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Mining mutation contexts across the cancer
genome to map tumor site of origin
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The vast preponderance of somatic mutations in a typical cancer are either extremely rare or
have never been previously recorded in available databases that track somatic mutations.
These constitute a hidden genome that contrasts the relatively small number of mutations
that occur frequently, the properties of which have been studied in depth. Here we
demonstrate that this hidden genome contains much more accurate information than com-
mon mutations for the purpose of identifying the site of origin of primary cancers in settings
where this is unknown. We accomplish this using a projection-based statistical method that
achieves a highly effective signal condensation, by leveraging DNA sequence and epigenetic
contexts using a set of meta-features that embody the mutation contexts of rare variants

throughout the genome.
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he last decade has witnessed the explosion of information

available from large-scale tumor sequencing projects,

including the Cancer Genome Atlas (TCGA) project that
cataloged somatic variants in over 10,000 tumor samples using
whole exome sequencing!, the more recent release of the Inter-
national Cancer Genome Consortium Pan-Cancer Analysis of
Whole Genomes (ICGC-PCAWG) dataset of whole genome
sequencing of over 2000 tumors?, and various targeted cancer
gene sequencing panels in clinical applications such as the MSK-
IMPACT effort at our own institution3. These large information
resources offer the potential to develop statistical tools for pre-
dicting the primary site of origin of cancers using mutational
profiles detected from tumor DNA, an emerging field with great
practical utility for clinical diagnostics and early cancer
detection®-8. For example, cancers of unknown primary typically
occur at metastatic stages where the tumors have already
metastasized and spread to other organ sites: e.g., in the diagnosis
of carcinoma of unknown primary there are lesions present at
multiple organ sites and the primary site is unknown. In circu-
lating tumor DNA, fragments of tumor DNA are identified in
blood and can potentially facilitate early detection of cancer.

It has been observed historically that somatic alterations in major
oncogenes and tumor suppressor genes occur in a highly lineage-
dependent manner (e.g., KRAS mutations in cancers of the pan-
creas, colon, and lung)®. More recently, Haigis et al.l? have argued
that such tissue-specificity should be in fact the rule, not the
exception, because somatic alterations in a tumor must function
within the framework of the transcriptional network and epigenetic
states established by its developmental lineage in the corresponding
tissue of origin. To that end, epigenomic features such as chromatin
accessibility and histone modification patterns have been found as
major determinants of the cancer mutational landscape that is
specific to different cells of origin!l. Nevertheless, existing data on
epigenome organization only partially account for the mutational
variation in certain cancer types. The mutational heterogeneity
across the cancer genome has not been fully explored.

A major challenge in analyzing tumor mutation profiles lies in
the fact that the distribution of mutation frequencies of individual
variants is extremely long-tailed. That is, the vast preponderance
of somatic mutations occur very rarely. This leads to very chal-
lenging problems for modeling due to the ultra-high dimension
and ultra-sparse data space. Indeed Chakraborty et al.!? reported
that the preponderance of mutations in existing large-scale
sequencing datasets are in fact singletons, observed only once in
the cohort, posing analytical challenges similar to that encoun-
tered in estimating rare species in ecology and word frequency in
computational linguistics!>!4. One can view the current muta-
tional landscape as an iceberg. The small proportion of the ice-
berg above the water surface represents the hotspots and other
genetic loci where mutations have been observed to occur fre-
quently in known cancer genes (e.g., BRAF V600E). This study is
motivated by the belief that the vastly larger submerged portion
of the iceberg, representing rare mutations and those never pre-
viously observed, contains information of substantial clinical
relevance, but requires innovative statistical and computational
methods to extract the signals effectively.

In this study we propose and exemplify a rigorous statistical
approach that permits aggregating information from this hidden
genome of rare variants by leveraging their DNA sequence and
epigenetic contexts. We define a set of meta-features that employ
mutation contexts such as the topological position of a variant on
the chromosome, the single base substitution type in the trinu-
cleotide context, and epigenomic features such as chromatin
accessibility, and use these in a method that captures the infor-
mation in the hidden genome through multidimensional projec-
tions of these features allied with a hierarchical regression model.

Through iterative model fitting we formally assess the relative
importance of these meta-feature groups. Comparisons with
black box machine learning approaches used previously in the
literature®’-1> demonstrate competitive predictive performance of
our approach. The key advantage of our method however pertains
to its interpretation and predictor attribution: through carefully
constructed hierarchical layers cancer site-specific effects of indivi-
dual predictors (including each hidden genome variant and each
meta-feature category) are coherently quantified. These individual
effects aid identification of discriminative genomic signals, and thus
may potentially reveal novel biological insights. Such quantification
of granular predictor effects is virtually impossible in a black box
machine learning method. We apply our approach to the ICGC-
PCAWG whole-genome, TCGA whole-exome, and MSK-IMPACT
targeted cancer gene panel datasets. The three datasets provide a
natural “reduction” experiment, and a major contribution of our
study lies in the formal assessment of how the decreasing order of
genome coverage affects the accuracy of prediction of different
tissue sites. In particular, our results show that highly discriminative
diagnostic information exists in the noncoding regions of the
genome for ovarian and prostate cancer tumors, which can be fully
harnessed only in a whole genome-sequencing framework. Our
study focuses primarily on somatic point mutations. Accurate
detection of other types of genomic alterations in a patient sample,
e.g., copy number alterations (particularly, low-level chromosomal
gains and losses) require much higher tumor content than somatic
mutations. In scenarios where tumor content is extremely low,
which is encountered typically in a fraction of tumor samples as
well as in the plasma sequencing context, somatic point mutations
are typically the only reliable information that is available for
diagnostic purposes. We note however that the proposed meth-
odologies can be extended in a straightforward way to incorporate
information on other genomic alterations, if available.

Results

Method overview. We draw upon a context-based learning
approach!® in which the role of rare and unseen variants can be
“learned” through their local genome and epigenome context: a set
of quantifiable knowledge units obtained from the associated DNA
sequence and epigenome contexts which we refer to as meta-
features. These meta-features include various topological or func-
tional annotations of the genome and epigenome, such as single-
base substitution signatures in the trinucleotide context, regional
indices mapping the topological position on the chromosome, and
features of the epigenome including chromatin accessibility and
histone modification that we describe in more detail in the next
section. We propose a projected hidden genome approach that first
finds scalar projections of the meta-feature vectors along the
direction of the mutation profile. This represents a signal con-
densation process that maps the extremely sparse variant space
(dominated by singletons and rare variants) to a meta-feature space
organized by genome and epigenome context. These scalar pro-
jections, induced from a hierarchical Bayesian classification model
with normalized mutation profiles as predictors, constitute local
mutation densities attributable to the associated meta-features,
normalized by the square-root of the total mutation burden
encountered in the tumor. The underlying model describes the
effects of rare or previously unobserved variants through their
mutation contexts as captured by these meta-features. This permits
an effective condensation of information across all variants. Instead
of estimating the effects of the tens of millions of rare variants
separately, we now estimate them collectively through these meta-
features. As a result, the ultra-high dimensional variant space is
projected onto a much lower dimensional space aggregating
information from variants that share similar mutational contexts
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as embodied by the meta-features. These scalar projections
are then used as predictors in an efficient group-penalized!” mul-
tinomial logistic regression model for maximum marginal a pos-
teriori estimation within a Bayesian hierarchical classification
model!® (see Methods). The model also allows inclusion of addi-
tional individual parameters that capture the “residual effects” of a
handful of hotspot variants (e.g., BRAF V600E) that can possess
lineage-dependency not captured by the meso-scale genomic and
epigenomic meta-features. Use of a group-lasso penalty aids rig-
orous identification of consequential regression effects at individual
feature/predictor levels, e.g., individual meta features and individual
variants—if a specific feature is not discriminative of at least one
cancer site, its regression coefficients across all cancer sites are set to
zero and consequently the feature has no effect on predicting the
cancer site of a new tumor.

Description of data sources and meta-features. We use three
publicly available cancer sequencing data sets: the PCAWG whole
genome?, the TCGA whole exome!, and the MSK-IMPACT
targeted cancer gene panel’. We elected to focus on ten common
cancer sites that were available across all three data sets, per-
mitting a direct comparison between the different sequencing
platforms: breast, colorectal, esophageal, kidney, liver, lung, skin,
ovarian, pancreatic, and prostate (see Supplementary Tables 1-3
for a detailed note on the cancer histologies considered and the
corresponding sample sizes for these cancer sites). In the
PCAWG whole-genome dataset, a total of 36,325,180 variants
(with 35,285,233 being singletons, i.e., observed only once) were
detected by a consensus mutation calling approach in 1702
tumors belonging to these ten cancer sites: an average of
19,076 somatic mutations per tumor at the whole-genome level.
In the TCGA dataset, a total of 1,312,572 total variants (of which
1,246,857 are singletons) were detected in 4503 tumors from one
of these ten cancer sites: an average of 319 mutations per tumor
at the whole-exome level. In the MSK-IMPACT dataset, a total
of 25,454 variants (with 23,180 singletons) were detected using
a clinical bioinformatics pipeline in 5078 tumors belonging
to these ten cancer sites: an average of 6.7 mutations per tumor.
The three sequencing datasets provide a natural progression in
genome coverage from targeted panel to whole-exome to whole-
genome. In addition, we created two “simulated” data sets that
contain exactly the same cases as the PCAWG whole genome
dataset with the exception that the variants included are restricted
to the variants within the TCGA whole-exome and the MSK-
IMPACT targeted panel coverage, respectively. This represents a
simulated progression to control for differences due to factors
other than genome coverage such as difference in cancer subtype
composition and other clinical and demographic patient char-
acteristics. A total of 6 and 166 tumors out of the 1702 PCAWG
tumors that did not possess any variants within the TCGA whole-
exome and MSK-IMPACT targeted cancer panel coverage
respectively were removed from the corresponding simulated
datasets for further analysis. Site-specific sample sizes in the “full”
and “simulated” subsets of the PCAWG data are provided in
Supplementary Table 1.

We focus on the following five meta-features: (i) cancer gene:
limited to the 604 cancer genes collectively cataloged in in the
OncoKB list!® (584 genes) and MSK-IMPACT (414 genes). (ii)
SBS-96 category: the single-base substitution signatures in the
trinucleotide context to which the variant is associated. SBS-96
categories are distinct from derived mutation signature categories
of tumors. The SBS-96 categories are characteristics of individual
variants and are automatically determined given each single-
nucleotide alteration. In contrast, the derived mutation signature
category is a characteristic of a tumor determined by comparing

the relative mutation burdens in the tumor attributable to these
96 SBS categories, to weights precomputed in a reference
dataset?0:21. Note that so far these reference weights have been
derived only for whole genome and whole exome mutation
burdens and identifying derived mutation signatures using
mutations only detected in a targeted gene panel is difficult.
(iii) regional index—contiguous 1Mb regions along each
chromosome on which the variants are located; produces regional
densities of mutation burden, the normalized total numbers of
mutations detected on the underlying sequencing platform
located in each region as scalar projections. (iv) chromatin
accessibility: log-log DNase I hypersensitivity profile as a global
measure of chromatin accessibility per 1 Mb chromosome region.
(v) histone modification: log-log total reads from ChIP-seq assay
for histone marks including H3K36me3 and H3K4mel per 1 Mb
chromosome region. The epigenome data were obtained from the
ENCODE?2 and the Epigenome Roadmap Study?3. Each
epigenomic meta-feature listed in (iv) and (v) was precomputed
from these databases for each 1Mb chromosome region
separately for the ten cancer sites considered herein. These
collectively produce a vector of 30 scores (10 scores from the ten
cancer sites each for chromatin accessibility, H3K36me3 and
H3K4mel) through a scalar projection of the mutation profile for
each tumor. [See Methods for a detailed description on these
meta-features.] In addition to meta-features (i)-(v) we also
include an intercept meta-feature (vector of 1’s) that produces the
square-root of the total mutation burden in a tumor as a scalar
projection along the direction of the mutation profile vector.

The hidden genome reveals a near-perfect separation of tumor
sites. To visualize the amount of discriminative signal present in
the hidden genome, we constructed a three-dimensional
approximation of the meta-feature embedded genomes using a
principal component analysis followed by a t-distributed sto-
chastic neighbor embedding (tSNE)** to reduce meta-feature
scalar projection of mutational profile vectors into a three-
dimensional subspace. The resulting embeddings are displayed as
scatterplots in Fig. 1 (an interactive html version is included in
the GitHub repository containing custom software developed in
this study?®) with points color-coded according to their cancer
sites. These figures show that the projections in the hidden gen-
ome approach provides a near perfect separation of tissue types at
the whole-genome level. Interestingly, the pancreatic cancer
samples (orange dots) formed separate clusters, with neu-
roendocrine histology distinctly different from adenocarcinoma
histology. A recent whole-genome sequencing study of pancreas
neuroendocrine tumors suggested that sporadic neuroendocrine
tumors contain an elevated proportion of germline mutations in
the DNA repair genes MUTYH, CHEK2, and BRCA2%. In
addition, a small subset of breast cancer samples (black dots),
primarily of the triple negative subtype, separated out and co-
clustered with a subset of ovarian tumor samples (azure blue
dots). It is well known that triple negative breast cancers and high
grade serous ovarian cancers are typically characterized by
BRCAI mutations. Taken together, these observations suggest
that germline genetics may further underlie the somatic muta-
tional heterogeneity in addition to tissue type.

The degree of separation of cancer types decreases as we
restrict the data to whole-exome coverage (Fig. 1b) and more so
when restricted to the targeted panel coverage (Fig. 1c). The
whole exome data led to a moderate separation of tissue types and
the separation at the targeted panel level is relatively poor. Such
information attrition suggests that the discriminative information
for tissue of origin in somatic mutation data is largely embedded
in the hidden genome beyond frequently mutated cancer genes.

| (2021)12:3051 | https://doi.org/10.1038/s41467-021-23094-z | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

S0

20

€ uoisuawIa
°

Dimension 2
Dimension 1

BREAST
COLORECTAL
ESOPHAGEAL
KIDNEY
LIVER

LUNG
OVARIAN
PANCREATIC
PROSTATE
SKIN

¢ uoisuawId
°

20

s
2 &
A 0 £
a

5 N
"Mensiop, 2

8
v
2

Fig. 1 Scatter plots showing three-dimensional embeddings of meta-feature projections of ultra-high dimensional and sparse mutational profile
vectors. Each point in each scatter represents a single PCAWG tumor and is color coded according to its cancer site. For each tumor, meta-feature scalar
projections along the directions of the whole genome mutational profile (a), simulated whole exome mutational profile (b), and simulated targeted
sequencing mutational profile (¢) are first obtained; 30 component principal component analysis followed by three-dimensional t-distributed stochastic
neighbor embedding (t-SNE) are subsequently performed on the resulting scalar projections to obtain an approximate three-dimensional representation of
each mutational profile. An interactive html version of the Figure is included in the GitHub repository containing custom software developed in this study?2>.

These visualizations provide intuition for some of the more
formal analytical results presented in the following sections. The
impressive near disjoint clustering of these lower dimensional
embeddings, particularly in the whole genome sequencing case,
suggests that the proposed meta-feature based scalar-projections
permit efficient and effective accumulation of discriminative
signals in the ultra high-dimensional and extremely sparse
mutational profiles. Consequently, a classifier utilizing these
projections as predictors is expected to have a high prediction/
classification accuracy. These figures also illustrate how going
from targeted cancer gene panel sequencing to whole-exome
sequencing to whole-genome sequencing can substantially
improve the signal, and thereby bolster the discriminative ability
of the classifier. In the following sections we formally quantify
these observations.

A unified framework for integrating information across
diverse sources. To formally assess the predictive accuracy of
the projected hidden genome classifier we performed ten
replications of fivefold cross validation experiments separately
on each of the three datasets and the two PCAWG whole-
genome “simulated” datasets. The classification performance is
displayed initially using precision-recall curves in Fig. 2. Here
the performance of the full hidden genome model is contrasted
with models that use subsets of the (meta-)features. These
include a classifier based solely on individual variants (Base-
line); a gene-based classifier that uses similar information to the
method proposed by Soh et al.® (Gene); a regional mutation
density classifier (RMD) and another classifier that additionally
uses information on mutational signatures (RMD + SBS-96)
both of which use analogous information to the methods stu-
died by Jiao et al;” and the proposed hidden genome model
integrating all these features (P. Hid. Genome). Figure 2 and
Supplementary Figs. 1-5 display the overall and cancer-site
specific precision recall curves respectively for these classifiers
across all five sequencing platforms. These figures demonstrate
the ability of the projected hidden genome classifier in con-
densing information from diverse sources: the key advantage of
the proposed approach is that it provides a unifying strategy
allowing integration of all these factors through appropriate
meta-feature transformations within a multinomial logistic
modeling framework, which in turn permits high predictive
accuracies across all DNA sequencing platforms.

Quantifying information in the hidden genome. The area under
the precision-recall curve (AUC) provides a robust?” quantitative
summary of classification performance, with a larger area indi-
cating better classification (an area of 1 indicates perfect accu-
racy). Unlike a receiver-operator characteristic (ROC) curve, a
precision-recall curve adjusts for class size imbalances which
regularly occur in (most) one-vs-rest comparisons obtained from
a multi-class classifier. The robustness is reflected in the baseline
(expected) precision-recall AUC for a null classifier which ran-
domly assigns positive and negative class labels to sample units?’.
Figure 3 shows the macro (AUCs averaged over all sites) and the
site-specific one-vs-rest precision-recall AUCs together with the
corresponding null baseline AUCs (displayed as darkened areas
on the bars). For each individual site-specific one-vs-rest com-
parison the null baseline is the relative sample size for the site?’

ie sample size for the site
*7* total sample size across all sites

the null baseline, obtained by averaging all individual site-specific
null baselines, is simply ——-—-I———— which is 1/10 in our
study.

Our results show that meta-features introduced into the model
succeed in extracting considerable amounts of new tissue specific
information buried in the hidden genome. This is especially
evident in the substantial increases in discriminatory accuracy
obtained by moving from cancer gene panel sequencing to whole
exome to whole genome data (Fig. 3a). The average one-vs-rest
precision-recall AUC associated with the projected hidden
genome classifier ranges from 0.59 for the cancer gene panel, to
0.75 for whole-exome and 0.90 for whole-genome. The increase is
particularly prominent in ovarian and prostate cancer tumors,
where the one-vs-rest AUCs range from 0.10 to 0.62 to 0.87, and
0.54 to 0.61 to 0.98, respectively. In this progression we are largely
adding information from rare variants in the hidden genome,
since the hotspots and known cancer genes are largely contained
in the cancer gene panel sequencing data. In the whole genome
dataset, the highest individual site specific AUCs are obtained in
prostate and skin cancer (0.98 each), while the lowest AUC is
observed in lung (0.65). The low AUC for lung in the PCAWG
datasets (both real and simulated) are likely attributable to the
small sample size (n = 38, which is further reduced to ~30 in each
fivefold cross-validation training set). Figure 3b provides a
comparative assessment of the classification accuracies achieved
by the projected hidden genome classifier at different “simulated”
sequencing coverage using the PCAWG whole-genome dataset,

) ; for the “overall macro” comparison
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Fig. 2 Comparing performance of multinomial logistic classifiers trained with various sets of predictors for predicting cancer site of origin. Macro
precision-recall curves comparing cross-validation predictive performances of multinomial logistic classifiers with (i) the baseline recorded variants
(Baseline; black lines), (ii) cancer gene indicator (Gene; orange lines), (iii) regional mutation density (RMD; sky blue line), (iv) RMD and nucleotide change
signature (RMD + SBS-96; dark blue lines), and (v) all predictors in the full projected hidden classifier (Full P. Hid. Genome; brown lines). The curves for
the PCAWG whole genome, PCAWG simulated genome, and PCAWG simulated targeted panel data were displayed in Panels a, b, and ¢, respectively,
while those for the TCGA whole exome data and MSK-IMPACT targeted panel data were displayed in panels d and e, respectively.

a PCAWG Whole Genome b PCAWG Whole Genome
TCGA Whole Exome PCAWG Simulated Whole Exome
] MSK-IMPACT Targeted Cancer Gene Panel ] PCAWG Simulated Targeted Cancer Gene Panel
MACRO (AVERAGE) $—1 MACRO (AVERAGE) $—1

BREAST ﬁﬂ—‘ BREAST $
COLORECTAL * COLORECTAL
ESOPHAGEAL ﬁ—‘ ESOPHAGEAL
KIDNEY KIDNEY
LIVER LIVER
LUNG LUNG
OVARIAN OVARIAN
PANCREATIC PANCREATIC
PROSTATE PROSTATE
SKIN SKIN

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
precision-recall AUC (crossvalidation average) precision-recall AUC (crossvalidation average)

Fig. 3 Cancer site-specific and overall predictive performances of the hidden genome classifier in different DNA sequencing datasets. Bar charts
showing classification performances of the proposed hidden genome classifier as measured by cancer site-specific and macro cross-validation precision-
recall AUCs (plotted as bars), when applied to whole genome (light green), whole exome (blue), and targeted panel (light blue bars) datasets. Panel

a shows those in the three real datasets-PCAWG genome, TCGA whole exome, and MSK-IMPACT targeted cancer gene panel, whereas Panel b displays
the performances in the three PCAWG datasets—PCAWG genome, PCAWG simulated whole exome, and PCAWG simulated targeted panel. Overlayed
on each bar, the darkened area represents the baseline null (expected) precision-recall AUC for the corresponding one-vs-rest classification associated
with a classifier that randomly assigns positive and negative class labels to sample units.

showing a similar monotonic relationship between genome targeted cancer gene panel datasets. It is also of note that the
coverage and one-vs-rest precision recall AUC. classification performance in breast cancer is marginally better in

There are some observable differences in certain cancer type the MSK-IMPACT targeted cancer gene panel dataset than in the
specific one-vs-rest precision recall AUCs between the simulated TCGA whole exome dataset. In contrast, AUCs for liver tumors
and the real datasets. For example, the AUCs for breast cancer are  are substantially higher in the two simulated PCAWG datasets
substantially higher in the TCGA exome and MSK-IMPACT than in the two real datasets. These differences may be attributed
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Fig. 4 Predictive performances of the hidden genome classifier in pairwise (one-vs-one) cancer site classifications in different DNA sequencing

datasets. Heatmaps showing cross-validation precision recall AUCs for the projected hidden genome classifier in all pairwise (one-vs-one) comparisons
across all real sequencing platforms, (PCAWG whole genome, TCGA whole exome, and MSK-IMPACT targeted cancer gene sequencing; panels—a, b, and
¢, respectively) and simulated sequencing platforms (PCAWG simulated whole exome and PCAWG targeted cancer gene sequencing; panels—d and e,
respectively). In each heatmap, the vertical axis represents the positive class, the horizontal axis represents the negative class, and each cell displays the
cross-validation precision recall AUC for the corresponding one-vs-one classification calculated from multinomial predictive probabilities provided by the

projected hidden genome classifier.

to the differences in respective sample sizes which also affect the
baseline null AUCs, and to the heterogeneity in patient cohorts
and tumor subtype compositions in the datasets.

We also evaluated predictive performances of the classifier in
pairwise (one-vs-one) cancer site classifications. Pairwise classi-
fication probabilities were obtained by conditioning the ten-site/
class multinomial predicted probabilities to every class pair (see
the Methods for more details). Precision recall AUCs of the
corresponding paired classifications were subsequently evaluated
separately for each sequencing platform. The AUCs for these
ordered paired comparisons across all platforms are displayed as
heatmaps in Fig. 4, with darker shadings reflecting higher
diagnostic accuracies. As depicted in the figure, almost all
pairwise comparisons are observed to have very high AUCs in the
whole genome and the whole exome datasets (Fig. 4a, b). Even in
targeted panel datasets, pairwise comparisons show similarly high
discriminatory accuracies for most tumor types with exceptions
in esophageal, liver, and ovarian cancers (Fig. 4c). The simulated
whole-exome and targeted panel dataset show similar trends
(Fig. 44, e).

Quantifying the marginal and cumulative predictive value of
meta-feature groups. Our model facilitates a comparative
assessment of the marginal and cumulative effects of the various
meta-feature groups used in the projected hidden genome classi-
fier. Figure 5a—e display the marginal and cumulative macro one-
vs-rest precision recall AUCs of the various meta-feature groups in
different platforms. The bars display the marginal effects of each
meta-feature group, and the solid points on the curves show the
cumulative effects of each meta-feature group when the group is
added to the cumulative group of meta-features to its immediate

left. Residual effects of individual common variants and an
intercept are included in all models. As depicted in Fig. 5a, the
most informative meta-feature group in terms of marginal effects
in the whole genome dataset corresponds to the 1 Mb regional
indices (macro AUC = 0.92), followed by the SBS-96 categories
(macro AUC =0.86). The cumulative effects steadily increase
when genes, SBS-96 and regional indices are sequentially added to
the baseline classifier and stabilize thereafter. In contrast, at the
whole exome level, both simulated whole-exome (Fig. 5d) and
TCGA whole-exome (Fig. 5b) SBS-96 categories appear to be the
most informative meta-feature, followed by genes and regional
indices which have near identical marginal effects. The cumulative
effects increase when genes and SBS-96 categories are added
successively to the model and stabilize thereafter. Finally, in the
targeted sequencing datasets genes (Fig. 5c, e), SBS-96 categories
and regional indices all appear to have similar small marginal
effects (with SBS-96 further smaller in MSK-IMPACT data) as
these global meta-features require higher genome coverage to be
used effectively. The overall effect first increases moderately when
genes and SBS-96 are successively added to the classifier and
thereafter stabilizes. The epigenetic features display moderate
marginal effects and do not show discernable cumulative effects
when used in conjunction with the other meta-features in any of
the five datasets.

Identifying the most discriminatory individual features. Our
model permits rigorous quantification of the effects of individual
variants and individual meta-features in different cancer sites. To
visualize these effects we constructed odds-ratios for being clas-
sified, relative to not being classified (one-vs-rest odds ratios, see
Methods) to the corresponding tissue site for one standard
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Fig. 5 Overall marginal and cumulative effects of various meta-feature groups in the hidden genome classifier. Bar and line charts showing the overall
marginal (bars) and cumulative (lines and dots) effects of different meta-feature groups, as measured by cross-validation macro (average) one-vs-rest
precision recall AUCs, in the projected hidden genome classifier for predicting cancer sites. The effects are evaluated separately in each real sequencing
(PCAWG whole genome, TCGA whole exome, and MSK-IMPACT targeted cancer gene sequencing; panels—a, b, and ¢, respectively), and simulated

sequencing data set (PCAWG simulated whole exome and PCAWG targeted cancer gene sequencing; panels—d and e, respectively) are shown. In each
panel the leftmost bar and dot represent the macro AUC of a baseline classifier consisting of recorded variants and the square-root of total mutation

burden (obtained through the trivial intercept meta-feature) as predictors. Each subsequent bar on the right shows the macro AUC of a marginal projected
hidden genome classifier built with the baseline predictors and predictors associated with the corresponding meta-feature group. Each dot on the right
displays the macro AUC of a cumulative projected hidden genome classifier trained with all meta-feature groups included up to that point from the left as

predictors, in conjunction with the baseline predictors.

deviation increases in the predictors at their means. These
quantify the effects of average individual predictors at their mean
levels and can be readily compared to assess their relative
importance. For this analysis we considered all meta-features in
the whole genome data; however, we ignored the epigenomic
meta-features in the whole exome data and ignored the 1 Mb
chromosome regions as well as epigenomic meta-features in the
targeted gene panel data to avoid collinearity of the predictors.
Figure 6 plots the odds ratios for the top 40 predictive features
with the largest absolute effects in the whole-genome dataset.
These include 21 regional indices (1 Mb bin) on various chro-
mosomes, 12 SBS-96 categories, 3 genes, and 4 individual var-
iants. Their classification odds ratios in different cancer sites are
in concordance with existing knowledge. Among the gene effects,
TP53 and VHL display large positive effects for classifying ovarian
and kidney cancer respectively, and have mostly small effects in
other categories. KRAS has a large odds ratio for pancreas cancer,
with the specific hotspots KRAS G12D and KRAS G12R providing
additional discriminative information captured by the “residual”
effects at the variant level. In contrast, the influence of rare var-
iants in the BRAF gene is eliminated after accounting for the
discriminative effect (for skin) associated with the dominant
hotspot variant BRAF V600E. It is worth noting that the effects
from these individual genes and hotspot variants remain large in
the full model, suggesting that they provide orthogonal lineage-
dependency information from the mesoscale meta-features.
Among the most informative SBS-96 categories displayed in
Fig. 5, T>CA.Gand T>CA.T, two T > C type alcohol mutation
signatures known to be associated with liver cancer, exhibit large
positive effects in this disease. It is of note that some known
tissue-specific mutation signatures only show substantial effects
in the targeted cancer gene panel and the whole exome datasets

(Supplementary Figs. 6-9), but not in the whole genome dataset.
Examples include the C>T (ultra-violet) signature in skin
cancer?!. While these signatures are observed to have large
positive effects in the targeted panel and whole exome datasets
they have zero estimated effects in the whole genome dataset,
indicating that regional indices must be more informative
predictors at the whole genome level, effectively containing the
same signals as these mutation signatures.

Finally, two regional indices (the 9th and 13th Mb bin) on
chromosome Y are observed to have large positive effects in
classifying prostate cancer but large negative effects in breast and
ovarian cancers, reflecting the obvious differences in gender
among the associated cohorts. The remaining chromosome
regions displayed in Fig. 6 exhibit notable tissue specificity in
the PCAWG whole genome dataset, as demonstrated through the
box and violin plots displayed in Supplementary Fig. 10; see
Methods for more details.

Deeper insight into the regional indices: copy number and
epigenome features. Our analyses demonstrate that selected 1
Mb indices of mutational burden carry a large proportion of the
information for classifying tumor lineage. To try to understand
better the relationships between mutational burden and the var-
ious epigenetic features in the model we performed an analysis of
averaged values of these features at the chromosome arm level.
We obtained the average normalized total mutational burden in
each chromosome arm from the PCAWG whole genome dataset
and performed linear regression analyses of these values in a
model that included chromosome averages of each epigenomic
feature (H3K35me3, H3K4mel, chromatin accessibility) obtained
from the Encode and Epigenome Roadmap datasets, and included
also the average copy number log ratio for the chromosome arm,
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Fig. 6 Cancer site specific odds ratios of most effective individual predictors in the hidden genome model applied to the PCAWG whole genome data.
Log one-vs-rest odds ratios of top 40 predictors (with largest absolute log odds ratios) are first computed from the fitted hidden genome model and then
plotted as bars. Each bar represents the change in the log odds of a tumor being classified into the corresponding cancer site, relative to not being classified
into that site, for a one standard deviation increase in the associated predictor from its mean, while keeping all other predictors fixed at their respective
means. Predictors of similar types (variants, genes, SBSs, and chromosome regional indices) are grouped together.

obtained from the TCGA whole exome copy number segmenta-
tion dataset. Individual and cumulative effects of these factors on
mutational burden are displayed in Fig. 7a in terms of the per-
centage variance explained (R-squared). The patterns are strik-
ingly different by cancer site. The dominant factor explaining
mutational burden for breast and ovarian cancers is the average
copy number. The strong correlations of these two factors in
these diseases are shown in Fig. 7b. Similar plots for the other
sites are displayed in Supplementary Fig. 11 showing more
modest correlations for pancreatic and kidney and skin cancers,
but negligible correlations for prostate, esophageal, and liver
cancers, reflecting the regression effects in Fig. 6. In contrast,
mutational burden for liver and esophageal cancers is most
strongly influenced by histone marks, consistent with previous
reports?8. The strong negative correlations of mutational burden
with log H3K4mel are displayed for these sites in Fig. 7c, with
plots for the other sites displayed in Supplementary Fig. 12.
Supplementary Figures 13 and 14 display similar site-specific
correlations of mutational burden with the other epigenomic
features, viz., H3K36me3 and chromatin accessibility, respec-
tively, and these correlations are largely similar to the corre-
sponding correlations for H3K4mel. For many of the sites the
bulk of the influence on mutational burden is largely either copy
number or epigenomic meta-features, but not both. Interestingly,
for skin, there seem to be substantive additive effects of both copy
number and the other meta-features (Fig. 7a). It is well known
that many tumor types harbor extensive copy number alterations
that are cancer type dependent?. Our results show that the
important influences of copy number appear to be captured by
the RMD indices in our model.

Comparing projected hidden genome with other classifiers. We
compared cross-validation classification performance of the pro-
posed projected hidden genome approach with a number of black
box, machine learning classifiers. We considered the following

existing approaches: (a) an SVM classifier with binary indicators
of cancer gene mutations as predictors (Soh et al.), (b) a random
forest classifier with binary indicators of gene mutations and
normalized mutation counts at all 96 SBS categories as predictors
(TumorTracer; Marquard et al.l®), (c) a deep neural network
classifier, and (d) a random forest classifier with normalized
mutation burdens in the ~3000 chromosome regions (RMDs) as
well as in the 96 SBS categories as predictors (Jiao et al.”). In
addition to these four, we also considered (e) an SVM classifier
with the same input feature matrix as used in the full projected
hidden genome approach, called the projected hidden genome
SVM classifier henceforth. Note that (e) essentially produces a
nonparametric generalization of the proposed projected hidden
genome approach by allowing nonlinear effects of the predictors
to be used in classification. A detailed note on the training stra-
tegies used for all these classifiers, including choices of loss
functions used and tuning of hyperparameters performed is pro-
vided in the Supplementary Information (Supplementary Note 1).

Figure 8 summarizes one-vs-rest classification performances of
all these machine learning approaches and the proposed multi-
nomial logistic projected hidden genome classifier across all real
and simulated DNA sequencing platforms considered in this
study, via individual site specific and overall macro (cross-
validation) precision recall AUCs. As depicted in Fig. 8 the
proposed multinomial logistic classifier demonstrates competitive
predictive performances across all datasets in each comparison,
but in general does not have the highest AUC. Indeed, no single
classifier appears to have the highest AUCs uniformly across all
cancer sites in all datasets.

We note that the performances of some of these classifiers are
more variable across different sequencing platforms than the
projected hidden genome classifier multinomial logistic and SVM
classifiers. For example, the TumorTracer!> random forest
classifier has high AUCs in whole exome and targeted cancer
gene panel datasets (both real and simulated); but has
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comparatively lower AUCs in whole genome sequencing (com-
pared to other black box approaches). This is not surprising as our
analysis shows (Fig. 5) that the groups of predictors used in
TumorTracer, viz., gene and SBS-96, have relatively high marginal
effects in whole exome and targeted cancer gene panel sequencing
datasets, but smaller effects than the RMD (labeled regional index
in Fig. 5) in the whole genome sequencing dataset. In contrast,
RMD and SBS-96 are the two predictor groups with the strongest
marginal effects in whole genome sequencing and near strongest
effects (compared to other groups) in whole exome and targeted
cancer gene panel sequencing datasets. Consequently, the deep
neural network and random forest classifiers utilizing these two
feature groups (Jiao et al.” NN and RF) are expected to achieve
high accuracy in most comparisons, though the neural network
classifier has poor predictive performances in the PCAWG
simulated targeted cancer gene panel and TCGA whole exome
datasets, potentially due to lack of convergence and/or overfitting.
Finally, the projected hidden genome SVM classifier, a powerful
non-parametric classifier utilizing essentially all information used
in these competitors and possibly more, e.g., the individual
variants, enjoys a robust performance across all comparisons in all
platforms. The multinomial logistic projected hidden genome
classifier, in comparison has somewhat lower AUCs.

It is worth noting in this context that the multinomial logistic
classifier is not designed to solely optimize classification accuracy.
The assumption of linearity in predictor effects (in the log odds
scale) is potentially suboptimal for predictive modeling. Instead,
the key benefit for using a multi-logistic model lies in the rigorous
interpretation of predictor effects permitted by the model. In
particular, the model allows formal quantification of the effect of
each individual predictor (such as individual variant, gene,
chromosome region, etc.) in each cancer site (see the odds ratios
displayed in Fig. 6 and Supplementary Figs. 6-9). These
individual effects may reveal interesting biological insights; e.g.,
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our analysis quantifies the effects of known hotspot variants. Note
that detection of these individual variants is accomplished de
novo, and our findings concord with existing scientific knowl-
edge. The importance of such feature effects at granular levels
cannot be reliably quantified in high dimensional black box
machine learning models.

Furthermore, these granular predictor effects in our model also
provides a framework for coherent probabilistic quantification of
modeling uncertainty. Indeed, while not done in this study, a full
Bayesian implementation of the model may quantify variability
both in the estimated individual predictor effects and in the
predicted class probabilities, thereby facilitating rigorous statis-
tical inference. Such uncertainty quantification and inference
cannot be readily performed using black box machine learning
approaches.

Discussion
Our primary finding indicates that critical information for clas-
sifying tumor type resides in the noncoding somatic mutations
detectable via whole genome sequencing. The sheer numbers of
these mutations along with their relationship with discriminative
epigenetic meta-features translated via local mutation burdens
allow these mutations to collectively carry strong tissue-specific
signals. Our method is particularly attractive because by drawing
on a well-established statistical multilevel modeling framework it
enables incorporation of the effects of these pan-genomic features
as well as the effects of important common variants in a single
model. Further, the approach permits rigorous yet straightfor-
ward evaluation of the critical factors that influence the classifi-
cation. A full Bayesian implementation of our method aids
quantification of estimation and prediction uncertainties.

Our results further shed light on the strong lineage dependency
of the pan genomic factors that influence local mutation burdens,

9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23094-z

PCAWG Whole Genome

b

TCGA Whole Exome

c MSK-IMPACT Targeted Cancer Gene Panel

Soh et al. SVM

TumorTracer RF TumorTracer RF

90 1.00 Jiao et al. RF{@

Jiao et al. RF|[SEEN

96 1.00 Jiao et al. NN

Jiao et al. NN | &

Hid. Gen. SVM 7 1.00 1.00 Hid. Gen. SVM

Hid. Gen. MLogit | Sl Hid. Gen. MLogit

LIVER (349)-
LUNG (38)-
SKIN (107)-

BREAST (1026)-

KIDNEY (111)-
OVARIAN (113)-

BREAST (214)-

COLORECTAL (60)-
ESOPHAGEAL (98)-
PANCREATIC (326)-
PROSTATE (286)-
COLORECTAL (559)-

MACRO (AVERAGE)-
MACRO (AVERAGE)-

d

ESOPHAGEAL (58)-

PCAWG Simulated Whole Exome

Soh et al. SVM- 053
TumorTracer RF-|0:58
Jiao et al. RF-[0.58
Jiao et al. NN-|0.54
Hid. Gen. SVM-

Hid. Gen. MLogit-

LIVER (82)-
SKIN (190)-

SKIN (468)-

LUNG (1286)-

KIDNEY (370)-
LIVER (365)-

LUNG (569)-
OVARIAN (412)-
PROSTATE (498)-
MACRO (AVERAGE)-
BREAST (1155)-
COLORECTAL (991)-
ESOPHAGEAL (107)-
KIDNEY (186)-
OVARIAN (132)-
PANCREATIC (383)-
PROSTATE (566)-

PANCREATIC (

e PCAWG Simulated Targeted Cancer Gene Panel

Soh et al. SVM
TumorTracer RF|RE

Jiao et al. RF

One-vs—-Rest
Precision Recall AUC
(Cross-validation Average)

1.00

Jiao et al. NN

Hid. Gen. SVM &g
0.75
0.50
0.25
0.00

Hid. Gen. MLogit

BREAST (214)-
COLORECTAL (60)-

w
]
<
o«
E
<
)
]
<
=

ESOPHAGEAL (98)-

Soh et al. SVM- 050 0.43 0.49 0.46 0.49 0.08 0.25 [RK:H]

TumorTracer RF-0:56 0.50 0.53

Jiao et al. RF-|0:58 0.50 0.52

Jiao et al. NN- 0.53 0.

Hid. Gen. MLogit- 0.52 0.54 0.48 0.42 0.49

0.40 0.37 0.30 0.35 0.27

T 9 ® ® ©° @ 5 b @ g @ g 9 8 @ @ &
T2 82 8§ 8 85 8 8 88 23 5 ¢ 85 5
sigiii Tiiiiisiii:
u w3 I g EZ U o F o Wwuwid I g E &
Z 2 3 g < g > <0 g z >3z 5 =
§3°585° SEEs85 5838 °
=7 5§38 g88Lf<" §E
L g 32 e
o s O w [

Fig. 8 Comparing the projected hidden genome approach to other black box machine learning classifiers. \We considered the following six classifiers: (i)
an SVM classifier with binary indicators of cancer gene mutations as predictors (Soh. et al. SVM), (ii) a random forest classifier with binary indicators of
gene mutations and normalized mutation counts at all 96 SBS categories as predictors (TumorTracer RF), (iii) a random forest and (iv) a deep neural
network classifier with normalized mutation burdens in 1 megabase chromosome regions (RMDs) and in 96 SBS categories as predictors (Jiao et al. RF and
Jiao et al. NN respectively), and (v) an SVM and (vi) a multinomial logistic classifier with the full feature matrix obtained from the projected hidden genome
method as predictor (Hid. Gen. SVM and Hid. Gen. Mlogit, respectively). For each of these six classifiers individual site specific and overall macro cross-
validation one-vs-rest precision recall AUCs are plotted, separately for all real sequencing datasets (PCAWG whole genome, TCGA whole exome, and
MSK-IMPACT targeted cancer gene sequencing; a, b, and ¢, respectively) and simulated sequencing datasets (PCAWG simulated whole exome and
PCAWG targeted cancer gene sequencing; d and e, respectively). The number within parentheses on the horizontal axes labels represent sample sizes of

the corresponding cancer categories.

facilitating the high classification accuracies. For some tumor sites,
epigenetic features such as histone marks determine the mutation
burden signal while for other sites the primary driver is copy
number. Overall these relationships provide high accuracy for
identifying tumor site of origin when using whole genome
sequencing data. This has potential clinical value for identifying
the primary site for cancers of unknown primary, and for iden-
tifying the anatomic site of tumors identified by ctDNA screening.

Our analysis is limited to somatic point mutations and it does not
include other genomic alterations (such as copy number altera-
tions), other types of omic data (such as gene expression?? and
methylation profiles), and other genomic features (such as inser-
tions, deletions, structural variations, and whole genome doubling).
If reliable information on these features is available, incorporating
them into the classifier may improve prediction accuracy. However,
reliable detection of many of these is difficult when tumor content is
low, especially in targeted gene panel sequencing, and somatic point
mutations are the only reliable features in such cases.

Methods

The projected hidden genome classifier: a computational overview. We
summarize the key computational steps involved in the proposed projected hidden
genome classifier. A detailed note on the theoretical underpinnings of these
computational steps, obtained from an efficient maximum marginal a posteriori
estimation strategy of a formal and highly interpretable Bayesian hierarchical
model, is provided in a following section. For each tumor i, consider the mutational
profile vector x; = (x;, %, ... 7x,d)T where d denotes the total number of variants
observed in the test and training set combined, and x;; denotes the binary indicator

10

of the presence/absence of a variant j in tumor i. Let ¢; € {1, ... , K} be the cancer
type of tumor i; ¢; is known for a training set tumor i, and is to be predicted for a
test set tumor. Define the unit vector X; = x;/ } }xiH by dividing x; by its norm, the
square-root of the total mutation burden observed in tumor i. For each variant j let
there be p meta-features (dummy coded categories if discrete) with values:

u =

T
; (ujl7 U ujp) . For example, if j denotes the variant KRAS GI2V and [ is the

binary meta-feature indicating the KRAS gene, then u; = 1. We construct the
meta-design matrix U by stacking {u;} as rows where U, is the I-th column of U,
cataloging values of the meta-feature [ for all variants {j}. Then the computational
steps involved in the projected hidden genome classifier are as follows.

1. For each tumor i and for each meta-feature /, compute the scalar projection
of the vector U, along the direction of the mutational profile of tumor i,
viz., X; Uol =x,1U0, 1/| |x H Note that the scalar projection ¥,'U,,
describes the total mutation burden in tumor i that is attributable to the
meta-feature / (this is simply the total number of mutations observed in the
meta-feature , if [ is a binary category, such as the indicator of the KRAS
gene), normalized by the square-root of the total mutation burden in tumor
i. Note that a meta- feature vector U, i 1dent1cally equal to 1, i.e., an intercept

root of the total mutation burden in tumor i as a scalar pr0]ect10n

Using the mutational profiles and cancer categories of training set tumors,
perform a feature screening to obtain the most discriminatory d,, (frequently
occurring) variants: hy, ... ,hy, where dy < d. In this study we used a
highly efficient and scalable mutual information-based feature screening
technique (see the following sections for more details) and elected to use a
fixed d = 250. After screening, obtain the entries of the unit mutational

|, associated with these most discriminatory
variants hy, ..., ’Eihdﬂ }

3. Fit a group-lasso® penalized multinomial logistic regression model with
predictors {x, , ... ,Eihdo} and (%,"U_,, ... ,iiTUo_p}, and with categorical

profile vector ¥; = x;/||x;
hy,» viz, Xy, , ...
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response {c;} on the training set tumors {i}. The first set of predictors
corresponds to indicators of discriminatory individual variants while the
second set of predictors are the mutation burdens captured by the various
meta-features, all normalized to the square-root of the total mutation
burden encountered in the tumor. The regression parameters corresponding
to the first group of predictors {x, , ... ,Eihdn} quantify the residual effects of
those individual variants, the surplus effects unexplained by the associated
mutational context. In contrast, those for the second group of predictors
&'v,, .. %'U,

precisely, mutations attributed to the specific meta-features) embodying the

} quantify the effects of the meta-features (more

mutational contexts.

4. For each tumor i in the test dataset first evaluate values of the associated
predictors {X; , ... , %, } and {%; Uol, %' »} and then use these
predictors with the fitted model to estlmate the predlctlve probabilities
{p (c,/ = k). k=1, ... ,K} of the tumor i’ belonging to each of the K cancer
types. These estimated/predicted probabilities aid a soft classification of the
test set tumors; a hard classification can be obtained by thresholding or
assigning to the class of maximum predicted probability.

Lower (3-) dimensional embeddings of mutation profiles. To construct the
lower three-dimensional embeddings of the classification signals from the raw
mutation profile vectors x; we first obtained the meta-feature scalar projection
matrix XU as described above, then evaluated its first 30 principal components, and
subsequently conducted a 3D t-SNE?* on the resulting principal components to
obtain lower-dimensional embeddings of the p-variate vector (BE,.TUCVI, ,BE[T U.,)
for each tumor i. These lower dimensional embeddings were plotted as scatterplots
(a static version is displayed in Fig. 1 in the main text and an interactive html
version is included within the GitHub repository for this article?®) with each point
color-coded according to its cancer site.

The projected hidden genome classifier: a hierarchical Bayesian perspective.
The projected hidden genome classifier is built on the hierarchical Bayesian clas-
sification framework proposed in Chakraborty et al.!8, with appropriately nor-
malized predictors to account for heterogeneity in mutation burdens across
tumors. Using the same notation as introduced earlier, we consider the following
multilevel multinomial logistic regression model (Eq. 1) for predicting cancer site c;
based on mutation burden x; of a tumor that utilizes the meta-feature vectors
uy, ... ,u, in a hierarchical level to partially pool the raw regression coefficients
associated with the variants 1, ... ,d as follows:

exp {“k + %ﬁ..k]

P(ci:k) :ﬁ,
,Z exp {“k’ + mﬁ.,k’]
K=1 '
i=1,...,mk=1,... ,K
ﬂ,k~N<uTw.k~ -)J—l ydik=1,... K (1)
wy ~N(0,&),1=1,...,psk=1,... ,K

% ~N(0,8)k=1,... K
7,8, ~ Gamma((K + 1)/2,1%/2),
j=1,...,dl=1,...,p
The subsequent hierarchical levels induce sparsity to the model. Writing 8, , =

B+ U, forallk=1,...
of the model (Eq. 2).

, K leads to the following mixed effect representation

T T
explay + 15 Bl + 1 U,

P(ci:k)= = ,
X exp {txk/ +‘ﬁﬁfyk, +HfﬁU“’-.k’}
K=1
i=1,...,mk=1,...,K
ﬁ%“N(O,Tf),j:l dk=1,.. K @)
N(0,&),1=1,..,p;k=1,... ,K

7% ~N(0,8),k=1,... K
TJ-Z,EIZ.,(Z ~ Gamma((K +1)/2,1*/2),
j=1,...,d1l=1,...,p
In the above multilevel multinomial logistic regression model, the Uaw, ; terms
capture the effects of variants as explained by the associated mutation meta-

features and the B° terms capture the residual effects of variants unexplained by
mutation contexts. We emphasize that the effects of the vast majority of the

mutations are effectively completely explained their associated mutation contexts;
the residual effects are consequential only for a few highly discriminative
commonly occurring variants. For implementation of the model, we adopt a
maximum marginal a posteriori estimation strategy where the key parameters of
interest in the model, viz., &, 8°, w, are estimated by maximizing their marginal log-
posterior density:

7cn7x17 7xn)

log n(a,ﬁn,a), [, A, ¢py-ee

x 0 x!
exp [txk + mﬁ-,k + i Uw.7k]

n K
= 1(c; = k)l
’Z:l k§1 (C’ ) 8| & x 00 X! (3)
=P {"‘k' e Pex T Uw_vk,]
d . »
“AX B A @l
= =

The above log marginal posterior density (Eq. 3) is essentially a group-lasso
penalized log-likelihood of a multinomial logistic regression model with predictors

Hx j and (the scalar projections) T 7 Us response ¢;, and group lasso penalty

parameter A, and hence can be optimized using existing software3!.

Screening individual variants using mutual information. The scalar projections

{\Ix j U} combine information from all (including the extremely rare) variants in the

penalized multinomial logistic likelihood as presented above. Given these quantities
one thus only needs to consider the most discriminative individual variants with
substantial residual effects (effects not explained by meta-features), and remove all
less-discriminative residual variant effects from the penalized multinomial logistic
likelihood. In this study we performed a mutual information-based feature

screening of variants to filter out the less discriminative entries of I from the

model prior to group-lasso estimation. To this end, for each variant j we first
computed the mutual information, an information theoretic measure of associa-
tion/dependency, between the variant and the cancer categories using the formula:

1K P(X.=x,C=k
L P(x :x\C:k) @
- p( —xC= k) P(C = klog

2 p(x —xlC= k)P(C -0

Here [X; = x] denotes the event of encountering variant j a total of x times in a
tumor (x = 0, 1), [C = k] denotes the event that the associated tumor has cancer of
type k and P(A) denotes the probability of an event A. The sample analogs of the
respective probabilities (i.e., the corresponding relative frequencies) together with
the convention of 0log0 = 0 are used in the estimation of these mutual information
values. The estimated mutual information values provide a ranking among the
variants, with higher mutual information implying better discriminative ability. In
this study we elected to filter out all variants falling below the rank threshold of
250. Note that, because relative frequencies can be evaluated virtually effortlessly in
(even large) sparse datasets, computation of each value of mutual information is
extremely efficient, and hence the resulting screening strategy is highly scalable in
whole genome datasets. After screemng out all but the top few variants (with

250) in H T
with the group lasso parameter approprlately tuned via cross-validation.

mutual information rank < we carried out the group lasso estimation

One-vs-rest odds ratio from a multinomial logistic regression model. Given
the multinomial logistic regression model

T
_ Kexp [ock + z; y,.k} “

P(c = klz;)
E o 27
K=1 ’

interest may lie in finding the average effect of a specific predictor, say the I-th
predictor in each cancer type k. Here z; represents the vector of all predictors for
the i-th tumor in the projected hidden genome classifier—normalized mutation
indicators for discriminant variants and meta-feature scalar projections combined,
and y denotes the matrix of all regression parameters (8° and @ combined). A
rigorous quantification of the individual predictor effects in this framework is aided
by odds ratios—either relative to a prespecified baseline category k" (one-vs-one
odds ratios), or relative to all other categories (one-vs-rest odds ratios). In this
study we focused on one-vs-rest odds ratios for one standard deviation increase in
the [-th predictor from its mean while keeping all other predictor variables fixed at
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their respective means. This is given by

P(c=klz+se) P(c = k|z)
1—P(c=klz+se)" 1 —P(c=klz)

S expay +27y, ] ©
kK #k

= exp (Slyz.k) :
k,zk exp [“k’ +zy,p + SIYt.k']
"

Here z denotes the sample mean vector of all predictor variables, s; is the sample
standard deviation of the I-th predictor, and e is the [-th unit vector, i.e., the binary
0-1 vector with [-th entry 1 and all other entries zero. Estimation of the above odds
ratio is performed by employing estimates of & and y into the above formula.

Note that the group lasso penalized estimates of the multinomial logistic
regression coefficients {y; ,} are either all zero or all non-zero for a given predictor
(variant or meta-feature) j, across all cancer sites, thus aiding a predictor level
selection of variables in the fitted model. In the model fitted on the whole-genome
dataset only 27 (out of 245; 11%) variants, 187 (out of 604; 31%) genes, 23 (out of
96; 24%) SBSs, and 275 (out of 2915; 9%) chromosome regional indices (1 Mb bins)
were selected, i.e., had non-zero regression coefficient estimates. Among those
selected features the top 40 with the largest absolute effects in the whole-genome
dataset were identified and their cancer site specific log odds-ratios were plotted in
Fig. 5. Similar plots for the other datasets were also obtained (displayed in
Supplementary Figs. 6-9).

Summary measures for assessing classification performance. We use the
precision-recall curve and the area under the curve to assess predictive perfor-
mance of a soft multi-class classifier providing probabilities for each tumor. For
each tumor type we first obtain a one-vs-rest binary classification for each sample
point, by adding the probabilities associated with all other tumor types for that
point into a new class labeled rest. Then a precision recall curve is obtained from
the resulting binary soft classification for all points, by first considering several
thresholds for these probabilities to aid multiple hard classifications, and by con-
sequently computing the precision (also called positive predictive value, defined as
the proportion of samples classified to the corresponding class that truly belong to
that class) and recall (also called sensitivity, defined as the proportion of samples
truly belonging to the class that are correctly classified) evaluated at each hard-
classification obtained at each threshold?2. This produces a precision-recall curve
for each cancer-site specific one-vs-rest comparison. We obtained the macro
precision-recall curve as an overall measure of performance of the classifier by
averaging all individual one-vs-rest precision-recall curves (i.e., averaging the
cancer-site specific recall values corresponding to each precision in the curves). A
curve with high recall for most precision values (i.e., is close to the (1, 1) “top-right”
corner) indicates good classification. The area under the resulting precision-recall
curve (AUC) in the unit square provides a univariate summary of classification
performance, with a larger area indicating better classification. Once AUCs from
each one-vs-rest classification are obtained, a univariate summary of the overall
performance of the classifier across all classes can be obtained by defining the
macro AUC, which is simply the unweighted arithmetic mean of the individual
class specific AUCs. Note that precision recall curves and the associated areas
under the curves provide better assessment of classification than receiver operator
characteristic curves in multi-class problems which necessarily produce imbalanced
one-vs-rest classifications when the number of classes is bigger than two32.

We also considered one-vs-one binary classification for all cancer site pairs from
the predicted multinomial probabilities. To this end, for each cancer site pair, we first
obtained the corresponding conditional classification probabilities for the site pair:
given predicted multinomial probabilities p; and p; for two classes i and j, the

conditional (on these two classes) predicted probabilities are p;/ (pi + pj) and

b / (pi + pj> respectively. Similar precision recall analyses and evaluation of the area

under the precision recall curves were subsequently obtained for all ordered paired
classifications. Note that the ordering of classes in each pair is important in this
analysis, as precision recall AUC is not symmetric in the positive and the negative
classes. These one-vs-one precision recall AUCs are displayed as heatmaps in Fig. 4.

Processing epigenomic feature and copy number alteration datasets. We
obtained the epigenomic data from ENCODE?? and the Epigenome Roadmap
Study?3, which provide for tumors of different cancer types the signals/reads on
these features at base level positions on the chromosomes. We focused on tumors
in these datasets from the same ten cancer sites considered in the main classifier:
breast, colorectal, esophageal, kidney, liver, lung, skin, ovarian, pancreatic, and
prostate. The data sources and cancer histologies considered in each site for the
three epigenomic features, chromatin accessibility (DNAsel), H3K36me3, and
H3K4mel, are summarized in Supplementary Data 1 (Sheet 4 in the excel file
provided as Supplementary Data 1).

The following preprocessing steps were performed separately on each of the
three epigenomic feature datasets. In each dataset, in each tumor, at each one-
megabase length chromosome bin, we computed the corresponding total signals/
reads above the global median signal in the dataset to reduce noise in signals; these
bin-specific thresholded total reads were subsequently averaged across all tumors

from the same cancer site within each dataset. We then performed a log-log
transformation (more precisely the transformation ( f(x) =log[1 + log(1 + x)]) on
these average thresholded total reads, and used them as meta-features in the model.
Note that these collectively produce a set of 30 meta-features in the model: ten
meta-features (corresponding to the ten cancer sites) each for the three epigenomic
meta-features. Through scalar projections with the mutational profile of a tumor,
these 30 meta-features produce a set of 30 scores that are subsequently used as
predictors in the multinomial logistic model.

The data on copy number alteration log ratios were obtained for the same ten
cancer sites from the TCGA segmentation dataset33. For each chromosome arm, as
defined by cytobands, we evaluated the average (across tumors) copy number
alteration log ratio of all locations belonging to that arm, separately for each cancer
site. Similar summarizations over chromosome arms were performed on the
processed megabase bin level epigenomic datasets, and megabase bin level
normalized mutation burden (from PCAWG whole genome) datasets. These arm-
level average values of copy number alterations, epigenomic features, and
normalized mutation burdens are displayed on Fig. 7.

Analyzing association between normalized mutation burden and epigenomic
factors and copy number alterations for different tissue types. To visualize the
associations between normalized whole genome mutation burdens and epigenomic
factors and copy numbers in a typical tumor, we first obtained the following
cancer-site specific quantities:

1. The average normalized total mutation burden in each autosome arm (as
defined by cytobands) for an average tumor of each tissue type in the
PCAWG whole genome dataset. This is obtained by first averaging all
regional mutation densities over all chromosome bins associated with the
arm in each PCAWG tumor, and then by averaging these arm-specific
normalized mutation burdens across all PCAWG tumors of the same
cancer type.

2. The average copy number alteration log ratio in each autosome arm (as
defined by cytobands) for an average tumor of each tissue type in the TCGA
copy number segmentation dataset.

3. The average epigenomic feature (separately for H3K36me3 marks,
H3K4mel marks, and chromatin accessibility) in each autosome arm (as
defined by cytobands) for an average tumor of each tissue type in the
ENCODE and Epigenome Roadmap datasets.

We considered linear models (separately for each cancer type) with arm-level
average normalized mutation burdens as responses and one or more arm-level
average copy number log ratios and epigenomic features as predictors, and
subsequently computed the associated R? statistics to quantify the proportions of
variability in the normalized mutation burdens that are explained by these
predictors (marginally as well as cumulatively) (Fig. 7a).

We also constructed scatterplots to visualize the association of autosome arm-
level average normalized mutation burdens with average copy number log ratios
and average epigenomic features separately for each cancer type (Fig. 7b, ¢ and
Supplementary Figs. 11-14). The degrees of association in each scatterplot was
quantified by the Spearman correlation coefficient.

Visualizing tissue-specificity of regional mutation indices. We visualized the
tissue specificity of the normalized mutation burdens (scalar projections) in the
whole-genome sequencing dataset for the top 21 chromosome regions with largest
absolute log odds ratios displayed in Fig. 7 via box and violin plots. To this end, we
first scaled the associated scalar projections for these windows in each tumor by the
corresponding tumor-specific standard deviations to aid direct comparability. Box
and violin plots were subsequently constructed for each region based on the scaled
normalized mutation burdens across tumors separately for each cancer type (dis-
played in Supplementary Fig. 10). For each region, the differences in the relative
lengths and positions of the associated boxes and violins for different cancer sites
demonstrate its tissue specificity.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The TCGA whole exome somatic mutation data used in this study are openly available in
the GDC database [https://gdc.cancer.gov/about-data/publications/mc3-2017]. The
MSK-IMPACT somatic mutation data used in this study are available in the cBioPortal
database [https://www.cbioportal.org/study/summary?id=msk_impact_2017]. The
controlled access PCAWG whole genome sequencing datasets are deposited at the ICGC
database [https://dcc.icgc.org/]. The data is available under restricted access, access can
be obtained by contacting daco@icgc.org. The exact processed subsets of the TCGA and
MSK-IMPACT datasets used in our analysis are included as R data objects within the
custom R package hidgenclassifier?> developed in this study and released publicly
through GitHub [https://github.com/c7rishi/hidgenclassifier]. In the same GitHub
repository an interactive html version of Fig. 1 is also stored. Individual sources for the
publicly available epigenomic data sets used for construction of meta-features are listed
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in Sheet 4 of the excel file provided as Supplementary Data 1. The remaining data are
available within the Article or Supplementary Information are available from the authors
upon request.

Code availability

An open source software implementing our methodology has been released in the public
domain?® (GitHub: https://github.com/c7rishi/hidgenclassifier). The package also
contains the exact processed subsets of two publicly available datasets, viz., TCGA whole
exome and MSK-IMPACT targeted gene panel datasets, that are used in our analysis.
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