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Abstract

Molecular markers are a highly valuable tool for creating genetic maps. Like in many other crops, sugar beet (Beta vulgaris
L.) breeding is increasingly supported by the application of such genetic markers. Single nucleotide polymorphism (SNP)
based markers have a high potential for automated analysis and high-throughput genotyping. We developed a
bioinformatics workflow that uses Sanger and 2nd-generation sequence data for detection, evaluation and verification of
new transcript-associated SNPs from sugar beet. RNAseq data from one parent of an established mapping population were
produced by 454-FLX sequencing and compared to Sanger ESTs derived from the other parent. The workflow established
for SNP detection considers the quality values of both types of reads, provides polymorphic alignments as well as selection
criteria for reliable SNP detection and allows painless generation of new genetic markers within genes. We obtained a total
of 14,323 genic SNPs and InDels. According to empirically optimised settings for the quality parameters, we classified these
SNPs into four usability categories. Validation of a subset of the in silico detected SNPs by genotyping the mapping
population indicated a high success rate of the SNP detection. Finally, a total of 307 new markers were integrated with
existing data into a new genetic map of sugar beet which offers improved resolution and the integration of terminal
markers.

Citation: Holtgräwe D, Sörensen TR, Viehöver P, Schneider J, Schulz B, et al. (2014) Reliable In Silico Identification of Sequence Polymorphisms and Their
Application for Extending the Genetic Map of Sugar Beet (Beta vulgaris). PLoS ONE 9(10): e110113. doi:10.1371/journal.pone.0110113

Editor: Swarup Kumar Parida, National Institute of Plant Genome Research (NIPGR), India

Received June 18, 2014; Accepted September 7, 2014; Published October 10, 2014
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Introduction

The biennial plant sugar beet is a member of the order

Caryophyllales and is grown commercially for sugar production

mainly in the temperate climate zones. Currently, about one

quarter of the world’s sugar production is derived from sugar beet.

The plant is not only grown for table sugar production, it is also of

increasing importance for production of bioethanol as a source of

renewable energy [1,2].

Sugar beet is a diploid allogamous crop in nature with 18

chromosomes (1n = 9) and an estimated haploid genome size of

about 731 Mbp [3,4]. During the last decade sugar beet was target

of several genetic mapping approaches [3,5]. A single nucleotide

polymorphisms (SNP) based genome-wide association map

addressing six agronomic traits has been published in 2011 [6].

Shortly after, a genetic map that had been tightly linked to a

physical map in BACs was made available [7], as well as the first

sugar beet reference transcriptome based on RNAseq data [8].

Recently, genome sequence assemblies from five double haploid

sugar beet lines were published, including the high-quality genome

sequence of the reference genotype KWS2320 [3]. This reference

assembly comprises 566.6 Mbp and displays a N50 size of

1,7 Mbp.

In the past, sugar beet breeding companies as well as academic

research institutes have spent considerable effort to build large

segregating populations. The goals are, among others, the

identification of quantitative trait loci (QTL) with agronomical

relevance or fine mapping important monogenic traits, e.g. disease

resistance. Positional cloning of genes and development of markers

with improved diagnostic value, both aided by the availability of

SNPs and genome sequence, will help to optimise the sugar beet

breeding process and will speed up the development of new

varieties.
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SNPs are the most abundant type of DNA variation currently

used as genetic markers, because of their suitability for automated

detection and multi-parallel analysis. This allows high-throughput

analyses of many markers and individuals [9]. Empirical

evaluation and comparison of different marker systems revealed

a good success rate for SNP marker in diversity analysis of sugar

beet hybrid varieties [10]. Also, 2nd- generation sequencing

technologies have enhanced genome-wide SNP discovery in crop

plants [11]. However, a bottleneck for the discovery of valuable

SNPs in small to medium large datasets is the reliability of

polymorphic site detection. Therefore, either very large sequence

datasets or sequences read information with a high reliability are

applied. Since both options require a considerable effort in money

and time, the exploitation of existing resources like large EST

collections from Sanger technology is still meaningful. Such

Sanger ESTs offer a long read length, helping to overcome

problems caused by e.g. the error-prone assembly of cDNA

sequences encoding highly conserved protein domains. In general,

the assembly of transcriptome data from short RNAseq sequences

possesses a significant bioinformatics challenge [12].

Over the last few years different strategies and pipelines for

automated SNP discovery from large sequence datasets have been

developed, e.g. PolyBayes [13], AutoSNP [14] and QualitySNP

[15]. Some strategies for SNP detection make use of trace or

quality files, for example the PHRED/PHRAP/PolyBayes system

[13,16]. AutoSNP and QualitySNP have shown to be useful for

extracting reliable SNPs from EST sequence datasets where

quality information is missing. Several pipeline packages for SNP

discovery from 2nd-generation sequencing datasets have been

described [17–19], among these CASAVA (Consensus Assessment

of Sequence and Variation, Illumina) and the Probabilistic Variant
Caller (included in the commercially available CLC software

packages, CLC Bio, Denmark). These SNP identification pipelines

are e.g. advancements of the PolyBayes pipeline [17]. The

annotation-based SNP detection package AGSNP [19] allows

the use of all current types of 2nd-generation sequencing reads

under the assumption that at least one of them generates relatively

long reads.

In this study we describe a strategy for the identification,

evaluation and verification of reliable polymorphisms between

conventional Sanger ESTs and 454-FLX ESTs, by making use of

the quality values for both sequence types. One purpose of this

work was to explore the potential of combining existing, reliable

and high-quality sequence datasets with the power of cost-

effective, high-throughput sequence generation. Furthermore, we

used the SNPs and InDels identified for generation of new genetic

markers and an extended genetic map of sugar beet.

Material and Methods

Plant material and DNA
For RNA isolation, plants of the K1P2 parent of the KWS1

mapping population were grown in the greenhouse under long day

conditions on soil for seven weeks. Reduction of photosynthetic/

chloroplastic gene expression was performed by etiolation for four

days prior to harvest. Subsequently, leaf tissue was collected in the

dark, frozen in liquid N2 and stored at 280uC until use.

For SNP genotyping by amplicon sequencing genomic DNA

was extracted from the parents K1P1 and K1P2 of the KWS1

mapping population, the K1F1 genotype as well as the F2

genotypes of the KWS1 mapping population. Genomic DNA was

preperated from leaf material with the modified CTAB-DNA

extraction method as described in Rosso et al. [20]. The KWS1

population was provided by KWS SAAT AG and had 183 F2

individuals, as described in [7]. All F2 plants were derived from a

single F1 clonal plant. K1P1 is identical to the DH line KWS2320

that represents the sequenced genotype [3], parent K1P2 is an

inbred line that contains about 10% remaining heterozygousity.

RNA extraction and cDNA synthesis
Total RNA from frozen leaf tissue was extracted using the

Qiagen Plant RNAeasy Kit. The tissue was ground under liquid

nitrogen, and RNA was extracted using the RLT buffer provided

with the kit. The RNA obtained was treated with Ambion DNA-

free DNase and subsequently quantified using a NanoDrop2000c

(Thermo Fisher). The total RNA amount per 100 mg tissue was

37.54 mg. For cDNA synthesis using oligo-dT priming the

SuperScript-II RT Kit (life technologies) was used. The complete

cDNA was used for 454-FLX library construction and sequencing.

454-FLX EST generation
Preparation and sequencing of the 454-FLX sequencing library

was performed according to the manufacturer’s instructions (GS

FLX General library preparation kit/emPCR kit/sequencing kit

[21]). About 6.5 mg of sugar beet cDNA was shorn by nebulisation

and size selected by AMPure Beads (Agencourt) to 300–700 base

fragments. These fragments were used to construct a single-

stranded shotgun library that was used as template for single-

molecule PCR. The amplified template beads were recovered after

emulsion breaking and selective enrichment. The GS FLX was

run for 220 cycles of four solutions containing either dTTP, dATP,

dCTP and dGTP reagents. The raw reads of the 454-FLX run are

available from SRA (sequence read archive, accession number

SRX647739).

Processing of 454 reads
The sequences of sugar beet K1P2 cDNA from the Roche 454-

FLX system were assembled using the GS Assembler (version 2.6)

from Roche Applied Science to generate 454-FLX EST data. The

software filters reads for contaminations and low quality bases, and

it keeps the quality scores. Short reads (,80 nt) and repeats were

removed. The assembly was performed with default settings. For

simplicity we do not differentiate between contigs, isocontigs and

isogroups. We refer to each continuous DNA sequence that has

been assembled from overlapping cDNA reads and regardless of

its length as a contig.

Pre-processing of Sanger reads
The Sanger sequence data used in this study have been published

[22], are derived from the genotype K1P1 and are available from

GenBank/EBI (dbEST). The original tracefiles were newly base-

called using the program phred (version 0.020425.c [23]). The

obtained sequences were filtered for slippage using the algorithm of

Telles et al. [24]. Removal of sequences related to Escherichia coli
K12 (GenBank No. NC_000913) was done using BLASTN [25]

(blastall version 2.2.24). Reads with E. coli matches displaying a

BLAST e-value lower than 1e-40 were excluded from further

evaluation. After masking vector sequences with cross_match
(version 0.990329, [26]) and filtering of low quality bases (minimum

average quality score 20) by a sliding window approach (window

size 50 nt), the longest unmasked subsequence was taken as high

quality sequence (HQS), if this was longer than 50 nt. All Sanger

HQS were assembled by using phrap (version 0.990329, [26]).

Extended Sugar Beet Genetic Map
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Polymorphic site discovery
From the K1P1 Sanger EST assembly as well as from the K1P2

454-FLX ESTs only contigs and singlets larger than 200 bp were

used for polymorphic site detection. Matching K1P1 and K1P2

contigs and singlets were detected with blastall and aligned with

MAFFT (version 6.857b, default parameters) [27]. The resulting

alignments were grouped into three classes. First, monomorphic

alignments; these do not contribute to the results and were

removed. Second, alignments with an identity below 97% were

considered as potentially not reliable due to generation of false-

positive results; these were removed as well. Third, the remaining

alignments which were further evaluated. The Python program

mmfind (available from BiBiServ [28]) was written, optimised and

used to evaluate polymorphic alignments based on the quality

values for each 454-FLX and Sanger EST position. mmfind
detects mismatches in fasta-formatted sequence alignments and is

able to handle ambiguity codes as well as associated quality scores

of different kinds of sequences. Additionally, mmfind trims

alignments according to specified parameters (e.g. minimal

sequence quality or minimal number of aligned sequences at the

ends), produces a consensus sequence and combines alignments.

The following mismatch types are recognized by mmfind: one-base

SNP, multi-base SNP, one-base InDel, multi-base InDel and

mixed types.

Scoring of polymorphisms
Classification of polymorphisms into the categories ‘‘good’’,

‘‘usable’’, ‘‘uncertain’’ and ‘‘bad’’ was performed based on three

criteria. The neighbourhood quality standard (NQS, [19]) as the

first criterion was considered ‘passed’ if the average score of the

polymorphic bases was at least 20 and the average score of the five

bases up- and downstream was at least 15 (test A). The second

criterion was considered fulfilled (test B) if the minimal distance to

the end of the alignment was larger than 80 bp and the third

criterion was considered ‘passed’ (test C) if the length of the

polymorphism was less than 3 bp. SNPs and InDels that passed all

three criteria were classified as ‘‘good’’. Passing test A and/or test

B but failing test C leads to the category ‘‘useable’’. Succeeding

criterion C but failure of criterion A and/or criterion B leads to

the category ‘‘uncertain’’, whereas SNPs and InDels that do not

pass any criteria were recognized as ‘‘bad’’.

To locate the new marker coordinates within RefBeet1.2,

sequence tags flanking the polymorphic sites (100 nt upstream and

100 nt downstream) for each of the markers were aligned to the

reference sequence using BLASTN, and by considering always the

best hit. The individual SNP positions were calculated from the

resulting alignments with an in-house script.

SNP validation, amplicon sequencing and segregation
analysis

For SNP validation and/or marker value determination by

amplicon sequencing, primer pairs were designed to fit the

flanking sequence of the addressed SNP using the Primer3

software [29] with an average length of 22 nucleotides and a

melting temperature around 58uC. Using knowledge gained from

already sequenced and annotated genomes like Arabidopsis
thaliana, poplar (Populus trichocarpa) and rice (Oryza sativa),

predictions of the exon/intron borders on the cDNA sequences

and the likely intron sizes were performed. Deduced from these

predictions an expected amplimer size of 500 to 1000 bp on

genomic DNA was targeted. Genomic DNA (gDNA) from

relevant sugar beet genotypes was used as template in PCR

reactions with each primer pair under the following conditions.

Each 20 ml PCR reaction contained 2 ng gDNA, 0.5 mM of each

primer, 200 mM of each dNTP, 0.5 U Taq polymerase and

reaction buffer with 10 mMTris/HCl (pH 8.0), 50 mM KCl and

2.5 mM MgCl2. PCR was performed at 96uC for 2 min, followed

by 40 cycles at 96uC for 30 s, 58uC for 30 s, 72uC for 30 s and a

final extension at 72uC for 3 min. Amplicons were visualised on

agarose gels, purified with Exo-SAP IT (USB Corporation, Ohio,

USA) and sequenced in both directions using the ABI Prism

BigDye Terminator Cycle Sequencing kit (Applied Biosystems,

Foster City, CA, USA) on an ABI Prism 3730xl sequencer

(Applied Biosystems, Foster City, CA, USA). Sequences of the two

parental lines and from the F1 generation were assembled to a

consensus sequence for each genotype, aligned with the 454-FLX-

Sanger-EST reference alignment sequence and evaluated for the

primarily predicted SNPs as well as for additional polymorphisms

using the Sequencher version 4.9 sequence analysis software [30].

For the segregation analysis based on Sanger technology the

same verified primer pairs were used for amplicon generation and

sequencing. The obtained sequence reads for each F2 individual

were assembled into a multiple alignment and evaluated for

segregation using the ABH code. An A stands for the homozygous

alleles from the K1P1, B for the alleles from the K1P2 and H for

the heterozygous allele combination. Primers for KASPr-marker

assays were designed using a tool provided by KBiosciences based

on the SNP locus sequence.

Genetic mapping
The raw data of the new markers were systematically cleaned

through a pre- and post-mapping diagnosis according to Jansen

et al. [31]. Genotypes with at least 10% missing values and

outstanding large number of recombinations for each chromo-

some were discarded. Two or more markers showing no

recombination at a locus were treated as a single locus. Four

markers were excluded due to dominance or distorted segregation.

The processed marker data from this study together with marker

data from BeetMap [7] and the genotyping data of the terminal

markers [32] were grouped in JoinMap 4 [33] at independence

LOD of 3 to 37. Linkage groups were assigned to chromosomes

according to [34]. Mapping was done in a two step approach: the

marker order per chromosome was determined with RECORD

[35] using the following parameters: 30 cM maximal gap size, 0.1

as maximal fraction of extra recombinations allowed and 5 steps to

reach upper limit. The resulting marker order was used as fixed

order when calculating marker distances in JoinMap. Here the

Haldane mapping function was used with the mapping parameters

of the maximum likelihood mapping algorithm as described in

Dohm et al. [7]. Maps were drawn with MapChart [36].

Results and Discussion

454-FLX EST generation
A Roche 454-FLX run analysing cDNA from leaves of sugar

beetgenotype K1P2 generated a dataset of about 61 Mbp which

was composed of 266,666 single reads. The mean read length was

227 nt. After elimination of short reads (below 50 nt), approxi-

mately 70% of all reads were aligned and assembled into 5,716

contigs (minimal length 200 bp, average length of 670 bp),

summing up to a total contig length of about 3.83 Mbp.

The remaining 56,456 single reads (singlets) with at least 200 nt

and a mean read length of 252 nt accounted for 14.25 Mbp in

total. The two datasets were analysed in parallel to identify

polymorphisms also in low expressed genes. From 16,290 Sanger

EST reads derived from genotype K1P1 (see Material and

Methods), 2,084 contigs and 8,004 singlets were generated.

Extended Sugar Beet Genetic Map
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Inspection via BLASTN [25] revealed that unwanted sequences

like chloroplast, mitochondrial, known repeat sequences and

bacterial contamination (in total less than 1%) were not a concern.

An overview of the input data and the processing steps is depicted

in Figure 1.

For 5,471 (54.2%) of the 10,088 unique sugar beet Sanger ESTs

[22] a homolog was detected in the complete 454-FLX dataset.

Valid matches were filtered by setting the minimum length to

200 nt and the identity to at least 97%. A total of 2,278 ESTs

matched only to 454-FLX contigs, and 3,193 only to 454-FLX

singlets, while 160 ESTs matched sequences of both types.

Polymorphic alignments
Sequences of the K1P1/K1P2 homologs were aligned to

produce one alignment for each non-overlapping sequence pair.

This resulted in 8,446 individual alignments in total, 2,360 for the

454-FLX contigs and 6,086 for the 454-FLX singlets (Figure 1).

For simplicity, these will be referred to as K1P2-contig or K1P2-

singlet alignments. As a consequence of the global alignment using

MAFFT, that included also alignments of several 454-FLX contigs

or singlets to one Sanger EST, some alignments showed a rate of

sequence divergence of more than 3%. In addition, about 12% of

the K1P2-contig based alignments and 21% of the K1P2-singlets

based alignments were found to be monomorphic. Finally, 1,394

(59%) of all K1P2-contig based and 3,302 (54%) of the K1P2-

singlet based sequence alignments were considered as reliable

polymorphic alignments (Table 1) that belong to 2,265 loci

(clusters of K1P1 and K1P2 sequences, combining for example

59 and 39 Sanger ESTs from the same gene).

From comparative BAC sequencing [37] and multiple EST

sequence alignments [38] it has been deduced that sugar beet

haplotypes differ within exon regions around 1% (1.4%) at the

nucleotide level. Making use of the comparably long Sanger

sequencing and 454-FLX derived ESTs and the application of the

3% divergence limit allowed a good identification of paralogous

sequences thereby minimizing the rate of false positive polymor-

phism calls. This long sequence based SNP detection approach is

in particular suited to identify multiple SNPs in a small region as

well as InDels of medium size. Comparable results regarding these

issues could be expected if Illumina derived RNAseq data were

applied to a transcriptome assembly and later used for polymor-

phic site detection.

Figure 1. Workflow of data processing for polymorphic site detection. The analysis steps (marked [1] to [9]) executed from the two starting
data sets to the polymorphic alignments are summarised.
doi:10.1371/journal.pone.0110113.g001
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Polymorphic site detection
Detection of mismatches within the alignments was performed

with the newly implemented Python program mmfind, which is

able to deal with the quality scores from Sanger and 454

sequencing. The detection of polymorphic sites by mmfind has

proven to be fast and convenient for commonly formatted

alignments. By applying mmfind to the fasta-formatted alignments,

a total of 14,342 mismatches were identified and evaluated. The

1,394 K1P2-contig based alignments yielded 6,472 putative

polymorphisms, while the evaluation of 3,302 K1P2-singlet based

alignments resulted in 7,870 putative polymorphisms. In 19 cases

(nine for K1P2-contig alignments and ten for K1P2-singlet

alignments) the mismatch typing was uncertain due to low

sequence quality. These cases were rejected, resulting in 14,323

sequence polymorphisms that were used for subsequent analyses

and statistics. The results are summarised in Table 1, including

statistics for single base and multibase SNPs as well as for InDels.

Even after discarding high polymorphic alignments with more

than 3% mismatches, there was a considerable difference in

frequency of putative polymorphisms between K1P2-contig (1

mismatch in 139 bp) and K1P2-singlet (1 mismatch in 285 bp)

alignments. By evaluating the data of both alignment types, 21,706

polymorphic raw base positions in about 4.49 Mbp were observed,

leading to an overall SNP frequency of 1/207 bp. This overall

observed SNP frequency of 1/207 bp is above the frequency of 1/

324 bp published earlier. Reason for this could be that former

polymorphic site detection was based on only one Sanger derived

sequence of limited length for each parent of the mapping

population increasing the probability to miss or discard notable

SNPs at both borders. Due to this reason the real SNP frequency

may be slightly higher than our observed SNP frequency of 1/

285 bp if only the singlet-based alignments were processed. This

frequency is comparable to SNP rates in coding regions of e.g. 1/

200 bp in barley [39] and 1/191 bp in soybean [40].

Polymorphic site classification and statistics
The detected mismatches were validated for suitability and

reliability using strict parameters. Our evaluation for suitability

addresses technical aspects of marker development, as there is the

requirement of at least about 80 adjacent bases around the

polymorphism for primer design and a maximum of three

consecutive polymorphic bases. The reliability was evaluated by

the Neighbourhood Quality Standard (NQS, [19,41]). Mismatches

suitable in terms of the technical aspects and reliable according to

the NQS quality check were categorised as ‘‘good’’ polymor-

phisms. The other categories comprise: ‘‘usable’’ (not suitable, but

reliable), ‘‘uncertain’’ (suitable, but not reliable) and ‘‘bad’’ (not

suitable and not reliable). In total 6,510 (45.5%) mismatches were

classified as ‘‘good’’, 2,992 (20.9%) as ‘‘usable’’, 4,770 (33.3%) as

‘‘uncertain’’ and 51 (0.4%) as ‘‘bad’’ (Table 2). The ‘‘good’’

mismatches cover 1,562 (69.0%) of all 2,265 represented loci. It

should be noted that polymorphisms in the category ‘‘usable’’ may

easily become useful if sufficient genomic sequence information

becomes available for the locus in question.

Elimination of already known loci
Former approaches for SNP marker development have partly

consulted the same Sanger EST dataset that has also been used in

this study. The Sanger ESTs contributed to a small amount to the

markers generated for two SNP-based genetic maps, namely the

map produced by K. Schneider [38] and the BeetMap [7]. Since

the polymorphic sites discovered in this work should also

contribute to the development of new genic SNP markers for

sugar beet, the elimination of polymorphisms at loci for that

markers already exist was essential. We investigated the 2,265 loci

with new polymorphisms (see Table 2), and excluded 94 loci

because they were already covered with markers. For the majority

of these loci (88) an EST-based marker already existed, whereas in

six cases a BAC end sequence-based marker was identified. It is

important to note that a given locus can be addressed with

different polymorphisms. Therefore, the SNPs assayed to genotype

the 94 loci are not necessarily included in the alignments

generated in this study.

To use the repeated detection of already validated polymor-

phisms as a proof of the reliability of our strategy, we filtered all

known markers for those that addressed SNPs located in exons and

identified 68 such cases. In the approach presented here, we have

detected SNPs between Sanger and 454 ESTs which have to be

located in exons while many of the other genic markers addressed

polymorphisms in introns. Then, we checked if these 68 exonic

SNP positions are covered by one the 4,496 polymorphic

alignments. Only 21 SNP positions addressed by known markers

were part of one of the polymorphic alignments. Of these 21, 19

were classified as ‘‘good’’, one as ‘‘uncertain’’ and one other

represented a false negative case. These results indicated at least

satisfying reliability of our strategy.

Marker development and SNP-genotyping
SNPs were established as the most abundant co-dominant

marker class and used as efficient and robust marker systems [42].

Besides this, polymorphisms or mutations in coding DNA regions

(cSNPs) may lead to changes in the amino acid sequences and

affect gene function. Therefore, cSNPs are highly valuable for

marker development.

Our SNP identification was first evaluated at the level of

genomic DNA using 20 candidate SNPs classified as ‘‘good’’ and

23 classified as ‘‘useful’’. These candidate SNPs were selected after

prediction of intron positions (see Material and Methods). All of

Table 2. Scoring of polymorphisms.

SNPs (incl. multi-base) InDels SNPs & InDels Loci (best status) Category

Total 12,057 2,266 14,323 2,265

All tests succeeded 5,424 1,086 6,510 1,562 ‘‘good’’

Test A succeeded, test B and/or C failed 2,529 463 2,992 291 ‘‘usable’’

Test A failed, test B and/or C succeeded 4,055 715 4770 410 ‘‘uncertain’’

All tests failed 49 2 51 2 ‘‘bad’’

Polymorphic sites were categorised according to three criteria as described in the methods section. Test A: Neighbourhood Quality Standard, average score of
polymorphic bases. = 20, average score of 5 bases up-/downstream. = 15; test B: minimal distance to border. = 80 bp; test C: polymorphism length , = 3 bp.
doi:10.1371/journal.pone.0110113.t002
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the 20 chosen candidate SNPs from the category ‘‘good’’ could be

confirmed by Sanger amplicon sequencing of K1P1, K1P2 and

the F1 from which the KWS1 mapping population was derived. In

contrast, only nine of the 23 ‘‘useful’’ SNPs were confirmed. For

this evaluation only true single base SNPs were used, because

Sanger sequence analysis of InDels could potentially be problem-

atic for the heterozygous F1 genotype. In addition, six of the

identified and verified genic SNPs (three of each category) were

used successfully as genetic markers which were scored by Sanger

sequencing in KWS1.

After this first small scale pilot study had demonstrated the high

quality and reliability of the strategy for polymorphic site

detection, 325 polymorphisms (282 of the category ‘‘good’’ and

43 of the category ‘‘uncertain’’) were used for marker development

using the KASPar technology [43]. Genotyping platforms like

KASPar/melting curve require a significant amount of sequence

information around the tracked SNP to work properly. Mostly at

least 30–50 nucleotides on each site are necessary, which is easily

reached for the majority of SNPs detected by the approach

described here. For the same reason no SNPs from the category

‘‘usable’’ were chosen. Finally, 225 polymorphisms were geno-

typed in the KWS1 population with a success rate of about 69%.

The ‘‘good’’ mismatches again displayed a higher success rate for

marker development than ‘‘uncertain’’ ones: of 282 ‘‘good’’

mismatches 211 (75%) were successfully genotyped, whereas only

14 of the 43 ‘‘uncertain’’ mismatches (33%) yielded results

(Table 3). The markers were designated with the code ‘‘EBS’’

followed by a 4-digit number, e.g. ‘EBS0278’. The polymorphic

sequences (Table S1), the primer sequences (Table S2) as well as

the scoring data (Table S3) are provided as data supplements.

Taken together, the computational as well as wet lab effort and

costs were in relation to the success rate of reliable SNP detection

and genetic mapping of coding SNPs very advantageous.

Generation of an extended and improved genetic map of
sugar beet

Genotyping of the newly generated markers in the KWS1

population revealed the expected segregation ratios and indepen-

dence between the targeted loci. By applying JoinMap 4 [33] all

215 new EST-derived markers could be integrated into the former

genetic map (BeetMap) of Dohm et al. [7] resulting in an

improved genetic map, designated BeetMap-3 (Table 4; Figure

S1). The observed random distribution of these markers on all

nine linkage groups of sugar beet gave strong evidence for the high

reliability of the polymorphic site detection and processing

approach.

Choosing EST sequences as a basis for polymorphic site

detection in sugar beet improved the current genetic map [7]

especially by integrating markers in coding regions. BeetMap-3

enlarges the number of EST derived markers from 283 to 497.

Taking into account the very good success rate of more than 75%

for SNP genotyping if using polymorphisms from the category

‘‘good’’ and the generation of polymorphic alignments for more

than 1,500 loci, we generate at least 1,100 genetically distinct

potential marker locations, just by adding a small FLX-EST data

set to the already published Sanger ESTs. If a genotyping platform

allows the evaluation of InDels larger than 3 bp or needs less than

30 bp sequences on both sides of the tracked polymorphism, also

Table 3. Detailed results of the marker generation.

All tests positive Failed NQS

Selected and screened polymorphisms 282 100% 43 100%

Successful genotyped polymorphisms 211 75% 14 33%

Converted to markers 199 71% 14 33%

All tests comprises test A: Neighbourhood Quality Standard; test B: minimal distance to border and test C: polymorphism length. Neighbourhood Quality Standard
(NQS) is a possible criterion to evaluate the reliability. More details can be found in Materials and Methods and Table 2.
doi:10.1371/journal.pone.0110113.t003

Table 4. Comparison of marker number and genetic distance between genetic maps.

previous genetic map (BeetMap) current genetic map (BeetMap-3) marker number comparison

Chr. cM # marker cM # marker added deleted

1 93.2 85 103.0 111 28 2

2 87.2 82 130.2 114 32 0

3 107.5 89 116.2 112 25 2

4 108.0 86 123.6 115 30 1

5 101.8 145 147.8 199 54 0

6 102.7 147 137.9 181 34 0

7 101.9 132 146.6 171 39 0

8 92.5 90 110.5 119 29 0

9 92.0 127 125.6 163 36 0

Sum 886.8 983 1141.4 1285 307 5

Total marker numbers and genetic distances (cM) are presented for each of the nine sugar beet chromosomes for the previous published [7] and for the current map
constructed within this study. Added and deleted markers are itemised separately. Added markers belong to this study, deleted markers are from the previous BeetMap.
doi:10.1371/journal.pone.0110113.t004
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Figure 2. Display of chromosome 1 comparing the current and former genetic map derived from the KWS1 mapping population.
The new map designated BeetMap-3 is shown on the left, the former BeetMap on the right. Names of markers added by this study are highlighted in
green, excluded markers are marked in red. Terminal marker were named by using the prefix ‘‘KWS_’’. Cosegregating markers are indicated by
identical map positions.
doi:10.1371/journal.pone.0110113.g002
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mismatches of the category ‘‘useful’’ are promising candidates in

addition the ‘‘good’’ ones. The usage of polymorphisms from the

category ‘‘uncertain’’ is as expected not favourable, but it offers

options to find a marker for a gene of interest that is otherwise not

covered.

Before starting to calculate a new genetic map, we set out to

gather data from additional markers that might be beneficial for

extending the marker set for the KWS1 population. First, 31

markers corresponding to BACs that mark the chromosome

termini [32] were determined in the KWS1 population. Second,

61 validated BAC-based markers from a study on marker recovery

from BAC end sequences that were also determined in the KWS1

population were added. In total, the number of genetic markers

was increased from 983 to 1285 markers in BeetMap-3. A total of

307 newly identified genetic markers were integrated, while only

five markers from the former map [7] had to be removed due to

the stringent criteria for putative linkage. For each chromosome,

between 25 and 54 new markers accounting for distinct loci were

integrated. The total map length increased from 886 centi-Morgan

(cM) in BeetMap [7] to 1141 cM in BeetMap-3 (Table 4). A

comparison of the two maps of chromosome 1 demonstrated high

co-linearity for the overall marker order (Figure 2). Data on the

other chromosomes are provided in Figure S1. This extension of

the marker set for sugar beet map construction led to a significant

and important increase of marker density as well as map coverage.

Very good co-linearity of BeetMap-3 with BeetMap was observed

for all chromosomes, demonstrating the high quality of both maps.

Besides the enhanced map coverage by the new EST-derived

markers, the integration of endpoint markers led to a moderate

map inflation.

SNP distribution in the genome
The positions of the SNP markers were determined within the

RefBeet reference assembly [3] (see Material and Methods). All

SNPs with a single exeption were identified (see Table S4). The

exception is the EST-derived SNP EBS0280_193, and the failure

in detecting this SNP is most probably due to the fact that the

reference assembly covers the sugar beet genome to 96% in terms

of genes, which is very good but not 100% [3].

As validated by genetic mapping, the newly detected SNPs are

randomly distributed throughout the reference assembly. Also, in

almost all cases the genetic marker order is co-linear with the

physical order of scaffold sequences which further verifies the high

accuracy of the reference assembly. Out of the 276 additional

marker sequences, 25 hit chromosomally assigned but genetically

unanchored scaffolds. In addition, 11 marker sequences hit the

chromosomally unassigned part of the assembly. The genetic

mapping information of these 36 markers could be used to

genetically assign the respective scaffold and contig sequences.

However, we refrain from reordering the current reference

assembly at this stage for two reasons. First, only for a single

unanchored scaffold (Bvchr8_un.sca002) markers with a genetic

distance larger than 0.5 cM were detected that allow orienting the

newly anchored sequence relative to the north/south ends of the

chromosome; for all other scaffolds and contigs there is no hint

regarding their correct orientation. Second, the potential im-

provement reached by assigning a few additional sequences to the

reference assembly is not worth the hassle of creating an updated

assembly that affects all position-related information like e.g. gene

names.

Conclusions

The strategy established for a reliable in silico identification of

polymorphic sites by combining 454-FLX and Sanger reads, and

the successful application of the categorisation of polymorphic sites

for marker development resulted in three main achievements.

First, the analysis strategy described here can be transferred to

other species. Second, the categorisation and the established filter

criteria allow a promising conversation rate between the initially

detected sequence polymorphisms and the finally scored markers.

Third, the work presented has resulted in a significantly improved

genetic map of sugar beet with higher resolution and integrated

terminal markers. Although the 454 technology runs out of date,

the same strategy can be applied to medium or long size RNAseq

data generated by e.g. the Illumina MiSeq platform and

assemblers that keep the quality values.
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Figure S1 Updated genetic map displaying all nine
chromosomes, layout and naming identical to Figure 2.

(PDF)
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Mismatches are given in brackets, starting with the K1P1 allele.

(XLSX)

Table S2 Marker assay data. Marker types and primer
sequences.

(XLSX)

Table S3 Scoring data from new markers and F2
individuals for genetic mapping. In the ABH table scoring

the K1P1 allele leads to an A, the K1P2 allele corresponds to B
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