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Background: Locomotion along curved trajectories requires fine coordination among

body segments. Elderly people may adopt a cautious attitude when steering. A simple,

expeditious, patient-friendly walking protocol can be a tool to help clinicians. We

evaluated the feasibility of a procedure based upon a newly designed Figure-of-eight

(nFo8) path and an easy measurement operation.

Methods: Sixty healthy volunteers, aged from 20 to 86 years, walked three times at

self-selected speed along a 20m linear (LIN) and the 20m nFo8 path. Number of steps,

mean speed and walk ratio (step length/cadence) were collected. Data were analysed

for the entire cohort and for the groups aged 20–45, 46–65, and >65 years.

Results: There was no difference in mean LIN walking speed between the two younger

groups but the oldest was slower. During nFo8, all groups were slower (about 16%) than

during LIN. Cadence was not different across groups but lower during nFo8 in each

group. Step length was about 8% shorter in the two younger groups and 14% shorter in

the oldest during nFo8 compared to LIN. Walk ratio was the smallest in the oldest group

for both LIN and nFo8.

Conclusions: A complex nFo8 walking path, with fast and easy measurement of a

simple set of variables, detects significant differences with moderate and large effects

in gait variables in people >65 years. This challenging trajectory is more revealing than

LIN. Further studies are needed to develop a quick clinical tool for assessment of gait

conditions or outcome of rehabilitative treatments.

Keywords: spatiotemporal gait variables, walk ratio, linear trajectory, Figure-of-8 path, ageing

INTRODUCTION

Every day we link up linear walking with turns and circular paths when wemove at home or in open
spaces, so that a fair proportion of the walking time is spent along curved trajectories (1). Hence,
the central nervous system is forced to exert continuous control onto the production of locomotor
movement, since our inherently unstable bipedal gait (2) becomes even more critical during turns
and curved walking (3).
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Successful locomotion along curved trajectories requires fine
control to adapt gait to the environmental constraint (4).
Curved paths imply extra- and intra-rotation of leg and foot
in order to accurately place the foot on the ground (5–9) and
accurate coordination of lower limb segments, between limbs,
and between limbs and trunk in both the sagittal and frontal
planes (10, 11). Definite features have been found in muscle
synergies during curved walking (12, 13).

Depending on the radius of curvature of the path and the
walking velocity, the trunk and the entire body incline toward the
centre of the trajectory: a centripetal force is thereby produced
in order to avoid going off on a tangent (14). In order to do
so, the peak pressure point of the foot sole during heel strike
and toe off is displaced in the frontal plane with respect to its
position in linear walking. This creates a mediolateral torque
generated by gravity that allows smooth progression along the
circular trajectory [see (15)].

Age-related changes in the timing and sequencing of body
segment reorientation have been described. Aged or diseased
people show turning difficulties, opt for a more cautious attitude
when steering and have a higher risk of falling while walking
(16–20). U-turning and returning to the initial position (21) or
sharp turnings represent critical locomotor phases (22), since
they imply rapid lateral translation of the body in addition to
reorientation and alignment with the next travel direction (9).
Patients with Parkinson’s disease walk slowly during curved
walking (23), and turning while walking frequently provokes
freezing (24). Patients with dementia also show slowing in both
progression and performance in cognitive tasks while walking
along curved paths (25).

Assessing the ability to walk along non-linear trajectories
should be a standard procedure in many clinical circumstances
where problems in locomotion become an issue, or to predict
impending or future difficulties in old people (26). However,
description, analysis and quantification of gait (17, 27, 28)
may not be within reach of every rehabilitation facility or
gym training location, more so for complex trajectories (29).
Besides, the preparation of the participants may not be rapid,
and lengthy procedures are not easily accepted by older healthy
volunteers or patients. Figure-of-eight trajectories, supposed
to simulate activities of daily living, have been exploited for
routine evaluation of basic capacities for moving around in an
“ecological” way. In those cases, the person has to freely turn
around two cones placed on the floor at a certain distance
(normally short, about 1.5m), but several variants of this
shape are described (30–35) with no path constraints and no
sharp turns.

Here, we have designed a novel Figure-of-eight (nFo8) path
composed of linear and curved trajectories, with two sharp
(90 deg) turns and two circles, having a total length of 20m
(see Figure 1). We have assessed the feasibility of this protocol
and its ability to rapidly give information about the gait steering
competence of typical old able-bodied participants by means of
an extremely simple and expeditious procedure.We hypothesised
that a particular standardised path containing delineated walking
segments would be sensitive to the necessary adjustments of
leg and foot orientation, trunk inclination and postural changes

compared to linear walking, in particular as age increases. To
this end, simple spatiotemporal variables while walking along
the nFo8 trajectory have been measured in healthy volunteers
of different age, including a group of little studied middle-aged
adults (26), and compared with those obtained while walking
along a linear path.

MATERIALS AND METHODS

Subjects and Design
Participants aged 20–86 years were consecutively admitted to
the study. Recruitment was closed when 20 participants per age
group were collected [20–45 years, mean 32.6 ± 6.5 years ± SD,
15 females (F) and 5 males (M); 46–65 years, mean 54.1± 5.4, 8 F
and 12M; 65–86 years, 74.8 ± 4.1, 9 F and 11M]. All volunteers
were evaluated at the Istituti Clinici Scientifici Maugeri of Pavia.
They were invited to participate if they were able to ambulate
independently, had no history of falls and did not take drugs
acting on the central or autonomic nervous system. Subjects were
excluded if they had vision disorders, clinically evident cognitive
problems or impairment in understanding simple instructions,
muscle-skeletal soreness or other impairments which could affect
balance or gait. The Ethics Committee of the ICS Maugeri
approved the study (n. 806 CEC) and informed consent was
obtained from all participants.

The two trajectories consisted of a 20m long straight path and
of the 20m long novel Figure-of-eight (nFo8) path (Figure 1).
In the linear (LIN) test, participants walked down a hallway of
the hospital ward (overall length more than 40m, 3m wide,
containing no furniture). The nFo8 path was printed on a
thin (<0.5mm), sturdy roll-up plastic carpet (Arti Grafiche
Fimognari, Milano, Italy) laid on the laboratory floor (in an
ample laboratory space allowing for several steps at the end of
the recorded epoch). The nFo8 path was composed of a linear-
walking section (3.7m) followed by two curvilinear sections
(two connected circles, each with a radius of 1m, allowing
for prolonged counter-clockwise and clockwise turning) and a
second linear section (3.7m). The nFo8 path had a width of
20 cm, and the participants placed the feet within the width or
on the borders of the outlined strip with no special effort, thereby
enabling to reliably estimate the walking speed by dividing the
overall path length by the time to cover the distance.

Both walking conditions were tested in a single session. A
series of four walking trials for each condition (LIN, nFo8)
were performed in sequence by the participants, with at least
2min interval between each test. Subjects, wearing their usual
shoes, performed the two series, starting with the LIN or with
the nFo8 condition. For each series, the first of the four trials
(a “familiarisation” test) was discarded from the analysis. The
participant was placed at the beginning of each 20m path. At the
operator’s signal, the participant started walking with eyes open
from the standing position at his/her own spontaneous speed
and data recording started. Subjects were invited to continue
walking a few steps after the end of the path. Time in seconds was
recorded, always by the same operator, by means of a stopwatch
that started with the onset of the first step (at the “go” signal)
and stopped at crossing the target line. Care was taken and
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FIGURE 1 | The novel Figure-of-eight (nFo8) path. The path, printed on a large plastic carpet, is composed of a linear walking section (3.7m) followed by two

curvilinear sections (each with a radius of 1m) and by a second linear section.

instruction given to avoid any “reaction-time” abrupt initiation
and no encouragement was given to take the least time possible
to complete the task.

Outcome Measures and Data Analysis
The mean speed (m/s) was calculated by dividing 20m by the
time to cover the walking distance. The number of steps was
also counted by the operator, and the mean step length (cm)
computed by dividing the walking distance by the number of
steps. The walk ratio (step length/cadence) was also calculated.
All data were tabulated into an Excel R© sheet for further analysis.

The walking speed of the three successive trials were compared
with a 3 (age groups) × 2 (nFo8, LIN) × 3 (successive trials)
repeated-measure analysis of variance (rm-ANOVA). The mean
values ± SDs of the variables recorded while the participants
walked along the linear and the nFo8 path were calculated. The
data were compared with the use of a 3 (age groups) × 2 (nFo8,
LIN) rm-ANOVA. In order to assess gender effects, a 2 (M, F) ×
2 (Fo8, LIN) rm-ANOVA was run. The post-hoc test analysis was
the Fisher’s LSD test, with p < 0.05 considered for significance.
The Cohen’s d values highlighted the strength of the differences
(with d = 0.2, 0.5, 0.8 considered small, medium and large effect
sizes, respectively) (36). The minimum effect size detectable in
the gait speed variable between LIN and nFo8, given our sample
size (n = 60), was calculated (37). Regression lines were also
determined for cadence, step length, walking velocity and walk
ratio, all participants’ data collapsed, for both walking paths
(nFo8 and LIN) and plotted against the age of participants.

Statistical analysis was performed with the software
Statistica R© (StatSoft, Tulsa, OK, USA). The regression
lines (slope and intercept) were compared by means of the
Compare Linear Fit Parameters routine of the software Origin R©

(OriginLab Corporation, Northampton, MA, USA).

RESULTS

Walking Speed
There was no significant difference among the three successive
walking trials following the familiarisation trial, for any age group
or trajectory [main effect of repetition, F(2,114) = 2.38, p = 0.1].
Figure 2 shows the effect of the two different trajectories (LIN;
nFo8) on themean walking speed across all participants clustered
in age groups. Speed was lower during nFo8 than LIN walking
(84% of LIN on average) and significantly different between the
two trajectories [F(1,57) = 198.15, p < 0.0001, d = 3.65]. There
was a significant difference between age groups [F(2,57) = 9.4,
p < 0.001, d = 1.06]. The age-trajectory interaction was close
to significance [F(2,57) = 0.64, p = 0.053]. The post-hoc test
showed that there was no difference in walking speed between
the young and middle-age groups during LIN or during nFo8
(post hoc, p > 0.6 for both comparisons). However, the older
group was significantly slower than the young and middle-age
groups for both trajectories (post hoc, p < 0.05 and d > 0.97
for all comparisons). All participants collapsed, there was no
difference in gait speed between males and females [F(1,58) =

1.62, p = 0.21] and no interaction with the trajectories [F(1,58)
= 0.19, p = 0.67]. Given the sample size of 60 participants, the
study proved to have a sufficient power (>80%) to detect an effect
size in walking speed larger than 0.12 m/s between the nFo8 and
LIN trajectories.

The lower panel of Figure 2 shows the relation between
walking speed and age across all participants (regression lines,
nFo8: y = −0.006 x + 1.4, R2 = 0.24, p < 0.0001; LIN: y
= −0.004 x + 1.6, R2 = 0.12, p < 0.01). The slopes of both
regression lines were not different from each other (p = 0.4).
Conversely, the intercepts with the ordinate were significantly
different (p < 0.001) reflecting the differences between the bars
in the upper panel.
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FIGURE 2 | Mean walking speed of the three age groups (A) and the relationship between walking speed and age across all participants (B). Blue bars and dots refer

to the nFo8, red bars and dots refer to LIN. In all the three age groups, speed was lower during nFo8 than during linear walking. Gait was slower in oldest group than

in the young and middle-age group under both walking conditions. Asterisks indicate significant differences.

Cadence
Figure 3A shows the effect of the two trajectories on the mean
cadence. During the nFo8 walking, the mean cadence was about
6% lower with respect to the linear walking. The difference in
cadence between trajectories was significant [F(1,57) = 31.2, p <

0.001, d = 1.43]. There was no significant difference between age
groups [F(2,57) = 0.49, p= 0.62] and no significant age-trajectory
interaction [F(2,57) = 0.64, p = 0.53]. The post-hoc test showed
that there was a significant difference in cadence between LIN
and nFo8 in each of the three groups (post hoc, p < 0.05, d >

0.45, for all comparisons). All participants collapsed, there was

no difference in cadence between males and females [F(1,58) =
1.3, p = 0.26] and no interaction with the trajectories [F(1,58) =
0.17, p= 0.68].

Figure 3B shows that there was no relation between cadence
and age across all participants. The regression lines fitted to
the data of the two walking conditions (nFo8: y = −0.091 x
+ 112.1, R2 = 0.018, p = 0.31; LIN: y = −0.026 x + 115.4,
R2 = 0.001, p = 0.76) were not significantly different from the
horizontal. The two regression lines had no different slope (p =

0.6). The intercepts with the ordinate were significantly different
(p < 0.05).
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FIGURE 3 | Mean cadence in the three age groups (A) and the relationship between cadence and age across all participants (B). Blue bars and dots belong to the

nFo8, red bars and dots to the LIN. Cadence was lower during nFo8 than during linear walking in all the three groups of age. Asterisks indicate significant differences.

Step Length
During the nFo8 walking, step length was about 10% shorter with
respect to LIN (Figure 4). The difference between trajectories was
significant [F(1,57) = 403.7, p < 0.0001, d = 5.22].

The mean step length was different across age groups [F(2,57)
= 25.6, p < 0.0001, d = 1.81] and there was a significant age-
trajectory interaction [F(2,57) = 7.8, p < 0.001, d = 0.96]. The
step length was shorter in the group > 65 yrs with respect
to the other two groups for both trajectories (p < 0.001, d
> 1.38, for all comparisons). In each age group, step length
was shorter for the nFo8 than for the LIN trajectory (post-hoc,
p < 0.0001, d > 1.84, for all comparisons). All participants

collapsed, there was no difference in step length between males
and females [F(1,58) = 0.67, p = 0.42] and no interaction with
the trajectories [F(1,58) = 2.04, p = 0.16]. Figure 4B shows
the relation between step length and age across all participants
(regression lines, nFo8: y = −0.27 x + 78.1, R2 = 0.39, p
< 0.0001; LIN: y = −0.2 x + 81.6, R2 = 0.27, p < 0.0001).
The slopes of the two regression lines were not different (p
= 0.25) but the intercepts were significantly different (p <

0.001). The bottom panel (c) shows the relationship between the
difference in the step length of each participant walking along
the two paths (nFo8 minus LIN) and age (y = −0.07 x – 3.5,
R2 = 0.17, p < 0.01).
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FIGURE 4 | Mean step length (A) and the relationship between step length and age (B,C). Blue bars and dots refer to the nFo8, red bars and dots refer to LIN. Step

length was shorter during nFo8 than during LIN in the three groups of age. Asterisks indicate significant differences. (B) shows the relationship between step length

and age: the step length diminished with age for both nFo8 and LIN walking path. (C) shows the relationship with age of the individual differences in step length

between the nFo8 and LIN walking paths. The difference (shorter step length with nFo8) increased clearly with age.
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FIGURE 5 | Mean Walk Ratio (WR) (A) and the relationship between WR and age across all participants (B). Blue bars and dots refer to nFo8, red bars and dots to

LIN walking path. WR was just a little smaller in the group >65 yrs than in the other two age groups. Asterisks indicate significant differences.

Walk Ratio
When the mean walk ratio (WR, step length/cadence) of the
three age groups were computed (Figure 5), the rm-ANOVA
found a significant difference in WR between the two trajectories
[F(1,57) = 12.2, p < 0.001, d = 0.87]. In absolute terms, the
difference between the two means amounted to about 0.03, i.e.,
0.63 (LIN)−0.60 (nFo8).

There was no age-trajectory interaction [F(2,57) = 0.38, p
= 0.68]. WR was significantly different between age groups
[F(2,57) = 7.9, p < 0.001, d = 0.96]. It was similar for the
young and middle-aged participants (post-hoc, p > 0.7), but
just smaller in the older than in the other groups (post-hoc,
p < 0.05, for both comparisons for both trajectories). Further,

in the older but not in the young and middle-age group, WR
was smaller for the nFo8 than LIN path (post-hoc, p < 0.05,
d = 0.75). All participants collapsed, there was no difference
in WR between males and females [F(1,58) = 0.03, p = 0.85]
and no interaction with the trajectories [F(1,58) = 0.001, p
= 0.98].

There was no age-trajectory interaction [F(2,57) = 0.38, p
= 0.68]. WR was significantly different between age groups
[F(2,57) = 7.9, p < 0.001, d = 0.96]. It was similar for the
young and middle-aged participants (post-hoc, p > 0.7), but
just smaller in the older than in the other groups (post-hoc,
p < 0.05, for both comparisons for both trajectories). Further,
in the older but not in the young and middle-age group, WR
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was smaller for the nFo8 than LIN path (post-hoc, p < 0.05,
d = 0.75). All participants collapsed, there was no difference
in WR between males and females [F(1,58) = 0.03, p = 0.85]
and no interaction with the trajectories [F(1,58) = 0.001, p
= 0.98].

The lower panel B of the Figure shows the relation between
WR and age across all participants (regression lines, nFo8: y =

−0.002 x + 0.7, R2 = 0.17, p < 0.001; LIN: y = −0.002 x +

0.7, R2 = 0.16, p < 0.01). Slope and intercept with the ordinate
of the two regression lines were not different (p > 0.05, for
both comparisons).

DISCUSSION

This pilot study assessed whether a novel Figure-of-8 (nFo8)
walking path, containing straight and curved segments and
sharp turns and amounting to 20m length overall, is able
to detect changes in locomotor performance of healthy
aged participants walking along complex trajectories. The
analysis was based on the simple comparison of basic
spatiotemporal variables obtained for the linear (LIN) and nFo8
trajectories and in three groups of participants (young, middle-
aged and older). The underpinning stipulation of the study
protocol was that the variables should have been obtained
easily and promptly by one operator and by means of
a stopwatch.

Owing to the patterned nFo8 trajectory, having a width
of the walking strip of 20 cm, all participants succeeded
without effort in placing the footsteps within the borders
of the sketched path. This allowed to calculate the walking
speed along the nFo8 as much as along the LIN path. A
walking path proposed by Belluscio et al. (28), composed
of two large circles, allows the calculation of gait speed
as well. Having a measure of walking speed is important,
because it is the basic variable in gait assessment under
simple and complex conditions (38) and is commonly used
for comparison of gait across participants’ age and patients’
conditions (39).

Gait Speed, Cadence, Step Length
Walking velocity and step length significantly diminished in
the oldest group, as in most studies mentioned above. Overall,
gait speed was lower and step length shorter along curved
than LIN trajectory as has been shown before (7, 8, 40). The
differences between LIN and nFo8 were the largest for the
group of participants older than 65 years. The scatterplots
of gait speed and step length vs. age clearly showed a
cluster of mostly smaller values in the older group for both
LIN and nFo8, but the decrease was larger in the nFo8
than LIN condition. A reduction in speed along the circular
segments, combined with the placement of the feet at the
sharp turns implying control of trunk inclination during the
task, may be liable for the overall slowing of progression and
changes in the spatiotemporal variables. In the older group,
this slowing would indicate a prudent approach to the turns
(16), a circumstance requiring subtle control of the inertial
forces (41).

Overall, in the LIN path, the mean cadence was about 114
steps/min, the mean gait speed about 1.4 m/s and the mean walk
ratio about 0.63 cm/steps/min. These values are comparable to
those of the literature for populations in the same age span, taking
into account the differences in path length such as 20m (42); 4m
(43); 5 or 6 or 7m (44–46); 10m (47). Older participants tended
to have a lower gait speed as already shown for shorter trajectories
(48). Of note, in many studies, cadence during LIN remained
constant across age groups and diseases [e.g., (40, 44, 49, 50)].

In our study, there was a lower cadence across the three
age groups (20–45, 46–65, and 65–86 years) when participants
walked along the nFo8 trajectories. This is in keeping with
(23) for a group of healthy elderly, even if the trajectory was
not exactly the same. Here, the decrease in cadence is likely
due to the challenging experimental setup and the cautious
gait (26) [one sharp 90 deg turn, 1 m-radius of curvature
for the two circles performed in clockwise (CW) and counter
clockwise (CCW) direction in sequence, overall amounting to
12.5m, another sharp turn]. Of note, a radius of 1m requires
a body inclination toward the interior of the trajectory of
about 4 deg with respect to the vertical (14). The gait cycle
might have been just longer around the two sharp turns and
when reversing trunk inclination passing from the CCW to the
CW circle.

Walk Ratio
The WR (step-length/cadence) is a robust index of walking
coordination and control (51). It has been suggested long ago
that WR can be exploited for evaluating the effects of age
and disease on the locomotor pattern (52). WR is normally
invariant across walking velocities. During treadmill walking at
comfortable speed, WR is independent of age as well (53). In
ample cohorts of healthy young or elderly participants walking
straight (54, 55), the WR proved to be very close to that obtained
here during LIN, where WR was constant in the young and
middle-aged participants. The nFo8 slightly reduced the WR
in these groups, but the effect was not significant. Conversely,
in the older group, WR modestly but significantly diminished
during the nFo8 path. The decrease in speed would not be
accountable for the diminished WR, because only very low
speeds affect WR (56). Of note, the mean decrease in the
mean value of step length along the nFo8 path value takes
into account the obvious fact that the step length of the leg
inside the curved trajectory is necessarily shorter than that of
the outer leg (7, 8). Hence, the WR value in the nFo8 condition
is affected by the reduction in the mean step length along
the path.

Oddly, WR is high during dual-task when walking straight
on an uneven surface (57). This cannot be compared to our
nFo8 condition, where WR diminishes in the older group.
This weakens the possibility that walking along the nFo8
requires an enhanced level of attention, as might be supposed
due to the geometrical complication of the path and the
required changes in muscle activity (58, 59). It is an open
question whether the diminished WR in the older group
during nFo8 (with a gentle decrease in cadence and a marked
shortening in mean step length) can be a sign of initial
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problems in the independent neural control of each limb. In
the study by Nakakubo et al. (60), a small WR is associated
with falling in the past year in a cohort of a community-
dwelling elderly people, even if these had no slowing of
gait speed. In patients with multiple sclerosis, an association
was found between the volume of the cerebellum and walk
ratio (61).

LIMITATIONS

Differences in height and body weight have not been taken into
account, and old-old frail participants were not included in the
study. Another limitation consists in the missing comparison
of the effects of age on the walking speed between the present
nFo8 path and the simpler, free walking Fo8 path(s) set by
two traffic cones, which has been a common procedure for
gait evaluation [e.g., (30, 62)]. Such comparison could enhance
our assessment of the advantages of the nFo8 walking path in
the older and the patient, but would not be fully congruous
because the trajectory is obviously not constrained in the free,
short-length, cone-based Fo8 paths. An important limitation
consists in the use of only manual measurement (mean speed
and number of steps was counted by one operator). No
instrumental outcome measures have been gathered nor a video
was taken of the performance in order to check the accuracy
of these measurements. Moreover, head and eye movements
were not recorded. Gaze redirection may be an essential
subcomponent to steering, so that visual and/or oculomotor
deficits should be considered when assessing steering behaviour
(63), because gaze control can be altered in the elderlies (64).
Anyhow, when asked at the end of the walking trials, neither
young or older participants mentioned any intentional visual
guidance of the walking performance, probably because the
path was highly contrasted with respect to the floor and an
intermittent quick glance at the curved trajectory at successive
time-instants was enough to proficiently progress along the
path (65).

IMPLICATIONS AND PERSPECTIVES

Walking performance was characterised here by a few
parameters. This type of measurement (timed performance
and step number) would be very easy to implement in the
clinic. Such a simple approach can smartly highlight meaningful
interactions between age and trajectory pattern. On average,
the time to cover the trajectories was about 14 and 18 s, for
LIN and nFo8, respectively. The spatiotemporal variables of
the group of healthy participants older than 65 years were
definitely outlined by the nFo8 compared to the younger group.
The present LIN and nFo8 paths might be more dependable
for gait velocity assessment than the often used distance
of four or ten metres [e.g., (43, 66)] for durations of only
about 4–9 s (48). Subjects reported no unpleasant sensations
such as dizziness when walking along the nFo8 path. The
distances covered did not produce physical discomfort, and no

participants in any age-group declared fatigue or leg tiredness
(67). The inclusion of middle-aged persons, which are rarely
considered in these studies (68), the comparison between
continuous 20m floor-walking along straight and complex
path (including linear and curved segments and two sharp
turns) and the simple and expeditious mode of collecting
important information appear to have received little attention
so far.

Contrary to linear trajectories, the sharp turns included in the
nFo8 path require accurate and coordinated activity of the leg
intra- and extra-rotator muscles (69–71), which produce pelvis
and trunk rotation over the stance leg (5, 72). While manual
measurement of leg rotator muscles bears a considerable error
(73), a tool such as the nFo8 path would functionally quantify
sensorimotor limitations in walking and turning and represent a
good screening tool in frail elderlies and patients with locomotor
impairment. Further, in older adults, poor executive function
would manifest itself more clearly during the nFo8 than other
types of Fo8 paths. Similar standpoints become evident in a
recent review (74) that supports the superiority of dual tasks
associated to turns and other transfer patterns during gait for fall
prediction in adults over 65 years of age.

Neither temporal patterning of motor primitives nor muscles
synergies seem to be significantly affected by ageing (75), but
spinal maps differ significantly between young and older humans
depending on the biomechanics of the locomotion. Hence,
complex walking paths require a more elaborate activity and
descending control of the spinal circuits assisting locomotion,
thereby producing slower progression during the nFo8 in older
participants (76).

Further research is necessary to assess whether this nFo8
path might help identify gait abnormalities in patients with
different ailments affecting turning while walking (77, 78),
allow an early differential diagnosis in patients with locomotor
impairment of different nature (79, 80), and perform rapid
and reliable quantitative assessments with disease progression
[see (81, 82)].

CONCLUSIONS

The present preliminary results show that it is possible to quickly
assess basic spatiotemporal gait variables in healthy volunteers
walking along a complex path including continuous turning.
The results also show that the nFo8 path is able to pose a
significant challenge to older participants. These preliminary
findings warrant further investigation aimed at defining the
psychometric properties of this protocol in the context of a
cross-sectional study based on a larger number of participants.
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