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Salmonella enterica resistant to colistin, third-generation cephalosporins (3GCs), and

fluoroquinolones (FQs) has been deemed a high-priority pathogen by the World Health

Organization (WHO). The objective of this study was to characterize 11 mcr-1-harboring

Salmonella enterica serovar Typhimurium isolates from raw pork and ready-to-eat (RTE)

pork products in Guangzhou, China. All isolates were multi-drug resistant and contained

6–24 antibiotic-resistant genes. The mcr-1 gene was localized in the most conserved

structure (mcr-1-orf ) in eight isolates and in mobile structure (ISApl1-mcr-1-orf ) in three

isolates. One raw pork isolate SH16SF0850, co-harbored mcr-1, blaCTX−M−14, and

oqxAB genes. One isolate 17Sal008 carried mcr-1, blaCTX−M−14, qnrS2, and oqxAB

genes located on a 298,622 bp IncHI2 plasmid pSal008, which was obtained from an

RTE pork product for the first time. The pSal008 was closely related to a plasmid in an

S. typhimurium isolate from a 1-year-old diarrheal outpatient in China and was found to

be transferable to Escherichia coli J53 by conjugation. Genome sequence comparisons

by core-genome Multi Locus Sequence Typing (cgMLST) based on all S. typhimurium

isolates from China inferred highly probably epidemiological links between selected pork

isolates and no possible epidemiologically links between RTE pork isolate 17Sal008

and other isolates. Our findings indicate that raw pork and pork products are potential

reservoirs of mcr-1-harboring S. typhimurium and highlight the necessity for continuous

monitoring of colistin, 3GCs, and FQs resistant S. typhimurium from different origins.
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INTRODUCTION

Strains of Salmonella enterica are a common concern in
food safety, as they are the leading cause of global bacterial
food poisoning outbreaks (Kirk et al., 2015). In 2017, the
global estimate of non-typhoidal salmonella invasive disease
cases reached 535,000 (GBD 2017 Non-Typhoidal Salmonella
Invasive Disease Collaborators, 2019). In China, non-typhoidal
Salmonella serovars are collectively the second most prevalent
bacterial agents in cases of acute diarrhea, accounting for 25.1%
of 59,384 cases, according to an epidemic study based on a
national surveillance network for patients with acute diarrhea
from 2009 to 2018 Wang et al. (2021).

Salmonella enterica serovar Typhimurium is one of the
most frequently identified serovars among foodborne illnesses,
livestock, and retail meat (particularly pork) (Zhang et al., 2014,
2016; Lu et al., 2019; Wu et al., 2021). The relevance of S.
typhimurium is also marked by its capability to acquire resistance
determinants to various drug classes, especially those of critical
antibiotics, such as colistin, third-generation cephalosporins
(3GCs), and fluoroquinolones (FQs), which may lead to clinical
treatment failure (Yi et al., 2017; Lu et al., 2019).

The plasmid-encoded polymyxin resistance gene, mcr-1, was
originally detected in Enterobacteriaceae from the environment,
animals, and humans in China (Liu et al., 2016). Since then, this
gene has been increasingly reported in Escherichia coli, Klebsiella
pneumonia, and Salmonella species (Castanheira et al., 2016;
Falgenhauer et al., 2016; Quan et al., 2017; Lu et al., 2019).
The mcr-1 gene carrying S. typhimurium has been reported
in humans, food-producing animals and their surrounding
environment, raw meat samples in many countries, and ready-
to-eat (RTE) meat products in China (Yang et al., 2016; Litrup
et al., 2017; Saavedra et al., 2017; Yi et al., 2017; Carfora
et al., 2018; Wang et al., 2018; Rau et al., 2020; Moon et al.,
2021). Some of these reported strains were observed to also
carry plasmid-mediated FQs resistance genes or extended-
spectrum beta-lactamases (ESBLs). However, the co-occurrence
frequency of plasmid-mediated mcr-1, ESBLs, and FQs genes in
S. typhimurium remains very low, having only been sporadically
reported in retail pork samples (Hu et al., 2019) and human
isolates (Lu et al., 2019; Luo et al., 2020), and has not previously
been reported from RTE food product sources. The emergence
and co-transfer of plasmid-mediated mcr-1, ESBLs, and FQs
genes among foodborne Salmonella might compromise the
effectiveness of current antimicrobial strategies, which constitute
a serious public risk for humans (Falgenhauer et al., 2016).

Pork consumption has been reported as a likely source of
contamination for humans to acquire mcr-1, ESBLs, and FQs
genes carrying S. typhimurium strains (Lu et al., 2019). In
this study, we characterized 11 mcr-1-carrying S. typhimurium
isolates from raw pork and RTE pork products and tracked their
source to gain insight into their public health impact.

MATERIALS AND METHODS

Strains Isolation and Identification
During our routine surveillance of foodborne pathogens from
various food products during 2016–2017 in Guangdong, China,

11 S. typhimurium isolates resistant to colistin and carrying
the mcr-1 gene were recovered. One of the isolates (named
GSJ/2017-Sal.-008, hereafter 17Sal008) was isolated from a
retail RTE dumpling with pork and cabbage stuffing in
Guangzhou in 2017, while the remaining 10 isolates were
collected from raw pork products from retail markets in
Guangzhou and Heyuan city in 2016 (Supplementary Table 1).
The isolates were identified by biochemical confirmation
using API 20E test identification test strips (bioMérieux,
France), as well as amplification of the invA gene by
PCR (Bai et al., 2016). The serotype was determined by
the slide agglutination test, using Salmonella antisera (SSI
Diagnostica, Denmark) according to the White-Kauffmann-Le
Minor scheme.

The isolates were routinely grown in Luria-Bertani (LB;
Guangdong Huankai Microbial Sci & Tech, Guangzhou, China)
broth or on LB agar plates at 37◦C for 12–24 h.

Antibiotic Susceptibility Testing
The susceptibility of the Salmonella isolates to a panel of
antimicrobial drugs (Hangzhou Microbial Reagent Co., Ltd.,
China), such as amikacin, ampicillin, ampicillin-sulbactam
sodium, amoxicillin clavulanic acid, aztreonam, ciprofloxacin,
cefazolin (1st generation), cefoxitin (2nd generation), cefuroxime
(2nd generation), cefotaxime (3rd generation) and ceftazidime
(3rd generation), cefepime (4th generation), chloramphenicol,
doxycycline, ertapenam, fosfomycin, gentamicin, imipenem,
meropenem, nalidixic acid, netilmicin, peracillin, tetracycline,
trimethoprim/sulfamethoxazole, tigecycline, and tobramycin,
was determined by disk diffusion antibiotic susceptibility testing
(CLSI, 2017). Minimal inhibitory concentrations (MICs) to
polymyxin B/colistin, ciprofloxacin, and cefotaxime (Sigma-
Aldrich, St. Louis, MO) were determined by broth microdilution
(CLSI, 2017). Results were interpreted according to the CLSI
breakpoints; i.e., Salmonella isolates with MICs of colistin
≤2µg/ml were categorized as susceptible, and those with
MICs ≥4µg/ml were recorded as resistant. For cefotaxime,
isolates with MICs of ≤1µg/ml were considered susceptible,
and those with MICs ≥4µg/ml were categorized as resistant.
For ciprofloxacin, isolates with MICs ≤0.06µg/ml were
considered susceptible, while those with MICs of ≥1µg/ml
were considered resistant. A tentative ESBL production
phenotype was confirmed by a double-disk test comparing the
zone diameters between ceftazidime (30 µg) and cefotaxime-
clavulanic acid (30/10 µg) disks and between cefotaxime (30
µg) and ceftazidime-clavulanic acid (30/10 µg) disks (CLSI,
2017). The reference strain E. coli ATCC 25922 served as
quality control.

Whole-Genome Sequencing and
Annotation
The genomic DNA of the isolates was extracted using a
commercial DNA extraction kit (Magen, Guangzhou, China)
following the manufacturer’s recommendations. The whole
genome of each isolate was sequenced on Illumina Hiseq×10
with 150 bp paired-end reads (MajorBio Co., Shanghai,
China). Illumina sequencing generated at least 368x sequence
coverage depth which was sufficient to allow further analysis
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(Supplementary Table 2). The genome of 17Sal008 was
further sequenced on MinION (Oxford Nanopore, Oxford,
United Kingdom). For the MinION platform, the library
was prepared using the ONT 1D ligation sequencing kit
(SQK-LSK109) with the native barcoding expansion kit (EXP-
NBD104). The genome was assembled using a combination of
short- and long-reads by SPAdes V3.14.0 (Bankevich et al., 2012)
and Unicycler hybrid assembler V0.4.8 (Wick et al., 2017), and
annotated by Prokka V1.14.6 (Seemann, 2014).

Clonal analysis was assessed by MLST 2.0 (http://mlst.
warwick.ac.uk/mlst/dbs/Senterica). The presence of acquired
antibiotic resistance genes and mutations in the quinolone
resistance-determining regions (gyrA, gyrB, parC, and parE) was
assessed by ResFinder V4.1 (Zankari et al., 2012), and was further
determined by BLASTn (http://blast.ncbi.nlm.nih.gov/Blast.cgi).
The plasmid was predicted by PlasmidFinder V2.0.1 (Carattoli
et al., 2014). The plasmid of 17Sal008 was compared with the
most closely related plasmids using BLASTn (http://blast.ncbi.
nlm.nih.gov/Blast.cgi) and BLAST Ring Image Generator (BRIG)
(Alikhan et al., 2011).

Phylogenetic Analysis of the Genomic
Sequences
To assess the relatedness of foodborne S. typhimurium isolates
recovered in this study with other S. typhimurium strains from
different sources in China, we retrieved all 83 genome sequences
of S. typhimurium that have been released from EnteroBase
databases and performed core-genome Multi Locus Sequence
Typing (cgMLST) (cgMLST scheme available on EnteroBase,
https://enterobase.warwick.ac.uk, accessed on 9 March 2022).
Similar but non-identical strains [strains showing different core
genome Sequence Types (cgST)] were identified in EnteroBase
by using the hierarchical clustering method (HierCC) that allows
for grouping of strains into hierarchical clusters (HCs) that can
differ up to a specified and fixed number of cgMLST alleles. This
number is indicated by the suffix following “HC” (e.g., HC5 for 5
cgMLST allelic differences). Isolates belonging to the same HC10
cluster were considered a possible epidemiologically linked, and
isolates belonging to the same HC5 cluster were considered
highly probably epidemiological linked (Bonifait et al., 2021).

To assess the genetic relationship between strains, a
minimum-spanning tree was created from cgMLST allelic
differences in EnteroBase using GrapeTree with the RapidNJ
algorithm (Zhou et al., 2020). The assembly sequences are
publicly available from EnteroBase; their accession numbers
(barcodes) are listed in Supplementary Table 1.

Conjugation
Conjugation was conducted by solid mating on a filter
(Whatman, Maidstone, UK) by using sodium azide-resistant E.
coli J53 as a recipient, and selection of transconjugants on LB agar
containing 150µg/ml sodium azide and 16µg/ml cefotaxime, as
previously described (Li et al., 2021). The transfer of plasmid to
transconjugants was confirmed by PCR targeting the mcr-1 gene
with primer mcr-1-F (5′- ATGATGCAGCATACTTCTGTG-3′)
and mcr-1-R (5′-TCAGCGGATGAATGCGGTG-3′) (Luo et al.,
2017), and further sequenced the plasmid DNA extracted from

selected transconjugants on Illumina Hiseq platform (MajorBio
Co., Shanghai, China).

Nucleotide Sequence Accession Number
The raw sequence data of all 11 isolates were deposited
in the Enterobase database under the barcode numbers:
SAL_LB2715AA to SAL_LB2720AA. The assembly genome
sequence of S. typhimurium 17Sal008 was deposited in the
Nucleotide database under the accession number: CP050130
and CP050131.

RESULTS

Identification of Salmonella
The obtained isolates were confirmed as S. enterica serovar
Typhimurium by biochemical confirmation, 16S rRNA gene
sequencing, serotyping, and whole-genome sequencing. Multi-
locus sequence typing analysis showed that all isolates belong to
sequence type 34 (ST34).

Antibiotic Susceptibility and Antibiotic
Resistance Determinants
All isolates were multi-drug resistant (MDR), exhibiting
resistance to 5–10 antibiotic classes and were confirmed to carry
6–24 resistance genes by Resfinder (Table 1). All isolates were
resistant to colistin with a MIC value of 4µg/ml and carried the
mcr-1 gene (Table 1). Themcr-1 gene was in the most conserved
structure mcr-1-orf (the orf encodes the putative PAP family
transmembrane protein) in eight isolates, and in the mobile
structure ISApl1-mcr-1-orf in three isolates (Figure 1).

Nine isolates were resistant to cefotaxime with an MIC
value of 4–256µg/ml. Of them, two isolates produced ESBLs
conferring high resistance levels to cefotaxime (with MIC values
of 128 and 256µg/ml, respectively), and were found to carry
the blaCTX−M−14 gene. Seven isolates exhibited lower cefotaxime
resistance with MIC values ranging from 4 to 32µg/ml
(Table 1).

Eight isolates were resistant to ciprofloxacin (with MIC values
of 1–8µg/ml, respectively), and seven of them harbored oqxAB
and/or qnrS2 (Table 1). No FQs resistance genes were identified
in two isolates (SH16SF0786 and SH16SF0787). Mutations were
not identified in the quinolone resistance-determining regions
(gyrA, gyrB, parC, and parE) in all isolates.

Phenotypically, eight isolates were co-resistant to colistin,
ciprofloxacin, and cefotaxime (Table 1). Among these isolates,
one pork isolate SH16SF0850 co-harbored mcr-1, blaCTX−M−14,

and oqxAB, and the RTE pork isolate 17Sal008 co-harboredmcr-
1, blaCTX−M−14, oqxAB, and qnrS2 genes (Table 1). In addition,
all isolates were predicted to contain plasmids with replicon types
IncI2, IncHI2, IncN, IncFII, and IncX4 (Table 1). Notably, both
isolates SH16SF0850 and 17Sal008 carried mcr-1, blaCTX−M−14,
oqxAB, and/or qnrS2 genes contained IncHI2 plasmid.

Phylogenetic Analysis and Genomic
Comparisons
In this study, we found several clusters among the 83
S. typhimurium isolates from different sources in China
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TABLE 1 | The antibiotic resistance profiles of Salmonella typhimurium isolates and the selected transformant of 17Sal008 (17Sal008T).

Strains lnc group MIC (mg/L) Resistance determinants Other resistance genes Antibiotic

resistanceb

PB CIP CTX PB CIP ESBLs

SH16SF0332 IncHI2 IncN 4 8 4 mcr-1 oqxA, oqxB,

qnrS2

– arr-3, aac(6’)-Ib-cr, aadA1,

aadA2, aph(3’)-Ia, blaOXA−1,

catB3, cmlA1, dfrA12, floR,

mef(B), mph(A), sul1, sul3, tet(A),

tet(B), tet(M)

TOB, FEP, CHL,

AMP, CIP, PB,

SXT, NAL, TET

SH16SF0487 IncI2 4 <0.25 1 mcr-1 - – aph(3”)-Ib, aph(6)-Id, blaTEM−1β,

tet(B), sul2

TOB, AMP, PB,

SXT, TET

SH16SF0764 IncHI2 4 <0.25 <0.25 mcr-1 oqxA, oqxB – aadA1, aadA2, aph(3”)-Ib,

aph(6)-Id, blaTEM−1β, cmlA1,

sul2, sul3, tet(B)

TOB, CHL, AMP,

CIP, PB, SXT, NAL,

TET

SH16SF0765 IncHI2 4 <0.25 4 mcr-1 oqxA, oqxB – aadA1, aadA2, aph(3”)-Ib,

aph(6)-Id, blaTEM−1β, cmlA1,

sul2, sul3, tet(B)

PB, TOB, CHL,

AMP, CIP, SXT,

NAL, TET

SH16SF0776 IncFII

IncHI2

IncX4

4 4 4 mcr-1 oqxA, oqxB – arr-3, aac(3)-IV, aac(6’)-Ib-cr,

aadA1, aph(3’)-Ia, aph(3”)-Ib,

aph(4)-Ia, aph(6)-Id, blaOXA−1,

catB3, cmlA1, floR, mph(A), sul1,

sul2, sul3, tet(A), tet(B)

TOB, FEP, CHL,

AMP, CIP, PB,

SXT, NAL, TET,

GEN

SH16SF0784 IncFII

IncHI2

IncX4

4 4 8 mcr-1 oqxA, oqxB, – arr-3, aac(3)-IV, aac(6’)-Ib-cr,

aadA1, aph(3’)-Ia, aph(3”)-Ib,

aph(4)-Ia, aph(6)-Id, blaOXA−1,

catB3, cmlA1, floR, sul1, sul2,

sul3, tet(A), tet(B)

TOB, FEP, CHL,

AMP, CIP, PB,

SXT, NAL, TET,

GEN

SH16SF0785 IncFII

IncHI

IncX4

4 4 8 mcr-1 oqxA, oqxB - arr-3, aac(3)-IV, aac(6’)-Ib-cr,

aadA1, aph(3’)-Ia, aph(3”)-Ib,

aph(4)-Ia, aph(6)-Id, blaOXA−1,

catB3, cmlA1, floR, mph(A), sul1,

sul2, sul3, tet(A), tet(B)

TOB, FEP, CHL,

AMP, CIP, PB,

SXT, NAL, TET,

GEN

SH16SF0786 IncFII

IncHI

IncX4

4 4 16 mcr-1 – – arr-3, aac(3)-IV, aac(6’)-Ib-cr,

aph(3”)-Ib, aph(4)-Ia, aph(6)-Id,

blaOXA−1, catB3, floR, mph(A),

sul1, sul2, tet(A), tet(B)

TOB, FEP, CHL,

AMP, CIP, PB,

SXT, TET, GEN

SH16SF0787 IncFII

IncHI

IncX4

4 1 32 mcr-1 – – arr-3, aac(3)-IV, aac(6’)-Ib-cr,

aph(4)-Ia, aph(6)-Id, blaOXA−1,

catB3, mph(A), sul1, sul2, tet(A),

tet(B)

TOB, FEP, CHL,

AMP, CIP, PB,

SXT, TET, GEN

SH16SF0850 IncHI2 4 8 256 mcr-1 oqxA, oqxB blaCTX−M−14 aadA1, aph(3’)-Ia, cmlA1, fosA3,

sul1, sul3

TOB, FEP, CHL,

AMP, CTX, CIP,

PB, SXT, NAL,

CAZ

17Sal008 IncHI2 4 4 128 mcr-1 oqxA, oqxB,

qnrS2

blaCTX−M−14 arr-3, aph(3’)-Ia, aadA1, aadA2,

aac(6’)-Ib-cr, aac(3)-IV,

aph(4)-Ia, aph(3”)-Ib, aph(6)-Id,

blaOXA−1, cmlA1, catB3, dfrA12,

floR, sul1, sul2, sul3, tet(A), tet(B)

TOB, FEP, CHL,

AMP, CTX, CIP,

PB, SXT, NAL,

TET, CAZ, GEN

17Sal008T IncHI2 4 4 128 mcr-1 oqxA, oqxB,

qnrS2

blaCTX−M−14 arr-3, aph(3’)-Ia, aadA1, aadA2,

aac(6’)-Ib-cr, aac(3)-IV,

aph(4)-Ia, blaOXA−1, dfrA12,

cmlA1, catB3, floR, sul1, sul2,

sul3, tet(A)

TOB, FEP, CHL,

AMP, CTX, CIP,

PB, SXT, NAL,

TET, CAZ, GEN

E. coli J53 0.5 <0.5 <0.25

aTOB, tobramycin; FEP, cefepime; CHL, chloramphenicol; AMP, ampicillin; CIP, ciprofloxacin; PB, polymyxin B; SXT, trimethoprim/sulfamethoxazole; NAL, nalidixic acid; TET, tetracycline;

GEN, gentamicin; CAZ, ceftazidime.
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FIGURE 1 | Genetic comparison of mcr-1 gene contexts of 11 foodborne Salmonella typhimurium. Light gray shading denotes homology regions.

(Figure 2A). These isolates belonged to six classical MLST
types, with the most frequent being ST19 (45.8%) and ST34
(45.8%) (Supplementary Figure 1). cgMLST and phylogenetic
analysis showed that all isolates harbored a unique cgST profile
(Supplementary Table 1).

For the pork isolates, five of them (SH16SF0784, SH16SF0785,
SH16SF0786, SH16SF0787, and SH16SF0776) collected in
the same batch from Heyuan city were clustered together,
and they belonged to the same HC5 cluster (Figure 2A,
Supplementary Table 1), indicating they were highly probably

epidemiological linked. However, another two isolates
(SH16SF0764 and SH16SF0765) from this batch were not
linked with these five isolates, as indicated by different numbers
at the HC10 cluster. Instead, the two isolates (SH16SF0764
and SH16SF0765) together with SH16SF0332 and SH16SF0487
were clustered with human isolate SH16G2457 (Barcode:
SAL_LB2900AA), seafood isolate FDA885362-2-1 (Barcode:
SAL_DA0347AA), and RTE pork isolate 17Sal008 (Figure 2A).
However, no epidemiological links were observed among them
(Supplementary Table 1). Specifically, for RTE pork isolate
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FIGURE 2 | Phylogenetic analysis of 83 S. typhimurium isolates from different sources in China. (A) A minimum-spanning tree based on core-genome Multi Locus

Sequence Typing (cgMLST) analysis using a log depiction of branch length. The position of 17Sal008 isolate is indicated in red font and pork isolates in blue font. Each

circle represents a cgMLST group and the size of the circle is proportional to the number of isolates in that group. (B) Detailed information of strains in the branch

contained 17Sal008. The 17Sal008 isolate is marked blue.

17Sal008, cgMLST results differentiated it with closely related
human isolate SH16G2457 and seafood isolate FDA885362-
2-1, as well as pork isolate SH16SF0332 up to HC10 level

(a maximum of 10 cgMLST allelic variations) (Figure 2B,
Supplementary Table S3). Therefore, it did not allow for
inferring any epidemiological links between RTE pork isolate
17Sal008 with other strains in China.

In addition, no epidemiological links were identified in
isolates from the same region but in different batches, such
as pork isolates SH16SF0332, SH16SF0487, and SH16SF0850
(Figure 2A, Supplementary Table 1).

Comparative Analysis of Plasmid and
Genetic Contexts Analysis
As S. typhimurium 17Sal008 was an MDR and an isolate
identified from RTE pork product that was co-resistant to
colistin, 3GCs, and FQs and harbored mcr-1, blaCTX−M−14,
qnrS2, and oqxAB genes which have not been reported
previously, we further revealed the genetic contexts of MDR
genes by a combination of short- and long-read sequencing
(HiSeq and MinION). S. typhimurium 17Sal008 contained
a circular plasmid, denoted as pSal008. The pSal008 is a
298,622 bp IncHI2 plasmid, with 374 predicated CDSs and
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FIGURE 3 | Sequence comparison of plasmid pSal008 with pSH16G2457 (GenBank no. MH522421.1) from a clinical S. typhimurium strain in BLAST Ring Image

Generator (BRIG). Reference plasmid pSH16G2457 is indicated in blue in the inner circles.

an average GC content of 46.9%. The pSal008 co-harbored 21
antibiotic resistance genes encoding resistance to aminoglycoside
[aac(3)-IV, aac(6’)-Ib-cr, aadA1, aadA2, aph(3’)-Ia and aph(4)-
Ia], colistin (MCR-1), β-lactam (blaOXA−1, blaCTX−M−14),
fluoroquinolone (oqxAB, qnrS2), phenicol (catB3, floR, and
cmlA1), rifampicin (arr-3), sulfonamide (sul1, sul2, and
sul3), tetracycline [tet(A)], and trimethoprim (dfrA12). In
addition, anticancer agents-bleomycin resistance encoding
gene bleO along with the 5-nitroimidazole-based (5-Ni)
antimicrobial resistance-encoding gene nimC/nimA were
identified. The plasmid also harbors quaternary ammonium
resistance genes (qacL and qacE11) and a large number of
metal tolerance genes, such as efflux systems to detoxify copper
(pcoABCDRSE, cusF, and cusB), silver (silACEPRS), as well as
tellurite resistance systems (terABCDEFWZ). Pathogenicity-
related virulence gene virB and HigB/HigA toxin/antitoxin
system were also found on the plasmid. Transposons, such
as IS26, were found to be abundant on the plasmid. In
addition, two copies of Class I integrase were located on the
plasmid (Figure 3).

BLASTn comparison of the entire plasmid sequence to
microbial sequences in GenBank indicated that it was most
closely related to pSH16G2457 (GenBank no. MH522421.1) from
a S. typhimurium strain isolated from a 1-year-old diarrheal
outpatients in Shanghai, China in 2016 (Figure 3), with 99.98%
nucleotide identity and 99% sequence coverage.

The mcr-1 gene in pSal008 was in the mcr-1-orf structure.
The oqxAB, qnrS2, and blaCTX−M−14 were found to be
located in composite transposons, IS26-orf -oqxA-oqxB-IS26,
IS5-blaCTX−M−14-orf -ISEc9, and IS26-orf -qnrS2-IS26-folP1-
qacE11-arr3-cat-blaOXA−1-aac(6’)-Ib-cr-IS26, respectively. The
latter composite transposon contained an MDR gene cluster.
BLASTn comparison of the composite transposons showed that
they were widely distributed in chromosomal or plasmids of
various Enterobacteriaceae species (data not shown).

Horizontal Transfer of the pSal008
PCR and sequencing results confirmed the successful transfer
of the plasmid pSal008 to a plasmid-free recipient, E. coli J53.
Antimicrobial susceptibility testing revealed the acquisition of
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the plasmid by E. coli caused an 8-fold increase in the MIC
value of polymyxin B, an 8-fold increase for ciprofloxacin, and
a 512-fold increase for cefotaxime (Table 1).

DISCUSSION

The prophylactic use of colistin as a feed additive before 2016 has
resulted in a significant increase in the rate of colistin resistance
among organisms isolated from livestock and poultry farms in
China (Shen et al., 2016). Food-producing animals have been
considered a major reservoir of mcr-1-carrying bacteria (Liu
et al., 2016; Yi et al., 2017; Moon et al., 2021; Sevilla et al.,
2021; Timmermans et al., 2021). In this regard, pork has been
considered one of the major contamination sources of mcr-1-
harboring Salmonella (Hu et al., 2019; Lu et al., 2019; Elbediwi
et al., 2020). Additional whole genomic characterization of mcr-
1-harboring Salmonella from pork and pork products is required
to fully understand the mechanism of their transmission and
control their spread along the food chain. The mcr-1 gene
positive S. typhimurium ST34 strains were considered the main
serotype contributing to the spread of the mcr-1 gene among
food-producing animals in China (Wong et al., 2013; Sun et al.,
2014; Yi et al., 2017). In this study, we characterized 11 mcr-1-
harboring S. typhimurium isolates recovered from retail pork and
RTE pork products.

All of the isolates were MDR and contained multiple
resistance genes. The colistin resistance was predicted to be
encoded by the mcr-1 gene. Different resistance levels were
observed in 3GCs resistant strains. The strains exhibiting high-
level resistance to cefotaxime were predicted to be associated
with blaCTX−M−14. Several strains were found to exhibit a low
resistance level to cefotaxime without corresponding resistance
genes, which might be explained by other mechanisms, such as
efflux pumps (Jacoby, 2009). All ciprofloxacin-resistant strains
were low-level resistant, which may be contributed to the
combination of efflux pumps (oqxAB) and the presence of
plasmid-mediated quinolone resistance (PMQR) determinant
(qnrS) (Lin et al., 2015). In addition, no PMQRs and target
mutations were observed in two ciprofloxacin-resistant isolates,
which leads to the mechanisms to be further explored.

Importantly, most of these isolates were co-resistant to the
front-line antibiotics, colistin, 3GCs, and FQs. Two of these
isolates were identified to harbor plasmid-mediated mcr-1,
ESBLs, and FQs genes. Co-occurrence of plasmid-mediatedmcr-
1, ESBLs, and FQs genes in Salmonella has only been sporadically
reported (Hu et al., 2019; Lu et al., 2019; Luo et al., 2020). A
large-scale epidemiological survey of 2,555 Salmonella isolates
cultured from foods in China found only one isolate of S.
London from raw pork that co-harbored plasmid-mediatedmcr-
1, blaCTX−M−55, and qnrS1 genes (Hu et al., 2019). Three out of
12,053 Salmonella isolates from diarrheal outpatients in China
were confirmed to co-harbor mcr-1, ESBLs, and qnrS genes (Lu
et al., 2019). One S. typhimurium isolate, collected from 280
bloodstream and 110 intestinal infection samples from inpatients
in 15 provinces from 2014 to 2017, was confirmed to carrymcr-1,
blaCTX−M−14, oqxAB, and qnrS1 genes (Luo et al., 2020). To the
best of our knowledge, S. typhimurium ST34 isolate from an RTE
food product harboring plasmid-mediated mcr-1, blaCTX−M−14,

oqxAB, and qnrS2 genes has not been reported previously.
Despite the frequency of co-occurrence of mcr-1, ESBLs, and
FQs genes in Salmonella remains very low, the emergence of
plasmid-mediated mcr-1, blaCTX−M−14, oqxAB, and qnrS2 genes
in RTE pork product raises serious concern and should be further
investigated, as they may transfer to a human directly.

The mcr-1 gene was found to be more often inserted into
the most conserved structure mcr-1-orf in pork and RTE pork
isolates, suggesting it was stabilized and plasmids might be the
more efficient vehicle for its disseminating. In RTE pork isolate
17Sal008, the blaCTX−M−14, oqxAB, and qnrS2 genes were located
in composite transposons, which have been identified in plasmids
of various Enterobacteriaceae species, indicating the acquisition
of these genes by the plasmid pSal008 and the transferability of
these genes among different bacteria species.

The IncHI2 type plasmid pSal008 identified in this study
was observed to be transferable to E. coli. The highly similar
pSH16G2457 has been confirmed to be capable of transferring
from S. typhimurium strain to S. typhi and K. pneumoniae,
and from E. coli to Salmonella spp. previously (Lu et al.,
2019). Interestingly, phylogenetic and cgMLST analysis indicated
that the host of pSal008 and the highly similar pSH16G2457
had no possible epidemiological links, which suggests the
transfer of the plasmid among different S. typhimurium strains.
These results together indicated that this plasmid is highly
transferable and might contribute to the development of co-
resistance to colistin, 3GCs, and FQs, which will compromise
the effectiveness of current antimicrobial strategies and impose
a therapeutic challenge.

Phylogenetic and cgMLST analysis showed that several mcr-
1 carrying pork S. typhimurium isolates from the same region
and the same batch were highly probably epidemiological
linked, suggesting they might come from the same source.
Moreover, different mcr-1 carrying S. typhimurium strains
were present in pork regardless of the same or different
regions. In addition, no possible epidemiological links were
found in the colistin, 3GC, and FQs co-resistant RTE pork
S. typhimurium 17Sal008 with isolates from different sources
in China. Thus, the source of this isolate remains obscure.
We suggest a continuous surveillance program be conducted
to monitor the epidemic trends of Salmonella with colistin,
3GC, and FQs resistance in animal products, food, the
community, and hospitals to help put forward effective
control measures.

CONCLUSION

In summary, our study revealed that the mcr-1 harboring
S. typhimurium from raw pork and RTE pork products was
all MDR, contained multiple genes, and some of them were
highly probably epidemiological linked, indicating that pork and
pork products were potential reservoirs of mcr-1-harboring S.
typhimurium. To the best of our knowledge, we describe the
first S. typhimurium ST34 isolate obtained from an RTE food
product co-harboring plasmid-mediated mcr-1, blaCTX−M−14,
oqxAB, and qnrS2 genes. The transmission of this plasmid may
accelerate the development and dissemination of isolates co-
resistant to colistin, 3GCs, and FQs that are front-line drugs of
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choice for treating severe Salmonella infections. Thus, sustained
surveillance needs to be conducted to monitor the epidemic
trends of Salmonella with plasmid-mediated mcr-1, ESBLs, and
FQs genes in animal products and RTE food products to prevent
their transmission along the food chain.
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