
PARKINSON’S DISEASE

PD is the second most common neurodegenerative disorder, 
after Alzheimer’s disease, and is classically characterized by 
symptoms such as resting tremor, postural instability, bradykinesia 
and muscular rigidity [1]. Pathologically, PD is defined by a 
progressive degeneration of  dopaminergic neurons in the 
substantia nigra pars compacta, and the presence of intracellular 
inclusions, known as Lewy Bodies, in surviving neurons [1]. 
Despite its initial classification as a motor disorder, PD is currently 
perceived as a whole-brain pathology since it affects multiple 
brain areas and presents a broad variety of symptoms in addition 
to the typical motor symptoms mentioned above. According to 
Braak’s staging hypothesis, the pathological process is thought 

to initiate in either the lower brainstem or in the olfactory bulb. 
Then, as the disease evolves, Lewy body pathology occurs in other 
brain regions and circuits, including the cerebral cortex, leading 
to non-motor symptoms such as depression, cognitive decline 
and hallucination episodes [2-5]. The vast majority of PD cases 
are sporadic and only approximately 5-10% have been linked to 
genetic factors. Thus far, more than 20 genes have been associated 
with PD, and this number tends to increase as novel and more 
powerful studies are conducted [6]. The proteins encoded by these 
genes play a wide range of cellular roles but the precise functions 
of some of them are still not fully understood.

Understanding the interplay between different PD genes and, 
consequently, unravelling the molecular mechanisms underlying 
PD will bring new hope for the development of novel diagnostic 
and therapeutic tools.

ALPHA-SYNUCLEIN

Asyn is, by far, the most extensively studied protein in the 
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context of PD. Nevertheless, our understanding of its physiological 
function is still not entirely established. Three functional domains 
can be defined in the primary sequence of asyn (Fig. 1A). While 
the protein was initially thought to be natively unfolded and 
monomeric, recent studies proposed it may also adopt a tetrameric 
structure [7, 8]. Although these studies are controversial, they 
brought new perspectives into the process of asyn misfolding and 
aggregation, thought to be central in the context of PD [6]. In fact, 
aggregated asyn is the main component of Lewy Bodies [9]. Thus 
far, 6 point mutations have been associated with familial cases of 
PD. Interestingly, all 6 mutations are located in the N-terminal 
region of the protein [10-15]. In addition, multiplications of the 
SNCA gene, encoding for asyn, have also been associated with 
familial forms of PD [16, 17]. Furthermore, polymorphisms in the 
SNCA gene are known to increase the risk of PD [18-21].

The normal cellular function of asyn is still unclear, but distinct 
roles have been proposed, ranging from transcriptional regulation 
[22-27], mitochondrial homeostasis [28], vesicle trafficking [29], 
and neurotransmitter release [30-33]. Despite all these putative 
functions, mice lacking asyn reveal only minor physiological 
alterations [34] suggesting the existence of compensatory cellular 
mechanisms that can overcome the absence of the protein.

ATP13A2

ATP13A2 is a transmembrane protein of 1180 amino acids (aa) 
localized in the lysosomes and late endosomes [35] that belongs 
to a family with 5 members (ATP13A1-5) - the P5 type pump 
ATPases. ATP13A2 has 10 predicted transmembrane domains 
and three functional domains (Fig. 1B) [36]. The protein is highly 
expressed in the brain, especially in the substantia nigra pars 
compacta and is upregulated in the dopaminergic neurons of 
this region in the brains of PD patients [35, 37]. Mutations in 
ATP13A2 have been associated with different diseases including 
Kufor-Rakeb syndrome, PD [35, 38-46], and Neuroid Ceroid 
Lipofuscinosis (NCL) [47-49]. Interestingly, ATP13A2 knockout 
mice display characteristics of  both NCL and PD, such as 
hippocampal accumulation of asyn, sensorimotor deficits and 
lipofuscinosis [50], suggesting that the phenotypes in these may 
not be solely gene dependent.

Mitochondrial impairment was observed in fibroblasts from 
patients carrying ATP13A2 mutations. This impairment was 
associated with reduced ATP production and increased maximum 
respiration capacity, due to an impairment of mitochondrial 
degradation that resulted in their accumulation. These phenotypes 
could be partially rescued upon ATP13A2 overexpression [51]. 
The process of autophagic mitochondria degradation, known as 
mitophagy, is a crucial quality control mechanism to ensure the 
proper function of the organelle [52] and has been associated 
to PD [53]. Interestingly, ATP13A2 has been directly linked to 
mitophagy in several studies [51, 54, 55] but, so far, little is known 
about the mechanisms involved. In addition to a role in mitophagy, 
ATP13A2 has been connected with protein autophagy [50, 56, 
57] and metal/cation homeostasis [37, 55, 57-66]. These are also 
central cellular processes that have been associated with asyn 
biology, as discussed below.

Of the several disease-associated mutations identified in 
ATP13A2, only a few were investigated in detail thus far. In cells, 
ATP13A2 mutants exhibited loss of protein function, subcellular 
mislocalization in the endoplasmatic reticulum, increased cellular 
toxicity, and shorter protein half-life [67]. In a comprehensive 
study of the effects of ATP13A2 missense mutations associated 
with early-onset parkinsonism, several novel phenotypes 
were identified, including disruption of the protein vesicular 
localization, impairment of ATPase activity and of neurite 
outgrowth [68].

THE INTERPLAY BETWEEN ATP13A2 AND ALPHA-SYNUCLEIN

Most of the existing knowledge about the function of ATP13A2 

Fig. 1. Schematic representation of asyn and ATP13A2. (A) Asyn can 
be devided in three domains according to its amino acid composition: 
an N--terminal amphipathic domain where all 6 PD--associated 
point--mutations are located; a central region known as non--amyloid 
component (NAC) domain, responsible for the amyloidogenic properties 
of the protein; and the C--terminal region which is highly acidic. (B) 
ATP13A2 is an 1180 aa protein with 10 transmembrane domains and 
four functional domains: catalytic phosphorylation (P1), nucleotide 
binding (P2 and N) and actuator domain (A).
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has arisen from studies focusing on the interaction between this 
protein and asyn. Thus, in the sections below, we focus on our 
current understanding of the interplay between these two proteins 
in order to provide a framework for the challenges that lie ahead in 
this area of research.

METAL HOMEOSTASIS

Despite the lysosomal localization of ATP13A2, the first 
connection to asyn was not due to a putative role in protein 
degradation, but rather due to a role in metal homeostasis. 
ATP13A2 was shown to exert a protective effect in manganese 
(Mn+)-mediated asyn toxicity, in both yeast and SH-SY5Y cells 
[60]. This connection with Mn+ homeostasis was further explored 
in yeast and resulted in the identification of several genes being 
part of the network [62]. In addition, some ATP13A2 mutants 
were unable to rescue Mn+ induced toxicity in mammalian cell 
culture [64]. Interestingly, two ATP13A2 polymorphisms enhance 
Mn+ neurotoxic effect in patients [63].

Since Mn+ has long been associated with asyn oligomerization 
and aggregation [69, 70], and with Parkinsonism itself [71], this 
metal was seen as an interesting culprit in the asyn:ATP13A2 
interaction. However, a recent contradictory report concluded 
that lower levels of ATP13A2 did not affect Mn+ sensitivity in SH-
SY5Y cells [58].

In addition to Mn+, ATP13A2 was shown to be protective against 
niquel-(Ni2+), cadmium-(Cd2+) and selenium-(Se2+) induced 
toxicity in yeast and in mammalian cell culture [65, 66] but little 
is known about the role of these metals in the context of asyn 
toxicity and in PD.

ATP13A2 was also associated with zinc (Zn2+) homeostasis in a 
study showing that mitochondrial impairment, due to high levels 
of Zn2+, could be rescued by overexpression of ATP13A2 [55] (Fig. 
2A).

It is unlikely that ATP13A2 is able to directly mediate the 
clearance of all these different metals. Thus, is seems more 
plausible that ATP13A2 might act as a general, intermediary player. 
Since both metals and asyn are thought to have a great impact in 
mitochondria [28, 72-75], it is possible that the protective effect 
of ATP13A2 could be related to mitochondrial function as it was 
also found to be upregulated under oxidative stress conditions [76]. 
Nevertheless, additional studies are required to test this hypothesis.

AUTOPHAGY

Autophagy-mediated protein degradation is an important 
component of the protein quality control system in the cell that 

is mobilized upon the accumulation of misfolded, damaged, or 
unnecessary proteins. In PD, autophagy has assumed the central 
stage due to its involvement in the clearance of misfolded and 
aggregated asyn. Nevertheless, whether the interplay between 
autophagy and asyn is beneficial or deleterious to the cell is still 
controversial [77-85].

The finding that ATP13A2 is also present at the lysosomal 
membrane has further underscored the relevance of  this 
proteolytic compartment in the context of  PD. Strikingly, 
autophagy seems to directly connect asyn and ATP13A2 since 
knockdown [56] or knockout [50] of the latter resulted in impaired 
degradation of asyn (Fig. 2B).

In medaka fish, knockdown of ATP13A2 had a direct effect in 
the activity of the lysosomal aspartase cathepsin D [86], albeit 
no conclusive results were obtained regarding the intracellular 
content of asyn. In zebrafish, knockout of ATP13A2 led to 
embryonic lethality [87].

In other model systems, ATP13A2 deficiency also resulted in 
autophagy impairment, with alterations of lysosomal pH and in 
the levels of hydrolases, in the failure in autophagosome clearance, 
and in decreased proteolytic processing [56, 57, 59].

Besides its classical lysosomal localization, a recent report noted 
that ATP13A2 can be also found in multivesicular bodies (MVB) 
[58], which can have an important role in autophagy. Interestingly, 
this study reported exocytosis as the final outcome of MVB 
instead of autophagy. MVB are late endosomes that play a role in 
several intracellular trafficking mechanisms, including autophagy 
[88], but also in the clearance of exosomes [89]. Furthermore, 
considering that mitochondria can be degraded by autophagy 
(mitophagy) [90], it would be important to understand how asyn 
and ATP13A2 might affect this process (Fig. 2B). Previously, it 
was shown that accumulation of asyn at the mitochondria can 
enhance mitophagy [91, 92], so one possibility is that this process 
is mediated by ATP13A2 [58].

BRIDGING METAL HOMEOSTASIS AND AUTOPHAGY

The complex interaction between ATP13A2 and asyn has 
been studied primarily from one of two perspectives: metal 
dyshomeostasis or autophagy impairment. However, one 
possibility is that both pathways are connected in the biology 
of the two proteins. In fact, two recent studies investigated the 
interaction between asyn and ATP13A2 by looking at both metal 
homeostasis and autophagy regulation, and proposed a chain of 
deleterious events starting upon Zn2+ dyshomeostasis. The first 
study reported that alterations in Zn2+ intracellular levels and 
cellular sub-localization could promote lysosomal dysfunction and 
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Fig. 2. Putative intracellular pathways connecting asyn and ATP13A2. (A) ATP13A2 may be responsible for metal clearance via the lysosome (left side). 
A failure in this process, caused by mutations or reduced activity of ATP13A2, would lead to the toxic accumulation of metals in the cytoplasm (right 
side). Furthermore in disease conditions, asyn may increase the intracellular levels of metals, exacerbating cytotoxic effects [55, 60, 62, 64]. (B) Protein 
and mitochondria degradation by autophagy and mitophagy, respectively, may be critically regulated by ATP13A2 (left side). Upon deficient ATP13A2 
activity, accumulation of defective mitochondria or proteins (such as asyn) would contribute to cytotoxicity and disease (right side) [50, 54, 56, 86]. (C1) 
ATP13A2 may also impact on intracellular Zn2+ homeostasis. Under normal conditions, ATP13A2 may mediate Zn2+ transport across the lysosomal 
membrane, a process that it thought to influence lysosomal degradation of asyn. On the other hand, under pathological conditions, impaired Zn2+ 
clearance, caused by defective ATP13A2 activity at the lysosome, can trigger cytoplasmic accumulation and aggregation of asyn [59]. (C2) ATP13A2 
may also play a role at the level of multivesicular bodies (MVBs). Thus, functional ATP13A2 might mediate the entrance of Zn2+ into MVB. MVBs may 
later fuse with autophagosomes containing asyn and be targeted to exocytosis [58].
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asyn accumulation. Interestingly, this phenotype was exacerbated 
in ATP13A2 knock-down cells and in fibroblasts from patients 
carrying ATP13A2 mutations, and could be rescued upon 
ATP13A2 overexpression (Fig. 2C1) [59]. On the other hand, a 
separate study placed MVBs in the center of the interplay between 
asyn and ATP13A2. The authors found that MVBs are targeted to 
exocytosis, instead of autophagy, and constitute the main pathway 
underlying the decrease of asyn intracellular levels [58]. In this 
perspective, ATP13A2 was shown to modulate Zn2+ levels which, 
in turn, may influence the biogenesis of exosomes (Fig. 2C2). 
Ultimately, these two studies suggest that ATP13A2 can impact 
on asyn levels. Moreover, considering the converging players and 
organelles involved in autophagy and exocytosis pathways, one 
can hypothesize that the fate of asyn, as well as other accumulated 
proteins, can be determined by ATP13A2 levels, behaviour and its 
interactors at the membrane level of the MVB.

In a recent study investigating possible ATP13A2 interactors, 
histone deacetylase (HDAC) 6 was identified as an attractive 
candidate [93]. HDAC6 is a cytoplasmic HDAC that has 
been linked to (i) asyn clearance in a cell model [94], (ii) to its 
accumulation in Drosophila [95] and (iii) is present in Lewy 
Bodies from PD patients [96, 97]. Interestingly, HDAC6 has 
also been linked to mitophagy in PD [98]. Furthermore, this 
Zn2+ binding enzyme has been associated with key steps in the 
autophagy process, including aggresome formation and delivery 
to lysosomes [96], fusion between autophagosomes and the 
lysosomes, and was also found associated with MVBs [99]. Since a 
direct interaction between ATP13A2 and asyn is still to be proven, 
one can speculate that the effect of ATP13A2 on asyn clearance 

and in the protection against asyn-induced toxicity might be, at 
least partially, mediated by HDAC6 (Fig. 3).

Interestingly, the same study also identified HSPA8 (also known 
as HSC70 and HSP73) as an interactor of ATP13A2 [93, 100]. 
HSP8A is an essential player in chaperone mediated autophagy, a 
process that was found to be involved in the clearance of soluble 
asyn [84, 101]. Thus, the interaction between ATP13A2 and 
HSPA8 might also play a role in the degradation of asyn.

CONCLUDING REMARKS

Currently, asyn and ATP13A2 are thought to be members of the 
same intracellular network, with the latter having a direct impact 
on the fate of asyn in the cell. Nevertheless, the precise biological 
function of ATP13A2 and whether it plays a direct or indirect 
role in the processing of asyn is still unknown. Although two 
main interacting networks have been proposed separately, recent 
studies tend to converge in a more appealing and comprehensive 
hypothesis that comprises a single process that includes both 
alterations in the levels of metals and in autophagy.

It will also be important to determine the effects of familial 
mutations in both ATP13A2 and in asyn on the interaction 
between the two proteins, and whether the occurrence of ATP13A2 
in the lysosome can rescue deleterious effects of mutant asyn. In 
this context, since most studies focused on the effect of ATP13A2 
knockdown on asyn, it will be important to assess the impact of 
asyn knockdown on ATP13A2. On the other hand, it seems likely 
that the function of ATP13A2 in the cell goes beyond its effects 
on asyn, suggesting that we need a broader understanding of its 

Fig. 3. Hypothetical model for the interplay between asyn and ATP13A2. (1) Delivery of Zn2+ to the MVB might be mediated by an ATP13A2/
HDAC6 interaction, at the lysosomal membrane. (2) Afterwards, MVBs might engulf cellular contents, including asyn, in a process assisted by molecular 
chaperones, such as HSP70 (3) The final fate of MVBs (autophagy or exocytosis) might be mediated by these interactions and the cargo (including the 
proteins and/or organelles) that are being transported.
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role in both metal homeostasis and autophagy in order to better 
understand the biological function of ATP13A2 and, consequently, 
how it causes disease. With this knowledge at hand, it might then 
be possible to design novel strategies for therapeutic intervention 
in PD and other disorders associated with asyn and ATP13A2 
dysfunction.
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