern (DAMP),
released by damaged and inflamed tissues. In addition, ATP is physiologically released by healthy cells
in response to stimulation, including mechanical distortion, hypoxia, and others [12]. The biological
effects of ATP are mediated by activation of metabotropic (P2Y) and ionotropic (P2X) purinergic
receptors. Purinergic receptors have received much attention as a route to the pharmacological
manipulation of macrophage function in inflammation [13]. Despite this, the functional repertoire
of purinergic receptors in human macrophage orientated by differing CSFs remains elusive. This
study focuses on the role of purinergic receptors in ATP-evoked intracellular Ca2+ responses in M-CSF
differentiated human monocyte-derived macrophage.

2. Results

2.1. ATP Evokes Intracellular Ca2+ Responses in M-CSF Differentiated Macrophage

Human macrophage produced by M-CSF differentiation of monocytes displayed phenotypically
elongated characteristics and a highly vacuolated appearance [14] (Figure 1A), distinct from those
differentiated with GM-CSF [15]. The appearance of this phenotype was further confirmed by forward
and side scatter plot analysis via flow cytometer (Figure 1B). Flow cytometry analysis of anti-CD14
immunoreactivity revealed that approximately 97% of M-CSF differentiated cells were CD14 positive
(Figure 1C), which is significantly higher than GM-CSF differentiated human macrophage [15]. ATP
evoked an intracellular Ca2+ response that increased in magnitude with ATP concentration (Figure 1D).
Responses at 10 and 100 µM ATP displayed a rapid rising phase and return to baseline. The size of
Ca2+ response (area under the curve) at maximal ATP concentrations were significantly larger at those
observed previously for GM-CSF differentiated macrophage ([15]; Figure 1E).
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Figure 1. ATP evokes intracellular Ca2+ responses in M-CSF differentiated human macrophage.
(A) Representative image showing macrophage differentiated from monocytes by M-CSF treatment
(10 ng/mL, 6 days). Scale bar is 10 µM. (B) Flow cytometry forward and side scatter analysis. (C) Flow
cytometry analysis of cell surface anti-CD14 immunoreactivity. Green channel for cells stained with
anti-CD14 and red channel for antibody isotype control. (D) Averaged (3 donors) intracellular Ca2+

responses evoked by ATP at different concentrations. (E) Comparison of the total Ca2+ response evoked
by 100 µM ATP in GM-CSF (10 ng/mL, 6 days) versus M-CSF differentiated macrophage (3 donors
each). ** p < 0.01. All data is mean ± SEM; hypothesis testing by t-test.
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ATP evoked Ca2+ responses with an EC50 value of 13.3 ± 1.4 µM (N = 3 donors) (Figure 2A).
ATP was still able to elicit significant Ca2+ responses in the absence of extracellular Ca2+ (Figure 2A)
and with a similar apparent potency (EC50 7.8 ± 2.9 µM; N = 3 donors). Furthermore, phospholipase
C inhibition with U73122 significantly reduced ATP-evoked Ca2+ responses (Figure 2B), though
approximately 25% of the response was resistant to U73122 inhibition (Figure 2C). Taken together these
data suggest that ATP-evoked Ca2+ responses in M-CSF differentiated human macrophage result from
the combined activation of metabotropic (P2Y) and ionotropic (P2X) receptors for extracellular ATP.
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Figure 2. ATP evokes metabotropic and ionotropic Ca2+ responses in M-CSF differentiated human
macrophage. (A) Averaged (N = 3) ATP concentration response performed in the presence (1.2 mM)
and absence (no Ca2+, 2 mM EGTA) extracellular Ca2+. (B) Averaged (N = 3) intracellular peak Ca2+

responses evoked by 100 µM ATP in the absence and presence of U73122 (10 µM). Mean peak responses
are given in (C) *** p < 0.01. All data is mean ± SEM; hypothesis testing by t-test.

2.2. M-CSF Differentiated Macrophage Express Multiple P2Y and P2X Receptor Subtypes

To investigate the molecular basis for ATP-evoked Ca2+ responses, we first determined the
expression of P2X and P2Y receptor subtype mRNA transcripts by quantitative RT-PCR. For P2Y
receptors we explored both ATP and ADP activated receptor subtypes, as ADP can be liberated by the
cell surface catabolism of ATP in macrophage [16]. Of the transcripts investigated for P2X receptors,
P2X1, P2X4, P2X5, and P2X6 were expressed by M-CSF differentiated macrophage, and for P2Y
receptors, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and P2Y13 were detected. Those which were not detected in
macrophage were detectable in cDNA isolated from human brain (data not shown). Further RT-PCR
analysis of P2X5 revealed that all donors expressed the exon 10-less variant, and therefore express a
non-functional P2X5 homomeric receptor [17] (data not shown). A quantitative comparison of mRNA
expressed by GM-CSF versus M-CSF differentiated macrophage revealed comparable expression of
P2X subtypes, and P2Y2, P2Y4, and P2Y13 receptors (Figure 3). P2Y1 was expressed in significantly
less abundance by the M-CSF differentiated macrophage compared to the GM-CSF differentiated
macrophage, though P2Y6 and P2Y11 were expressed in significantly greater abundance (Figure 3).
The expression of P2Y and P2X receptor subtypes detected at the mRNA level were investigated further
at the protein level by fluorescence immunocytochemistry (Figure 4). In these experiments, P2X1, P2X4,
P2X5, P2X7, P2Y1, P2Y2, P2Y6, P2Y11, and P2Y13 showed clear expression in macrophage (Figure 4).
P2Y4 was not investigated further due to the lack of a commercially available validated antibody.
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We next investigated the role of those receptor subtypes identified by immunocytochemistry 
using selective receptor antagonists and previously validated concentrations [15,18–21]. Antagonism 
of P2Y1, P2Y6, or P2Y13 had no significant effect of the ATP-evoked Ca2+ response (Figure 5). 
Antagonism of P2Y2 caused a minor but significant increase in the peak of the Ca2+ response, and 

Figure 3. Comparative expression of P2Y and P2X receptor mRNA transcripts in GM-CSF versus M-CSF
differentiated human macrophage. Quantitative RT-PCR analysis of mRNA transcripts (N = 5 donors).
Transcript abundance is normalized to a RPLP0 housekeeper gene as an internal control, and each
transcript normalized to expression in GM-CSF differentiated macrophage for comparison of fold-change
differences in mRNA abundance. * p < 0.05; ** p < 0.01. All data is mean ± SEM; hypothesis testing
by t-test.
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Figure 4. Immunocytochemistry of P2Y and P2X receptor expression in M-CSF differentiated human
macrophage. Dual fluorescence images showing staining arising from the use of primary antibodies
against receptor subtypes in green and nucleus counterstain in blue (DAPI). Control is representative
of experiments performed in the absence of primary antibodies. Images representative of experiments
performed on macrophage isolated from three independent donors. Scale bar is 10 µm.

2.3. P2Y11 and P2X4 Mediate ATP-Evoked Ca2+ Responses

We next investigated the role of those receptor subtypes identified by immunocytochemistry using
selective receptor antagonists and previously validated concentrations [15,18–21]. Antagonism of P2Y1,
P2Y6, or P2Y13 had no significant effect of the ATP-evoked Ca2+ response (Figure 5). Antagonism of
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P2Y2 caused a minor but significant increase in the peak of the Ca2+ response, and P2Y11 receptor
antagonism significantly inhibited the response (35.5 ± 2.6%, N = 3) (Figure 5). This data suggests that
the Ca2+ response to ATP is partially mediated via P2Y11 activation. We investigated P2X1, P2X4, and
P2X7 as potential candidates to mediate the ionotropic response to ATP. Ivermectin, a positive allosteric
modulator of the P2X4 receptor, significantly increased (127.1 ± 5.0%, N = 7) the ATP-evoked Ca2+

response (Figure 6A). Conversely, PSB-12062 and 5-BDBD, two structurally unrelated P2X4 receptor
antagonists, significantly inhibited the ATP-evoked Ca2+ response (Figure 6B,C). PSB-12062 inhibited
the response by 10.5 ± 3.2% (N = 7) compared to 31.8 ± 9% (N = 4) for 5-BDBD. Both PSB-12062 and
5-BDBD inhibited the ivermectin potentiated response by 11.5 ± 4.5% (N = 6) and 16.3 ± 3.5% (N = 4),
respectively. Interestingly, P2X1 antagonism with Ro0437626 caused a minor but significant increase in
the response (Figure 7A). In keeping with our previous work on human primary macrophage [15], we
observe that the P2X7 receptor antagonism had no effect on the maximal ATP-evoked Ca2+ response.
Our interpretation of the ATP-evoked Ca2+ response pharmacology in human M-CSF differentiated
macrophage suggests that P2Y11 and P2X4 contribute to receptor activation.
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Figure 5. Effect of antagonizing P2Y receptor subtypes on ATP-evoked Ca2+ responses in M-CSF
differentiated macrophage. For all panels (A–E), average Ca2+ response traces (N = 3) are shown
to the left, with and without antagonist, and quantitated peak Ca2+ responses are shown in the bar
chart to the right. Effects of receptor antagonism are shown for (A) P2Y1 (MRS2500, 1 µM), (B) P2Y2
(ARC-118925XX, 10 µM), (C) P2Y6 (MRS2578, 10 µM), (D) P2Y11 (NF340, 10 µM), and (E) P2Y13
(MRS2211, 10 µM). * p < 0.05; *** p < 0.01. All data is mean ± SEM; hypothesis testing by t-test.
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magnitude of the ATP-evoked Ca2+response was due to activation of metabotropic P2Y receptors, 
revealed by U73122 sensitivity. Though not tested here, coupling of Ca2+ mobilisation to Orai1/STIM 
proteins are likely to be involved as well, as they have been shown to be important in GPCR-mediated 
Ca2+ signals in macrophage and microglia [23,24]. P2Y11 is a common contributor in ATP evoked 
responses in both M-CSF and GM-CSF differentiated macrophage, but P2Y13, despite contributing 
approximately 50% of the ATP evoked Ca2+ response in GM-CSF differentiated macrophage [15], does 
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Figure 6. Contribution of P2X4 to ATP-evoked Ca2+ responses in M-CSF differentiated macrophage.
For all panels (A–C), average Ca2+ response traces (N = 3) are shown to the left, with and without
modulator/antagonist, and quantitated peak Ca2+ responses are shown in the bar chart to the right.
Effect of (A) P2X4 positive allosteric modulator ivermectin (3 µM) and antagonists (B) PSB-12062
(10 µM) and (C) 5-BDBD (10 µM). * p < 0.05; ** p < 0.01. All data is mean ± SEM; hypothesis testing by
t-test.
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maximal ATP concentrations. For panels A and B, average Ca2+ response traces (N = 3) are shown to
the left, with and without modulator/antagonist, and quantitated peak Ca2+ responses are shown in
the bar chart to the right. Effect of (A) P2X1 receptor antagonism (Ro0437626, 30 µM) and (B) P2X7
receptor antagonism (A438079, 5 µM). ** p < 0.01. All data is mean ± SEM; hypothesis testing by t-test.

3. Discussion

Monocyte-derived macrophage differentiated using GM-CSF or M-CSF serve as a well-established
tool to study primary tissue-specific macrophages [22]. In this study we observed that M-CSF and
GM-CSF orientated human macrophage exhibit different purinergic responses and there are also
differences in the molecular basis for this response. In M-CSF differentiated macrophage, ATP evoked
a monophasic intracellular Ca2+ response consisting of a rapid peak and return to baseline. ATP
evokes intracellular Ca2+ responses in M-CSF and GM-CSF differentiated macrophage [15] with similar
potency (11–13 µM), though the net movement of Ca2+ in M-CSF differentiated macrophage was
approximately 3-fold greater in M-CSF differentiated macrophage. As with GM-CSF macrophage [15]
and model PMA-differentiated THP-1 cell macrophage [20] the majority of the magnitude of the
ATP-evoked Ca2+response was due to activation of metabotropic P2Y receptors, revealed by U73122
sensitivity. Though not tested here, coupling of Ca2+ mobilisation to Orai1/STIM proteins are likely
to be involved as well, as they have been shown to be important in GPCR-mediated Ca2+ signals in
macrophage and microglia [23,24]. P2Y11 is a common contributor in ATP evoked responses in both
M-CSF and GM-CSF differentiated macrophage, but P2Y13, despite contributing approximately 50% of
the ATP evoked Ca2+ response in GM-CSF differentiated macrophage [15], does not contribute to the
response in M-CSF macrophage. This is despite common expression in both macrophage types and
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the same mRNA abundance. The data suggest the functional contribution of P2Y13 can be used to
discriminate between macrophage types. Experiments in human THP-1 monocytes suggest P2Y11 may
be important in autocrine macrophage activation [25], however the cellular roles of P2Y13 are more
elusive [26]. ADP is a full agonist at P2Y13 whilst ATP itself is a weak partial agonist [27]. Differences
in the contribution of P2Y13 to ATP evoked responses in GM-CSF versus M-CSF could therefore be
due to differences in the cell surface metabolism of ATP and the metabolic liberation of the full agonist
ADP, though this requires further investigation.

A comparison of M-CSF differentiated macrophage in this study and GM-CSF differentiated
macrophage in our previous work [15] suggests the ionotropic component of the ATP-evoked
intracellular Ca2+ responses is greater in M-CSF differentiated macrophage than that observed
in GM-CSF differentiated macrophage, based upon U73122 sensitivity. These findings suggest
that monocytes that differentiate to macrophage in a M-CSF containing environment are equally
sensitive to ATP as GM-CSF differentiated macrophage, but respond with a greater intracellular
Ca2+ response, and P2X receptors contribute more to this response. In keeping with our previous
observations in human primary macrophage [15], P2X7 does not contribute to the Ca2+ response at
maximal ATP contributions. Others have observed P2X7 receptor contribution with the agonist BzATP,
or at supramaximal ATP concentrations in the presence of unphysiologically low divalent cation
concentrations [28–30]. A functional role of P2X1 is not supported here, and corroborates studies in
human alveolar macrophage [28].

Monocyte-derived macrophages differentiated with colony stimulating factors GM-CSF or M-CSF
are good in vitro models for the study of primary human macrophage [4]. Though the literature has
become more polarized of late, GM-CSF differentiation and M-CSF differentiation are often associated
with pro-inflammation and anti-inflammation, respectively, though this is context dependent. To
this end, the macrophages used in this study would best model an anti-inflammatory or homeostatic
scenario. The P2X4 receptor is of particular interest as its pharmacology has recently improved [31].
Based upon our pharmacological characterization, the contribution of P2X4 to the ATP-evoked
Ca2+ responses is greater in GM-CSF compared to M-CSF macrophage. In GM-CSF differentiated
macrophage, activation of the P2X4 receptor elicits secretion of the pro-inflammatory chemokine
CXCL5 [15]. P2X4 antagonism in both macrophage types will therefore attenuate ATP evoked Ca2+

signaling. The cellular roles of P2Y11 and P2X4 in M-CSF differentiated macrophage are unclear and
require further investigation.

In summary, our data reveal that human macrophage differentiated from monocytes exposed to
different colony stimulating factors both respond to ATP by generating intracellular Ca2+ responses,
though the molecular basis for this differs. In M-CSF differentiated macrophage, both P2X and P2Y
receptors contribute to the response with P2X4 and P2Y11 receptors playing a dominant role. This
study provides novel information regarding the molecular basis of ATP-evoked Ca2+ signals in human
primary macrophage differentiated by M-CSF.

4. Materials and Methods

4.1. Peripheral Blood Mononuclear Cells (PBMC) Isolation

Human whole blood was obtained from healthy volunteers through the Faculty of Medicine and
Health Sciences Research Ethics Committee (reference 2012/2013-03HT; approved 2012), University of
East Anglia. Whole blood was centrifuged at 1000× g for 10 min to isolate plasma. Whole blood was
diluted with RPMI medium in a 1:1 ratio and layered onto a Histopaque-1077 (Sigma Aldrich, St Louis,
Missouri, USA) density gradient before centrifuging at 1000× g for 25 min. Mononuclear cells were
collected by gently transferring the opaque interface into a fresh centrifuge tube. Cells were washed in
RPMI and sedimented at 300× g for 10 min. PBMCs were washed in PBS followed by resuspension in
RPMI (Sigma Aldrich, St Louis, Missouri, USA).
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4.2. Generation of Monocyte-Derived Macrophage

PBMCs were seeded in RPMI at a density of 1.5 × 106 cells/cm2 and incubated at 37 ◦C in
a humidified 5% CO2 incubator for 2 h. Following incubation, adhered monocytes were washed
thoroughly with PBS. Cells were cultured in RPMI-1640 with L-glutamine, penicillin-streptomycin,
and 2.5% (v/v) heat-inactivated autologous serum. Monocytes were differentiated to macrophage by
addition of 10 ng/mL recombinant human macrophage colony stimulating factor (M-CSF) (Peprotech,
London, UK) or recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF)
(Peprotech) for 6 days.

4.3. Quantitative RT-PCR

mRNA quantification was performed using methodology and Taqman primer sets for P2 receptor
subtypes, as previously described [15].

4.4. Immunocytochemistry

Cells were seeded on glass coverslips and fixed with 4% (w/v) paraformaldehyde for 15 min.
Cells were permeabilised for 10 min with 0.25% (v/v) Triton X-100 followed by blocking with 1% (w/v)
bovine serum albumin. Cells were incubated overnight with rabbit polyclonal primary antibodies
(see Reference [15] for details) at 4 ◦C, followed by a 1 h room temperature incubation with a goat
anti-rabbit Alexa Fluor 488 conjugated secondary (Abcam, Cambridge, UK). Cells were mounted
with Vectashield containing 4’,6-diamino-2-phenylindole (DAPI) counterstain (Vectorlabs, Burlingame,
California, USA). Images were taken using a laser-scanning Zeiss LSM510 META confocal microscope.

4.5. Flow Cytometry

Cells were incubated with Fc block (BD Bioscience, San Jose, California) for 10 min at room
temperature prior to staining. Cells were incubated with either a mouse monoclonal anti-CD14
antibody conjugated to phycoerythrin (PE), or a mouse PE-conjugated isotype control (Biolegend).
Flow cytometry was performed using a Cytoflex Instrument (Beckman Coulter, Brea, California, USA).

4.6. Intracellular Ca2+ Measurement

Assays were performed in salt-buffered saline (SBS) containing the following (mM): NaCl, 130;
KCl, 5; MgCl2, 1.2; CaCl2, 1.5; D-glucose, 8; HEPES, 10; and pH 7.4. For experiments performed in the
absence of extracellular Ca2+, CaCl2 was omitted from SBS and replaced with 2 mM EGTA. Macrophage
resuspended in SBS were loaded with calcium indicator using 2 µM Fura-2 AM for 1 h at 37 ◦C. After
washing in SBS, 20,000 macrophage per well were seeded in a 96-well plate and allowed to adhere for
1 h at 37 ◦C. Intracellular Ca2+ measurements were made using a Flexstation III instrument (Molecular
Devices). Fluorescence emission at 510 nm was collected every 2 s, and fluorescence using excitation
wavelengths of 340 and 380 nm were used to quantify changes in intracellular Ca2+, represented as
F-ration following subtraction of baseline.

4.7. Drugs and Application

ATP, PSB-12062, and 5-BDBD were procured from Sigma Aldrich. U73122, MRS2500, ARC-118925,
MRS2578, NF340, A438079, Ro0437626, MRS2211, and ivermectin were procured from Tocris. Receptor
antagonists, inhibitors, and ivermectin were applied to cells 30 min before ATP challenge.

4.8. Data and Statistical Analysis

All data were analysed using Origin Pro 9.1 software (Origin Lab Corporation, USA). Data is
represented as mean ± standard error of the mean (SEM). N is defined as the number of biological
replicates (number of donors). Data was tested for normality using a Shapiro–Wilk test, followed by
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hypothesis testing by t-test. Concentration-response relationships were fitted using a Hill Equation,
as follows:

Y = Start + (End− Start)
Xn

kn + Xn ,

where k = the Michaelis constant and n = the number of cooperative sites.
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