
MethodsX 12 (2024) 102686 

Contents lists available at ScienceDirect 

MethodsX 

journal homepage: www.elsevier.com/locate/methodsx 

Topology Regulated Background Extraction (TRBE) method for 

eye fundus images 

G.J. Avilés-Rodríguez a , ∗ , J.I. Nieto-Hipólito 

b , M.A. Cosío-León 

c , 
G.S. Romo-Cárdenas d , J.D. Sánchez-López b , M. Vázquez-Briseño 

b 

a Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Blvd. Juan A. Zertuche y Blvd. Los Lagos S/N. Fracc. Valle Dorado 

22890 Ensenada, Baja California, Mexico 
b Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana Número 

3917, Colonia Playitas 22860, Ensenada, Baja California, Mexico 
c Universidad Politécnica de Pachuca, Carr. Cdad. Sahagún-Pachuca Km. 20, Ex-Hacienda de Santa Bárbara, 43830 Zempoala, Hidalgo, Mexico 
d Blueriver, Professional Services, Shutan Medina 139A, Mérida, 97133, Mexico 

a r t i c l e i n f o 

Method name: 

Topology Regulated Background Extraction for 
Digital Fundoscopy (TRBE) 

Keywords: 

Digital fundoscopy 
Computational homology 
Foreground selection 
Dynamic range 

a b s t r a c t 

One of the initial steps in the preprocessing of digital fundoscopy images is the identification 
of pixels containing relevant information. This can be achieved through different approaches, 
one of them is implementing background extraction, reducing the set of pixels to be analyzed 
later in the process. In this work, we present a background extraction method for digital fun- 
doscopy images based on computational topology. By interpreting binarized images as cubical 
complexes and extracting their homological groups in 1 and 2 dimensions we identify a subset of 
luminescence values that can be used to binarize the original grayscale image, obtaining a mask 
to achieve background extraction. This method is robust to noise and suboptimal image quality, 
facilitating the analytical pipeline in the context of computer aided diagnosis approaches. This 
method facilitates the segmentation of the background of a digital fundoscopy image, which al- 
lows further methods to focus on pixels with relevant information (eye fundus). This tool is best 
suited to be implemented in the preprocessing stages of the analytical pipeline by computational 
ophthalmology specialists. 

• It is robust to noise and low-quality images. 
• Output provides an ideal scenario for down-the-line analysis by facilitating only relevant 

pixels in a digital fundoscopy. 
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Background 

Background segmentation in eye fundus images is a critical step in computational ophthalmology, enabling automated analysis for 
the detection and monitoring of various eye diseases such as diabetic retinopathy, glaucoma, and age-related macular degeneration. 
The goal of background segmentation is to isolate the anatomical structures of interest (the optic disc, blood vessels, and macula)
from the rest of the image to facilitate their detailed examination. This process involves distinguishing these structures from the image
background, which may include less relevant anatomical features and noise [9] . 

Background segmentation in digital eye fundus images presents several significant challenges that complicate the accurate analysis 
and diagnosis of ocular conditions. One primary issue is the variability in image quality, which can arise from differences in imaging
equipment, variations in lighting conditions, and patient-specific factors such as involuntary eye movements or the presence of 
cataracts, all of which can obscure or distort the anatomical structures of interest. Additionally, the inherent anatomical variation
among individuals, such as differences in the size, shape, and color of the optic disc, blood vessels, and macula, poses a considerable
challenge, as segmentation algorithms must be robust enough to accurately identify these structures across diverse populations. 
Pathological conditions further exacerbate these challenges; diseases like diabetic retinopathy, glaucoma, and age-related macular 
degeneration can significantly alter the appearance of retinal features, necessitating segmentation methods that are adaptable to a 
wide range of normal and pathological states. Furthermore, the presence of artifacts, such as reflections or shadows, and the need
for high precision in distinguishing closely situated or overlapping structures, add layers of complexity to developing effective and
reliable background segmentation techniques [2] . Addressing these challenges requires sophisticated image processing and machine 
learning approaches, capable of accommodating the wide variability and complexity of fundus images. 

In computational ophthalmology, the accurate segmentation of eye fundus images is foundational for automated disease detection 
and monitoring systems [5] . 

Method details 

A color eye fundus image is required as input for this method, the process can be summarized in three general phases: 

1. Image preparation. 
Where the image is loaded, converted into grayscale and the image histogram is obtained. 

2. Operations based on the image histogram vector. 
Where a subset of luminescence values is selected from the histogram and used as threshold for binarizing the grayscale image,
saving the resulting images in a new stack. 

3. Homology regulated evaluation. 
Where the homological groups in 1 and 2 dimensions are obtained from the set of binarized images generated in the previous
steps. Then both vectors (Betti 1 and Betti 2) are analyzed to find the indexes where minimum change in their values is found,
these values will be saved as a subset and reported as suitable binarizing threshold values. 

The output of the process is a set of integer numbers representing an interval of luminescence values suitable for binarizing the
input grayscale image and obtaining a mask for background and foreground segmentation of the eye fundus digital image. 

Fig. 1 provides a visual summary of this process: 

Fig. 1. Visual summary of the general process for topology regulated background extraction of eye fundus digital images. 
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For the examples of the method we will use an image from the APTOS dataset ( “ [1] Blindness Detection, ” n.d.). 

Steps in the algorithm 

1. Load image. 
• Digital fundoscopy images are generally color images, the file is loaded in RGB format using the openCV python package.

Fig. 2. Fundoscopy image from the APTOS dataset ( fcc6aa6755e6.png ). 
2. Convert color image to grayscale. 

• The conversion is done by the python package openCV following a weighted method using the following formula: 
L = (0.299∗ R) + (0.587∗ G) + (0.114∗ B) 

Where: 
L = luminescence. 
R = red image matrix. 

G = green image matrix. 

B = blue image matrix. 

Fig. 3. Grayscale version of Fig. 2 , converted following the formula shown. 
3. Obtain image histogram. 

• The histogram is obtained by following the formula as presented by (Marques, Oge, 2011) [6] : 
h(k) = nk = card{( x,y ) | f ( x,y ) = k } 

Where: 
• k = {0,1,…,L - 1}, where L is the number of gray levels in the image. 
• card{...} refers to the cardinality of the set or the number of elements in each set nk. 

Fig. 4. Image histogram obtained from Fig. 3 . Notice that indexes 0 through 3 have been omitted since the counter in each of those is
very high, given the large number of dark pixels in the image, this only for visualization purposes. 
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Fig. 5. First third of indexes in image histogram selected from Fig. 4 . 

 

 

 

 

 

 

 

 

 

4. Once an image histogram is obtained, the values in the first 85 (one third) indexes are selected, this because the goal of the
process is to achieve segmentation of the background and, in digital fundoscopy images, pixels representing the background 
are generally assigned close-to-zero values (dark or complete dark) ( Fig. 5 ). 

5. Binarization of grayscale image using as threshold (t) the first 85 values of luminescence as selected in previous step. 
• Algorithm 1 is used to generate the binarized images. 
• Notice that from each grayscale image, 85 binarized images are obtained. 
• Images are saved in .bmp format. 

Algorithm 1. Generic image binarization algorithm. 

Fig. 6. Binarized images resulting when applying Algorithm 1 to Fig. 3 using different values for t within the selected indexes in step 4.

6. Obtain homological groups in 1 and 2 dimensions of the binarized images. 
• In order to achieve this the binarized image is saved as a bit map format, then it is interpreted as a cubical complex, for a

detailed explanation on cubical complexes and homology see [4] . 
◦ A cubical complex K is a collection of cubes that satisfies the following conditions: 

■ Closed under F aces : If a cube is in K, then all of its faces (of all dimensions) are also in K. A face of a cube
is any result of selecting a subset of the dimensions of the cube and collapsing the cube along those dimensions
to zero length. As an example, the faces of a 3− dimensional cube include its 2− dimensional faces (squares), its
1− dimensional edges, and its 0− dimensional vertices. 

■ Intersecting Cubes : If two cubes in K intersect, their intersection is a face of both cubes. This ensures that the
intersection of any two cubes in the complex is a lower-dimensional cube that is also part of the complex, maintaining
the integrity of the structure corresponding to the space. 

■ Dimension : A cubical complex is said to be of dimension n if the highest-dimensional cube in K is n-dimensional.
However, a complex can contain cubes of various dimensions, from 0− dimensional points up to n-dimensional cubes. 
4 
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◦ A cube or 𝑛 -cube can be formally defined as the Cartesian product of 𝑛 intervals of the form [0 , 1 ] or a point (in the
case of a 0− dimensional cube). 

◦ More formally, an n -dimensional cube C can be defined as: 
C = I1 × I2 ×… × In , 

where each Ii is the interval [0 , 1 ] or a degenerate interval {0} or {1} , corresponding to the faces of the cube. 
◦ Cubical complexes provide a flexible framework for modeling and analyzing topological spaces, particularly those that 

naturally conform to a grid-like structure which is the case for an image matrix. 
• Once the image matrix is interpreted as a cubical complex the corresponding homological groups in 0 and1 dimensions are

obtained and expressed in Betti 0 ( 𝛽0 ) and 1 ( 𝛽1 ) numbers, for a detailed explanation on cubical complexes and homology
see [8] . 
◦ In summary, the process of obtaining homological groups involves breaking down the cubical complex into its con- 

stituent geometric elements, combining these elements to form chains, identifying which of these chains loop back on 
themselves to form cycles, and finally distinguishing those cycles that bound higher-dimensional structures to compute 
the homology groups. For the case of a 2-dimensional cubical complex we have: 
■ 0th Homology Group (H0 ): Reflects the connected components of the complex. 
■ 1st Homology Grupo (H1 ): Reflects loops or edges that do not bound a Surface within the complex. 

◦ Betti numbers are mathematically defined as the rank of the 𝑛 − th homology group (𝐻𝑛 ) associated with a space.
Formally, for a given homology group 𝐻𝑛 the 𝑛 − th Betti number 𝑏𝑛 is given by: 𝑏𝑛 = 𝑟𝑎𝑛𝑘 (𝐻𝑛 ) . This means that each
Betti number summarizes the dimension of its corresponding homology group. In practical terms, when computing the 
homology groups (𝐻0 ,𝐻1 ,𝐻2 , ⋅…) from a cubical or simplicial complex, the Betti numbers will indicate how many 
independent cycles, holes, voids or components exist a teach level of dimensionality that are not boundaries of higher- 
dimensional features ( Fig. 6 ). 

• To obtain Betti numbers in both dimensions we use the software Giotto-TDA by the group at EPFL [8] , Fig. 7 shows the
results of an exercise performed with three binarized images at different threshold values ( 𝑡 ). 

Fig. 7. Examples of calculation of 𝛽0 and 𝛽1 numbers at three different threshold values ( t ). 

7. Calculate the rate of change ( Δ) among the integers of vectors with 𝛽0 and 𝛽1 numbers and keep the subset of continuous
indexes where Δ is minimum per vector. 
5 
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• This was done using the NumPy library in Python, specifically the function NumPy.gradient. 
• For this implementation, minimum Δ was considered any value less than 10. The results can be seen in the following

vectors: 
Indexes in vector of 𝛽0 : [5, 6, 7, 8, 9, 10, 11, 12, 37, 38, 79, 80] 
Indexes in vector of 𝛽1 : [7, 8, 9, 10, 11, 12, 13, 14, 15] 

8. Take the resulting vectors from the two subsets in the previous step ( 𝛽0 and 𝛽1 ) and compare the indexes recorded in both,
keep only matching indexes in a new vector named t . 
t = [7, 8, 9, 10, 11] 

9. Keep indexes with discrete values in t if and only if the minimum-plus-one and maximum values (1,85) are not contained in
the series. 
• This step is done to assure the mask will not generate values for t near complete dark or too close to the luminescence

values where there might be information. 

Fig. 8. 𝛽0 and 𝛽1 values as well as their Δ, the cyan bar shows indexes where continuous minimum change was detected in both 
vectors. 

Notice that the cyan bar represents the interval of continuous indexes that are proposed for the subset t. This maximizes efficacy
of the method to produce suitable threshold values for masks for background/foreground extraction. 

10. The resulting vector t will contain a subset of indexes suitable for binarizing the grayscale version of the input image, obtaining
masks that will allow to achieve background and foreground segmentation of the eye fundus image. 

As seen in Fig. 8 , all resulting masks are suitable to perform background and foreground extraction in the image shown in Fig. 3 .
This method is particularly robust to noise and low quality in eye fundus images ( Fig. 9 ). 

Fig. 9. Resulting masks applying t values proposed by TRBE. 

Method validation 

In order to provide information on the performance of the algorithm, a visualization comparing a background segmentation of
four noisy images taken from the APTOS dataset performed by two different traditional methods versus TRBE is presented in Fig. 10 .
As context the color and grayscale versions of the image are presented as well as a manual segmentation of the background performed
by the authors for the purpose of applying metric evaluations. 

The first thresholding approached used is Otsu´s method, which is a global thresholding technique used in image processing. It
determines the optimal threshold value for converting a grayscale image into a binary image, effectively separating the foreground
from the background. The method assumes that the image contains two classes of pixels (foreground and background) and calculates
the threshold that minimizes the intra-class variance or, equivalently, maximizes the inter-class variance. Otsu’s method is particularly 
effective when the histogram of the image has a bimodal distribution, indicating a clear separation between the pixel intensities of
the object and the background [7] . 

The second method evaluated was Adaptive Gaussian thresholding which is a local thresholding technique, meaning that the 
threshold value is determined for each pixel based on the pixel values in its neighborhood. This method differs from global thresholding
techniques like Otsu’s method, which use a single threshold value for the entire image. Adaptive Gaussian thresholding calculates
the threshold for a pixel by considering a small region around it and applying a Gaussian weighted sum to that region. This approach
6 
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Table 1 

Metric evaluation of background segmentation performance by methods shown in Fig. 10 , the 
median value of MSE and SSIM per image are presented as standard metrics and mean and 
medians of Betti numbers in zero and one dimension are used to complement the analysis. 

Method MSE Medians SSIM Medians B0 Means B0 SD B1 Means B1 SD 

Otsu 0.00714 0.99927 698 1608.44 1006 2513.8 
Gaussean 0.00714 0.99998 737 1843.82 853 2921.6 
TRBE 0.00602 0.99996 3 24.82 6 59.29 

 

 

 

 

 

 

 

 

 

 

 

 

 

is particularly useful for images with varying lighting conditions across different areas, as it can adapt the threshold value locally to
accommodate these changes. Adaptive Gaussian thresholding helps to preserve detail in regions with significant lighting variation, 
making it suitable for more complex segmentation tasks where global thresholding methods might fail [3] . 

In summary, Otsu’s method is a global thresholding technique best suited for images with clear bimodal intensity distributions,
while Adaptive Gaussian thresholding is a local technique that adjusts the threshold value for each pixel based on its local neighbor-
hood, making it better for images with varying lighting conditions. 

Fig. 10. Visualization of performance of Otsu´s and Adaptive Gaussian methods versus TRBE for background segmentation. A subset of 4 color
image from the APTOS dataset, the corresponding grayscale version and a manual segmentation performned by the authors on the grayscale are
added as reference. 

The same exercise was performed in 100 randomly selected images from the APTOS dataset, the results obtained are summarised
using the following metrics: Mean Square Error (MSE), Structural Similarity Index Measure (SSIM), Mean and Standard Deviation 
(SD) of Betti numbers in 0- dimension (B0) and 1- dimension (B1) structures. The results are shown in Table 1 . 

The trend observed in Fig. 10 where TRBE is able to perform a more robust background segmentation, particularly in noisy or
low quality images can be observed in Table 1 as well, where this same method is able to achieve background segmentation with
the least amount of Betti numbers in both dimensions evaluated, which means that it was able to consistently generate segmentation
masks with the least of noise caused by connected structures (isolated dots) or holes (incomplete segmented regions). 

Limitations 

The main limitation we find for this method is when attempting to segment very noisy and severely under illuminated images,
this causes the topological method not to be able to successfully perform steps 7,8 and 9 as described in the Method details section.
This renders the method unable to find a region of minimum change as indicated in the cyan bar in Fig. 8 . Nevertheless, these type
of images tend to be rejected for clinical use, given their lack of quality. 
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