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Immunotherapies targeting the “don’t eat me” myeloid checkpoint constituted by CD47
SIRPa interaction have promising clinical potential but are limited by toxicities associated
with the destruction of non-tumor cells. These dose-limiting toxicities demonstrate the
need to highlight the mechanisms of anti–CD47-SIRPa therapy effects on non-tumor
CD47-bearing cells. Given the increased incidence of lymphopenia in patients receiving
anti-CD47 antibodies and the strong ADCC (antibody-dependent cellular cytotoxicity)
effector function of polymorphonuclear cells (PMNs), we investigated the behavior of
primary PMNs cocultured with primary T cells in the presence of anti-CD47 mAbs. PMNs
killed T cells in a CD47-mAb–dependent manner and at a remarkably potent PMN to T cell
ratio of 1:1. The observed cytotoxicity was produced by a novel combination of both
trogocytosis and a strong respiratory burst induced by classical ADCC and CD47-SIRPa
checkpoint blockade. The complex effect of the CD47 blocking mAb could be
recapitulated by combining its individual mechanistic elements: ADCC, SIRPa
blockade, and ROS induction. Although previous studies had concluded that disruption
of SIRPa signaling in PMNs was limited to trogocytosis-specific cytotoxicity, our results
suggest that SIRPa also tightly controls activation of NADPH oxidase, a function
demonstrated during differentiation of immature PMNs but not so far in mature PMNs.
Together, our results highlight the need to integrate PMNs in the development of
molecules targeting the CD47-SIRPa immune checkpoint and to design agents able to
enhance myeloid cell function while limiting adverse effects on healthy cells able to
participate in the anti-tumor immune response.

Keywords: PMN (polymorphonuclear leucocyte), SIRPa, NADPH oxidase, CD47 antibody, ADCC (antibody-dependent
cellular cytotoxicity)
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HIGHLIGHTS

We show that potent cytotoxicity by PMN occurs through a
novel combination of trogocytosis and ROS regulated by CD47-
SIRPa. We also show that anti-CD47 antibody therapy risks
collateral damage by opsonizing and directing this cytotoxicity to
healthy T cells.
INTRODUCTION

The ability to manipulate patients’ immunity with antibodies has
changed the therapeutic outlook for cancer. Strategies based on the
induction of antibody-dependent cell cytotoxicity (ADCC) with
antibodies targeting tumor antigens like Rituximab in B-
lymphomas and Trastuzumab in breast cancer have
demonstrated clinical efficacy. More recently, strategies based on
the blockade of the T cells inhibitory checkpoints CTLA-4 and
PD-1/PD-L1 with mAbs showed spectacular efficacy but were
limited to certain tumor types with high mutational burdens and T
cell infiltration and associated side effects (1). To create therapies
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with broader efficacy, strategies targeting the myeloid checkpoint
and signal regulatory protein a (SIRPa) were developed to
enhance myeloid ADCC induced by therapeutic antibodies (2, 3).

SIRPa controls phagocytosis when engaged by its ligand
CD47, a molecule widely expressed in most cell types (4). This
interaction constitutes the “don’t eat me” regulatory axis.
Inhibition results in part from the immunoreceptor tyrosine–
based inhibitory motif (ITIM) phosphorylation of SIRPa
cytoplasmic tail that prevent modifications of the membrane,
leading to the formation of the phagocytic cup (5). The
regulation of SIRPa signaling in PMN is known to be sensitive
to their activation where IL-17 stimulation results in cleavage of
the ITIM signaling domain of SIRPa (6). SIRPa also inhibits the
activation of Mac-1, the integrin required for the spread and
adhesion of myeloid cells on their target (7, 8). Mac-1 is a
heterodimer of CD11b (aM) and CD18 (b2) integrins but only
CD18 is required in ADCC-mediated adhesion (9). Whereas
macrophages are capable of whole-cell phagocytosis,
polymorphonuclear cells (PMNs) ingest parts of the target cell
in a mechanism called trogocytosis (10, 11). In ADCC,
trogocytosis is sufficient to induce necrotic cell death resulting
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from lytic processes but requires high ratios of PMNs per target
cell (10, 12).

PMNs are mainly known for their capacity to degranulate
toxic molecules accumulated during their maturation or produce
toxic reactive oxygen species (ROS) upon the “respiratory burst”
within minutes of stimulation to fulfill their killing mission (13).
The nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase is a multi-subunit enzyme complex that, once assembled
at the PMN membrane, generates superoxide as a precursor for
other ROS (H2O2, HOCl), released in the milieu as an
antimicrobial agent. However, ROS are also toxic to host cells
and this process must be tightly controlled. NADPH oxidase is
activated through membrane G protein–coupled receptors
(GPCR) that sense the various molecules of the milieu, such as
bacterial compounds (fMLP and LPS) (14), but little is known
about its control. Recently, SIRPa was shown to be involved in
the control of NADPH oxidase by inhibiting the expression of
the gp91Phox subunit, a membrane component of NADPH
oxidase complex, in immature cells (15). This inhibition
required engagement of SIRPa by CD47 and signaling by the
cytoplasmic tail of SIRPa. Blockade of SIRPa engagement
resulted in enhanced production of ROS. However, NADPH
oxidase and ROS are not known to be involved in ADCC (10).

CD47 is a widely expressed signaling receptor and marker of
“self” involved in many biological processes through its
interaction with its ligand thrombospondin-1 (TSP-1), an
inflammatory protein that promotes migration and activation
of cells (16). Different epitopes of CD47 are involved in the
interaction of CD47 with TSP-1 and SIRPa (17). CD47 interacts
also with SIRPg, a molecule only expressed in T cells (18). CD47
is known to signal through its lateral association with integrins
and GPCR (19). For example, triggering of CD47 induces
endothelial cell spreading on RGD sequences through the
lateral association of CD47 with b3 integrins and adhesion of
T cells on LDV sequences through the lateral association with b1
integrins (20). An interaction of CD47 with Mac-1 was recently
described as one of the mechanisms involved in the fusion of
macrophages (21).

The overexpression of CD47 on tumor cells suggested that
blockade of the “don’t eat me” checkpoint could synergize with
therapeutic mAbs (16) to enhance the elimination of tumors by
myeloid cells (22). Antibodies blocking the CD47-SIRPa
interaction increased phagocytosis of macrophages (22, 23)
and cytotoxicity of PMNs (12), inhibited tumor engraftment
(22), and eliminated pre-existing tumors in mice (24). Although
both can block the “don’t eat me” interaction, anti-CD47 mAbs
were more efficient than anti-SIRPa mAbs (24). This higher
efficiency was thought to result from the additional ADCC
resulting from the opsonization of the target with anti-CD47
mAbs (4, 12).

Despite their promising pre-clinical results, the clinical
progress of anti-CD47 mAb therapies have been limited by on-
target, non-tumor toxicities including anemia, neutropenia,
thrombocytopenia, and lymphopenia (25). We had previously
identified the CD47-SIRPa immune checkpoint and SIRPa
activity as key determinants of low-density PMN-MDSCs
Frontiers in Immunology | www.frontiersin.org 3
(myeloid-derived suppressive cells) cytotoxicity toward healthy
T cells (26). Low-density PMN-MDSCs share immune-
suppressive capacities while they are composed of heterogeneous
populations of immature and mature cells having acquired low-
density properties after activation (27). We investigated the effect
of the SIRPa-blocking anti-CD47 mAb (clone CC2C6) on high-
density mature PMN-mediated T cell cytotoxicity. By
investigating their ADCC on primary T cells, we found that
blockade of SIRPa engagement on PMNs resulted in an
important cytotoxicity sustained not only by an enhancement of
trogocytosis but also by induction of a strong respiratory burst,
resulting in suppression of T cells.
MATERIALS AND METHODS

Cells
Blood samples were obtained from healthy donors (EFS,
Etablissement Français du Sang, Marseille, France). High-density
PMNs were separated from peripheral blood mononuclear cells
(PBMC) by centrifugation on Ficoll-Hypaque gradients. Red cells
were eliminated with RBC lysing buffer (eBioscience,
ThermoFischer, France). PMNs were kept at 4°C in PBS
supplemented with Ca2+ 1 mM and Mg2+ 1 mM. The purity of
the PMN preparations was routinely between 70%–90%,
contaminants were T cells, and monocytes were absent (Figure
S1A). T cells were separated from frozen or fresh PBMC using
CD3+magnetic beads (Miltenyi Biotech, Germany), and the purity
of preparations was above 95% (not shown). A weak death of T
cells (10%–20%) was observed after overnight culture (not shown).
Raji B cell lines were obtained from ATCC. For the Jurkat T cell
line, JA16 was initially subcloned in the lab (28), and JINB8 is a
CD47deficient Jurkat cell line (29). Cells were cultivated in RPMI
1640 medium supplemented with 10% foetal calf serum
and antibiotics.

Antibodies and Peptides
Purified anti-CD47 mAbs clones CC2C6 and 2D3 (BioLegend)
and clone B6H12 (BD Biosciences) and purified anti-SIRPa
mAbs (clone SE5A5) and G1 isotype mAbs were used at 10
mg/ml (BioLegend). Anti–Mac-1 was reconstituted by mixing
anti-CD11b (clone ICRF44) and CD18 (clone TS1/18) mAbs at a
final concentration of 10 mg/ml for each (BioLegend). Anti-CD3
mAbs (clone UCHT1) were prepared in the laboratory and used
at 10 mg/ml. Recombinant SIRPa was prepared as in (30) and
was used as a monomer or multimerized with Neutravidin at a
saturating concentration of 5 mM. RGDS and LGDP were used,
respectively, at 40 mg/ml and 100 mg/ml (Sigma Aldrich Merck).
4N1K, a CD47-binding domain adhesive peptide derived from
TPS1, was used at 10 mM (Eurogentec). CC2C6-F(ab)’2 was
prepared using F(ab’)2 Preparation Kit (Pierce) as described by
the manufacturer using an optimized 1-h digestion time at 37°C.
Diges t ion was ver ified by sodium-dodecy l -su l fa te
polyacrylamide gel electrophoresis (SDS-PAGE), and CD47
binding activity was measured against the parent CC2C6 using
AlphaScreen as described in (30).
June 2022 | Volume 13 | Article 899068
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Cytotoxicity Assay
Targets were stained with CellTrace™ Violet (Life Technologies,
France). Counting beads (BD Biosciences, France) were added to
target cell suspensions. Cocultures were set using PMNs and T
cells from different donors at ratios ranging from 1/1 to 5/1
PMNs to target and incubated overnight at 37°C in culture
medium. An aliquot of the coculture was stained and analyzed by
flow cytometry immediately after mixing to verify ratios and
after overnight incubation to evaluate cytotoxicity by counting
live targets. Target counts were standardized to counting beads
and either compared to counts of control targets cultured
overnight without PMNs or to control coculture with PMNs. T
cells did not proliferate during overnight culture, Raji cells
slightly proliferated, and Jurkat and JINB8 proliferated by a
factor of 3–5. PMNs remained alive during overnight culture but
showed a trend to display an activated phenotype characterized
by a decrease of SSC and an increase of FSC and depending on
the stimulation counts importantly decreased (shown in Figure S2B).
This uncontrolled weak activation of PMNs during their preparation
was previously described (31) and resulted in spontaneous
cytotoxicity or protection of T cells from spontaneous death
ranging between 50% and 150%. Experiments were excluded where
this effect was over 20% to focus on the effects of antibodies.
Inhibition of respiratory burst was performed by adding 50 mg/ml
of catalase to digest H2O2 and 10 mM of Diphenyleneiodonium
chloride (DPI) to inhibit NADPH oxidase (Sigma-Aldrich, Merck)
during the overnight coculture. DPI could not be used with cell lines
as a target because it inhibited cell proliferation. Because cell lines
Frontiers in Immunology | www.frontiersin.org 4
proliferated during the overnight incubation cytotoxicity could no
more be quantified as it was based on the absolute counting of cells.

Flow Cytometry
Cell suspensions were stained with Near-IR LIVE/DEAD™ (Life
Technologies), CD3-PC5 or CD19-PC5, and CD11b-PE when
indicated (BD Biosciences). Samples were acquired on a
FORTESSA cytometer (BD Biosciences). Data were exported
and analyzed with FlowJo (RRID : SCR_008520; version 9-2,
MacOS X). Counting beads and cells were gated on forward
scatter-area/side-scatter area- (FSC-A/SSC-A) (shown in
Figure 1C). Doublets were excluded on FSC-A/FSC-H. Dead
cells were excluded on the expression of the viability dye (shown
in Figure S1A). PMNs were gated as SSChi cells and CD11b
expression. For analysis of trogocytosis of PMNs, target T cells
were excluded on the expression of CD3. For cytotoxicity assays,
targets (T cells, Jurkat T cell-lines, and Raji B lymphoma cell-
line) were gated on SSClowFSChi, cell-trace, and CD3 or
CD19 expression.

Trogocytosis
Target cells were stained with the membrane-dye PKH67
(Sigma-Aldrich) and cocultured with PMNs at ratios ranging
from 1:1 to 3:1 for 3 h. Trogocytosis was also analyzed in PMNs
recovered from cytotoxicity assays after an overnight incubation
with targets stained with CellTrace. Percentages of trogocytosis
were determined by the expression of the T cell dye in PMNs
after setting gates on PMNs cultured alone.
A B

C

FIGURE 1 | Anti-CD47 mAbs induce killing of primary T cells by PMNs. (A) Cytotoxicity to primary T cells induced by anti-CD47 mAb clone CC2C6 alone or in the
presence of PMNs (n = 9–25 different donors; ratio of PMN to T cells = 2). Iso, isotype; CD3, anti-CD3 mAbs; CD47, anti-CD47 mAbs. (B) Induction of PMNs’
cytotoxicity to Raji lymphoma B cells by combinations of Rituximab (RTX) plus anti-CD47 mAb clone CC2C6 (CD47) (n = 3; ratio of PMN to target = 3). For (A, B),
cytotoxicity is represented by the % of live targets in indicated conditions compared to targets cultivated overnight alone. Median and IQR (interquartile range) are
shown. P-values from Kruskall–Wallis test is indicated on top of groups, P-values from Dunn’s multiple comparison post-test on top of pairs: *P < 0.05; **P < 0.01;
****P < 0.0001. (C) Cytotoxicity assay. The left plot shows the coculture of PMN with Cell-Trace stained T cells on day 0. The following plots show cell-trace and
viability staining of indicated cocultures after overnight incubation. Gates and counts of beads, live and dead Cell-Trace–stained T cells are shown.
June 2022 | Volume 13 | Article 899068
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Intracellular Production of ROS
PMNs were stained with 25 mM Dihydrorhodamine 123 (DHR,
Sigma-Aldrich) and cultured for 1–1.5 h in the presence of
catalase at 50 mg/ml (32). Lipopolysaccharide (LPS, 100 ng/ml)
plus N-Formylmethionyl-leucyl-phenylalanine (fMLP, 5 mM)
and monoclonal antibodies at 10 mg/ml were added
immediately after DHR staining. Samples were acquired on a
FORTESSA cytometer, DHR was analyzed in the 525/50 channel
and the percentage was determined by setting the gate on un-
stimulated stained cells.

Statistics
Statistical graphics were performed with Prism 6 (RRID :
SCR_005375) software. Mann–Whitney, Wilcoxon matched
pair non-parametric test or Kruskall–Wallis test followed by
multiple comparison Dunn’s post-test to compare variables
between groups were used as indicated.

Data Availability
The data generated in this study are available within the article
and its supplementary data files.
RESULTS

Anti-CD47 mAbs Induce Killing of Primary
T Cells by PMNs
To investigate the potential for CD47-dependent PMN killing of
primary T cells, we treated cocultures with anti-CD47 mAb
CC2C6 at a PMN to T cell ratio of 2:1. Overnight coculture with
PMNs alone resulted in a variability of 50%–150% of T cells
survival. The introduction of CC2C6 to the PMNs T cell
coculture resulted in a much stronger cytotoxicity (mean
survival of 19% of control-treated T cells; Figures 1A, S2B).
We noted that CC2C6 had a direct weak cytotoxicity to T cells as
previously shown with other antibodies to CD47 (33). As
expected, percentages of dead T cells in coculture with PMNs
and anti-CD47 mAbs were increased as compared to control T
cells cultivated alone or with PMNs without anti-CD47 mAbs
(Figure 1D) (67% vs. 15% and 22%, respectively). However, the
most striking difference was the significant decrease of total cells
suggesting that cytotoxicity manifested as necrosis rather than
apoptosis, as reported for PMNs induced killing (10) but the
possibility that dead T cells were removed by PMNs’ efferocytosis
cannot be excluded as well.

The potent CD47 mAb-induced PMN cytotoxicity was not
limited to primary T cells as we observed similar cytotoxicity
with Raji tumor cells (Raji) as targets. At a ratio of PMN to a
target of 3:1, RTX induced the killing of 50% of the Raji tumor
cells (Raji) (Figures 1B, S2A). The addition of anti-CD47 mAb
to RTX reduced the survival of Raji to 14% of control, but the
anti-CD47 mAb alone reduced cell survival to 13%. The
similarity of cytotoxicity induced by the anti-CD47 mAb
whether alone or with RTX suggested that they were mainly
responsible for the target cell death when used in the
combination. Because of the uniquely potent nature of the
Frontiers in Immunology | www.frontiersin.org 5
cytotoxicity observed for PMN in the presence of an anti-
CD47 antibody, we sought to investigate its mechanism.

Trogocytosis plus CD47-SIRPa Blockade
Are Insufficient to Explain the Enhanced
Cytotoxicity of PMNs in Anti-CD47
mAb-Triggered ADCC
Anti-CD47 mAbs are capable of exerting cytotoxic functions via
a variety of mechanisms. They can simultaneously opsonize T
cells to activate PMNs’ FcR providing “eat me” signals while also
inhibiting “don’t eat me” signals resulting from the engagement
of PMNs’ SIRPa by CD47 on T cells. PMN-mediated toxicity via
ADCC was recently shown to proceed almost exclusively by
trogocytosis of the target cell membrane and to be regulated by
SIRPa (10). We reconstituted these mechanisms with anti-CD3
mAbs to opsonize T cells and anti-SIRPa mAbs to block “don’t
eat” signals while comparing trogocytosis by PMNs and
cytotoxicity to T cells.

T cells were stained by PKH67 a lipophilic dye that accumulates
in the plasma membrane and whose transfer to non-labeled cells
indicates trogocytosis (34). Transfer of the membrane dye to PMNs
was analyzed by flow cytometry after a 3-h incubation. Similar
percentages of PKH67+PMNs were found with anti-CD47 and anti-
CD3 mAb treatment (59% and 60%, respectively, Figure 2A)
suggesting an equivalent interaction of PMNs with T cells
whether opsonized with anti-CD3 or anti-CD47 mAbs. To
control for non-specific cellular adhesion or ADCC mediated
adhesion, we included an anti–Mac-1 mAb that would block
specific ADCC mediated adhesion via integrins aM/b2. Anti–
Mac-1 mAbs inhibited PMNs trogocytosis induced by anti-CD47
mAbs. Given the lateral interactions of CD47 with integrins (17), we
verified whether b1 and b3 (as control) integrins were involved, but
only antibodies to the b2 integrin CD18 inhibited anti-CD47mAbs-
induced trogocytosis, as reported for PMNs’ ADCC (Figure S3B).

These results suggested that this acute trogocytosis was not
controlled by CD47-SIRPa signaling but via FcR activation. We
further investigated trogocytosis in different experimental
conditions using CellTrace Violet–labeled T cells incubated
overnight with PMNs [as in (10)] (Figures 2B, S3A). The
uptake of CellTrace in PMNs triggered by anti-CD3 mAbs was
not different from control (11% vs. 9.9%, respectively). Blockade
of CD47-SIRPa interaction with anti-SIRPa targets only the
PMNs as T cells do not express SIRPa. Anti-SIRPa antibodies
increased trogocytosis to a level similar to anti-CD47 mAbs (48%
and 54.8%, respectively), demonstrating CD47-SIRPa regulation
of PMNs’ trogocytosis and again showing an equivalent
interaction of PMNs with T cells.

Next, we compared the cytotoxicity induced in overnight
cocultures. At ratios ranging from 1 to 3:1, anti-CD47 mAbs-
ADCC induced by clone CC2C6 or clone B6H12 decreased T cells
viability of a factor of 5 (22% survival) (Figures 2C, D, S2B).
Moreover, B6H12 is not directly cytotoxic (35) showing that the
equivalent effect of the anti-CD47 antibodies is due to ADCC.
Anti–Mac-1 mAbs, while fully inhibiting trogocytosis, only
partially restored T cells survival (54% vs. 22%). This suggested
that adhesion-mediated ADCC was involved in cytotoxicity but
June 2022 | Volume 13 | Article 899068
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does not account for the complete effect. Consistent with a
trogocytosis mechanism, PMNs’ cytotoxicity induced by anti-
CD3 mAbs was weak but became significant when anti-SIRPa
mAbs were added (82% vs. 50% survival, respectively). Similarly,
blockade of SIRPa with a recombinant SIRPa protein (rSIRPa)
[as in (36)] increased cytotoxicity of PMNs to Jurkat T cells
opsonized with anti-CD3 mAbs by a factor of 1.6-fold (41% vs.
25%, respectively) (Figure 2C). In the two systems, however,
blockade of SIRPa did not result in the same level of
cytotoxicity induced by anti-CD47 mAbs. Although the direct
effect of anti-CD47 mAbs on T cells must slightly contribute to the
whole effect in the presence of PMNs (see Figure 1B), the
combination of anti-CD3 plus anti-SIRPa mAbs seemed unable
to induce similar level of PMN-mediated cytotoxicity despite
inducing similar trogocytosis.

Thus, trogocytosis is not sufficient for cytotoxicity. Our
results suggested a harmless propensity of PMNs to engulf
parts of the membrane of opsonized cells not followed by
death of targets. Overnight trogocytosis of internal cell
components was better correlated to cytotoxicity but not
quantitatively. These results suggested that another mechanism
than trogocytosis plus blockade of the engagement of SIRPa was
involved in the cytotoxicity induced by anti-CD47 mAbs. To
Frontiers in Immunology | www.frontiersin.org 6
demonstrate more directly this hypothesis, we used an anti-
CD47 mAb targeting an epitope outside the interaction site with
SIRPa (2D3) to induce ADCC against T cells and a CD47-
deficient Jurkat T cell line as target for PMNs in the presence of
anti-CD47 mAb CC2C6 (Figures 2D, S1B, and S2C). Although
a modest effect was expected, PMNs displayed cytotoxicity in the
two systems demonstrating the contribution of additional
mechanisms likely involving CD47 on PMNs in the
strong cytotoxicity.

Anti-CD47 mAbs Induced Strong ROS
Production in PMN
To address the role of PMN CD47 engagement vs. T cell CD47
engagement in cytotoxicity, we pre-treated PMNs or T cells for 30
min with the anti-CD47 mAb CC2C6 then washed the antibody
before coculture with T cells. Only pre-treatment of PMNs
resulted in a significant cytotoxicity to T cells, however weaker
than that obtained when the antibody was present throughout the
coculture (57% and 18%, respectively, Figure 3A).

Because PMN are potent producers of ROS we investigated
whether PMNs stimulated by anti-CD47 mAbs produced ROS
using DHR staining. LPS plus fMLP were used as a positive
control for ROS induction, and isotype as a negative control.
A

B

C D

FIGURE 2 | Trogocytosis and cytotoxicity in PMNs’ ADCC. (A) Expression of the PKH67 T cells membrane dye in PMNs after a 3-h coculture in the presence of
indicated mAbs. (B) Uptake of Cell-Trace-stained T cells components in PMNs after overnight coculture in the presence of mAbs. For (A, B), PMNs are gated after
exclusion of doublets and dead cells. (C, D) Cytotoxicity of PMNs to targets indicated on top of graphs, evaluated by the percentages of live targets compared to
control after overnight coculture. N = 6–12 different donors, ratios of PMNs to target = 1–3. CD3, anti-CD3 mAbs; CD47, anti-CD47 mAbs clone CC2C6, B6H12, or
2D3 as indicated; Mac-1, anti-CD11b+anti-CD18 mAbs. SIRPa, anti-SIRPa mAbs. rSIRPa, recombinant SIRPa protein. Median and IQR are shown. P-values from
Kruskall–Wallis test indicated on top of groups, P-values from Dunn’s multiple comparison post-test on top of pairs: *P < 0.05; ****P < 0.001. For (D), P-values from
Wilcoxon matched pair test is shown.
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Anti-CD47 mAb CC2C6 induced a rapid increase of DHR
fluorescence in PMNs similar to LPS plus fMLP (Figures 3B
and S4A). CC2C6 was described to induce hemagglutination
through clustering of CD47 (35, 37). To evaluate whether this
mechanism accounted for activation of NADPH oxidase, we
used B6H12 an anti-CD47 mAb that similarly targeted the
epitope responsible for interaction with SIRPa but did not
induce clustering of CD47. B6H12 also induced a strong
production of ROS, suggesting that activation of NADPH
oxidase was rather resulting from triggering of CD47 than its
clustering. This hypothesis was consistent with the known lateral
association of CD47 with GPCR involved in NADPH oxidase
activation (19). Consistently, the 2D3 mAb also induced ROS,
however, to a lower level (Figures 3C and S4A). Likewise, weaker
binding recombinant ligands of CD47 like the 4N1K peptide (38)
and recombinant SIRPa (30) failed to induce ROS except when
rSIRPa was multimerized with neutravidin suggesting
nevertheless that avidity or membrane clustering might be
important factors of direct ROS induction through CD47
(Figure 3C). Alternatively, the weak levels reached rather
suggested that other mechanisms than direct engagement of
CD47 on PMNs were involved.

Production of ROS During PMN ADCC is
Activated by FcR Stimulation and Tightly
Controlled by SIRPa
Anti-CD47 mAbs CC2C6, B6H12, and 2D3 have an intact Fc
domain; thus, the contribution of FcR in the induction of ROS
could not be excluded. This scenario might result from reciprocal
FcR activation in PMNs, or activation through trimolecular
complex between known as the scorpion effect (39) previously
observed with anti-SIRPa antibodies on the macrophage. We
investigated the contribution of FcR using an F(ab’)2 fragment of
Frontiers in Immunology | www.frontiersin.org 7
CC2C6 or whole antibodies targeting other molecules on PMNs.
CC2C6-F(ab)’2 and anti–Mac-1 mAbs failed to induce ROS,
whereas anti-SIRPamAbs induced significant levels (Figures 4A
and S4A). Thus, FcR stimulation induced ROS in PMNs only in
the context of the simultaneous blockade of SIRPa .
Consequently, FcR activation of NADPH oxidase was
simultaneously and strictly controlled by the engagement of
SIRPa, a feature not yet described in PMN.

To demonstrate this hypothesis, we investigated intracellular
induction of ROS in short cocultures of PMNs with targets
(Figures 4B and S4B). Coculture with Jurkat opsonized by anti-
CD3 mAbs did not increase DHR in PMNs (5% and 4%,
respectively), whereas the presence of rSIRPa (to block
interaction with SIRPa) significantly increase DHR to 10%.
Similarly, coculture of PMNs with CD47-deficient target cells
(JINB8) opsonized by anti-SIRPg mAbs significantly increased
DHR in PMNs to 20%. These results suggested that stimulation
of PMNs through FcR induced ROS but only when PMN-SIRPa
was not engaged by target cell CD47, either by blockade of CD47
with rSIRPa or by the absence of CD47 on target.

Next, we evaluated the contribution of ROS in cytotoxicity
induced by PMNs’ ADCC on T cells using catalase, an H2O2

scavenger plus diphenyleneiodonium chloride (DPI), an
NADPH oxidase inhibitor, to counteract ROS effects during
coculture. LPS plus fMLP used to induce ROS by a pathway
independent of ADCC resulted in a significant cytotoxicity fully
blocked by catalase plus DPI, whereas the cytotoxicity of anti-
CD47 mAbs was significantly but partially reduced (56% vs. 26%
survival, respectively, Figure 4C). Only catalase could be used in
assays with Jurkat and JINB8 because DPI is toxic to these cell
lines. Catalase alone showed no inhibition of the cytotoxicity
induced by anti-CD3 mAbs on Jurkat T cells, suggesting no
contribution of ROS but alternatively no inhibition of NADPH
A B C

FIGURE 3 | Induction of production of ROS in PMNs. (A) Effect of pre-treatment of cells by the anti-CD47 mAb clone CC2C6 on cytotoxicity of PMNs to T cells.
Cytotoxicity is represented by the percentages of live T cells compared to control coculture (ctrl coc). Pre-CD47, pre-treatment 30 min at 4°C. CD47 ovn, anti-CD47
mAb during overnight culture, n = 8, median and IQR. (B) Histograms of DHR staining in PMNs after exclusion of dead cells and doublets after 1-h stimulation.
(C) Percentages of expression of DHR in PMNs after 1-h stimulation. N = 5–15 for antibodies, n = 5 for recombinants proteins or peptides. Gates are set on
unstimulated stained cells. P-values from Kruskall–Wallis test indicated on top of groups, P-values from Dunn’s multiple comparison post-test on top of pairs:
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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oxidase. Conversely, the almost full inhibition of the cytotoxicity
of anti-CD47 mAbs on CD47-deficient target cells (JINB8) by
catalase showed both the primary use of ROS in this cytotoxicity
and that catalase was sufficient for its inhibition (Figure 4C).

These results suggested that ROS produced during ADCC in
the context of blockade of SIRPa contributed to the cytotoxicity
of PMNs. Finally, we verified our hypothesis by using together
anti-CD3 mAbs to induce ADCC, anti-SIRPamAbs to block the
inhibitory checkpoint, and LPS plus fMLP to induce ROS. This
combination reached the levels of cytotoxicity induced by anti-
CD47 mAbs, suggesting the important contribution of ROS in
the process (Figures 4D and S3B).
DISCUSSION

In the context of the toxicities generated by blockade of the
SIRPa-CD47 checkpoint in cancer therapies, we sought to
address the role of PMN in the lymphopenia observed with
anti-CD47 antibody treatment (25). We found that the strong
PMN-mediated ADCC induced by the anti-CD47 mAbs CC2C6
was sustained not only by trogocytosis but also by a strong
respiratory burst, both controlled by SIRPa. The cooperation of
both results in a uniquely efficient killing of T cells in a low
effector cell to target cell ratio.

The anti-CD47 mAb clone CC2C6 can induce a weak T cells
death through direct triggering (33). In coculture with PMNs,
this antibody can stimulate FcR on PMNs and simultaneously
blocks CD47 interaction with SIRPa, resulting in potent ADCC
(4, 40). In this regard, we found that PMNs killed leukemic B
cells in the presence of anti-CD47 antibodies regardless of the
presence of the well-known ADCC antibody Rituximab. This
result suggested that anti-CD47 mAbs alone were sufficient for a
cytotoxic response and explained why PMNs also killed T cells.
However, the reconstitution of this scenario using a T cell
Frontiers in Immunology | www.frontiersin.org 8
opsonizing antibody (anti-CD3) that induces ADCC plus anti-
SIRPa mAbs or recombinant SIRPa protein to block the “don’t
eat me” checkpoint failed to induce such strong killing suggesting
that another mechanism must contribute to the cytotoxicity
induced by anti-CD47 mAbs.

The most likely hypothesis was that this additional
mechanism was triggered by the interaction of the antibody
with CD47 on PMNs. This was addressed by measuring the anti-
CD47–induced cytotoxicity of PMN cells in coculture with
CD47-deficient T cells (Jurkat T cell clone JINB8). Although
less toxicity was observed when compared to CD47+ T cells, we
still observed a significant increase in killing as compared to the
control treatment. These observations suggest that targeting
CD47 on PMN is sufficient to activate cytotoxic mechanisms.

We investigated whether respiratory burst, the most common
mechanism used by PMNs to efficiently kill their targets in a
short time, was involved. Not surprisingly, ROS contributed to
the strong killing of T cells by PMNs induced by anti-CD47
mAbs. This was demonstrated by i) direct induction of ROS in
PMNs by stimulation with anti-CD47 mAbs, ii) partial blockade
of cytotoxicity by catalase and DPI, and iii) reconstitution of
equivalent cytotoxicity by induction of ADCC with anti-CD3
mAbs plus blockade of SIRPa with antibodies plus stimulation of
ROS with LPS and fMLP.

The next question was to determine how anti-CD47 mAbs
stimulated NADPH oxidase in PMNs. The known lateral
association of CD47 with GPCR, themselves involved in
NADPH oxidase activation (14, 19), suggested at first that
binding of CD47 by antibodies was involved. This hypothesis
was confirmed by the induction of ROS by all anti-CD47 mAbs
tested, including 2D3 that targets an epitope outside the
interaction site with SIRPa (35, 40). Monomeric ligands failed
to induce ROS, but a higher affinity multimer of the recombinant
SIRPa protein was obtained with neutravidin [KD = 16 nM
(36),], suggesting that affinity or CD47 clustering might be
A

B

DC

FIGURE 4 | Production of ROS is stimulated in ADCC and contributes to cytotoxicity. (A) Stimulation of ROS in PMNs by mAbs to PMNs. (B) Stimulation of ROS in
PMNs by cocultures with targets and mAbs. For (A, B), median and IQR of percentages of expression of DHR in PMNs after 1-h stimulation. For (A), n = 6–15
different donors. P-values from Kruskall–Wallis test indicated on top, P-values from Dunn’s multiple comparison post-test on top of pairs: **P < 0.01; ****P < 0.0001.
For (B), n = 6–10. P-values of Wilcoxon matched pair test: *P < 0.05; **P<0.01. (C) Inhibition of cytotoxicity by catalase (cat), in the presence of DPI when indicated,
n = 6–25. Median and IQR, P-values of Wilcoxon matched pair test: *P < 0.05; **P < 0.01; ***P < 0.001. (D) Reconstitution of the cytotoxicity induced by anti-CD47
mAb CC2C6 (CD47) using anti-CD3 (CD3) + anti-SIRPa (SIRPa) + LPS + fMLP (LfM), n = 6–14. Median and IQR, P-values from Kruskall–Wallis test indicated on
top, P-values from Dunn’s multiple comparison post-test on top of pairs: *P < 0.05; **P < 0.01; ****P < 0.0001.
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critical. Indeed, CC2C6 reportedly induced cell aggregation
through CD47 clustering (37), but B6H12, although not
described to possess such property, was efficiently activating
NADPH oxidase as well suggesting that clustering of CD47 may
not be a determinant. The weak levels reached with SIRPa rather
than antibodies showed that activation of ROS through the direct
triggering of CD47 was limited and prompted us to consider an
alternative mechanism based on stimulation of FcR either by
reciprocal interactions between PMNs or by the formation of
trimolecular complexes with FcR on each cell (39). This
hypothesis was addressed by the use of the F(ab)’2 fragment of
CC2C6 to induce ROS. We found that induction of ROS
occurred only with antibodies that simultaneously engage FcR
and blocked SIRPa (CC2C6, B6H12, and anti-SIRPa mAbs) but
not by non–SIRPa-CD47–interacting antibodies (like anti–Mac-1)
or non-Fc–containing SIRPa-CD47 blockers [F(ab)’2 fragment
of CC2C6].

Together, our results suggested that if NADPH oxidase
activation was engaged through FcR stimulation, then it was
simultaneously controlled by the blockade of SIRPa.
Considering the potential cytotoxicity of ROS, this tight
control is not surprising. Support for this hypothesis was
demonstrated by the induction of ROS in PMNs cocultivated
with opsonized targets either deficient for CD47 or where
engagement of SIRPa by CD47 was blocked by recombinant
SIRPa protein. Such control of SIRPa on NADPH oxidase
activation was previously shown during myeloid cell
differentiation by the restriction of the expression of the
gp91Phox subunit of NADPH oxidase (15). The mechanism
may be different in mature PMNs considering the short time
of response to FcR stimulation and the basal expression of
gp91Phox in mature cells and will deserve further studies.

Although our results confirmed the activation of NADPH
oxidase in FcR stimulation previously proposed by van Spriel et
al. (7), recent work based on PMNs from NADPH oxidase–
deficient patients claimed that trogoptosis, a mechanism
resulting from lytic processes induced by trogocytosis, was
solely responsible for ADCC of PMNs (10). Our results do not
contradict this statement. The authors reported the use of high
ratios of effector to target, suggesting that ADCC without
blockade of SIRPa is efficient provided that many PMNs
focused on one target. Ratios of 50:1 are used to kill 30% of
SKBR3 breast cancer cells opsonized with Trastuzumab (10, 12),
and killing increases only two-fold on a CD47-deficient target.
On the contrary, trogocytosis at low ratios of PMN to CLL-B cells
opsonized with anti-CD20 mAbs does not induce significant
death (11) unless SIRPa is blocked allowing activation of
NADPH oxidase and strong killing, as we show here for ratios
between 3 and 0.5 PMN to 1 target cell.

Hence, cytotoxicity can either result from trogocytosis alone
or ROS alone but when the two mechanisms cooperate a single
PMN becomes a potent killer. It is tempting to speculate that the
spill of ROS into the intracellular milieu of targets through
membrane holes created by trogocytosis is the mechanism of
optimal function of PMNs. This relationship between the
number of PMNs focusing on a target and underlying
Frontiers in Immunology | www.frontiersin.org 9
mechanisms of killing opens new perspectives on the
fundamental biology of PMNs where SIRPa-CD47 appears as a
key regulator of PMN capacity to differentiate between
physiological trogocytosis and cytotoxicity by unleashing
trogocytosis and ROS.

The new information brought by our work describing the role
of NADPH oxidase activation during ADCC by PMN and its
regulation by SIRPa might help to design new agents to enhance
myeloid cell function in the treatment of cancer while limiting
adverse effects on healthy cells. Although ROS are expected to be
released into tumor cells carrying opsonized by tumor-specific
therapeutic antibodies triggering trogocytosis, collateral damages
resulting from local production of ROS could also suppress T cells
infiltrated in the tumor. This could be further exacerbated by the
use of non-tumor-specific anti-CD47 antibodies triggering the
potent combination of PMN-mediated cytotoxicity described
herein. Targeting CD47 with non-FcR activating agents or
directly targeting SIRPa could avoid an important part of the
killing of non-tumor cells bearing CD47 while preserving the
tumor cytotoxic capacity of PMN.

This work was undertaken following the finding that PMN-
MDSCs devoid of SIRPa in patients with metastatic melanoma
demonstrated a strong capacity to kill T cells using trogocytosis
and production of ROS, without in vitro activation (26).
Activated mature high-density PMNs reproduce such behavior
once SIRPa is neutralized. This builds on previous studies
pointing to the central role of SIRPa in controlling many
aspects of PMNs biology and warrants further studies to
elucidate the underlying mechanisms to further refine
immunotherapy activity in the immune microenvironment.
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