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ABBREVIATIONS

CHD Congenital heart defects

Hsa21 Human chromosome 21

Mmu Mouse chromosome

Down syndrome is the most common genetic developmental disorder in humans and is

caused by partial or complete triplication of human chromosome 21 (trisomy 21). It is a com-

plex condition which results in multiple lifelong health problems, including varying degrees

of intellectual disability and delays in speech, memory, and learning. As both length and

quality of life are improving for individuals with Down syndrome, attention is now being

directed to understanding and potentially treating the associated cognitive difficulties and

their underlying biological substrates. These have included imaging and postmortem studies

which have identified decreased regional brain volumes and histological anomalies that

accompany early onset dementia. In addition, advances in genome-wide analysis and Down

syndrome mouse models are providing valuable insight into potential targets for intervention

that could improve neurogenesis and long-term cognition. As little is known about early brain

development in human Down syndrome, we review recent advances in magnetic resonance

imaging that allow non-invasive visualization of brain macro- and microstructure, even in

utero. It is hoped that together these advances may enable Down syndrome to become one

of the first genetic disorders to be targeted by antenatal treatments designed to ‘normalize’

brain development.

Down syndrome is caused by partial or complete triplica-
tion of human chromosome 21 (Hsa21; trisomy 21) and is
the most common genetic developmental disorder in
humans. It is a complex condition which results in multiple
lifelong health problems, including varying degrees of
intellectual disability and delays in speech, memory, and
learning. Worldwide, Down syndrome affects 1 in 1000 to
1100 live births annually. Whilst there have been signifi-
cant improvements in non-invasive prenatal screening,1 the
prevalence of Down syndrome has remained relatively
unchanged over the past 30 years, partly because of
increasing maternal age.2 In addition to cognitive difficul-
ties, there is typically multisystem involvement, with
comorbidities including congenital heart defects (CHD;
40–50%), hypothyroidism, hearing, vision, and gastroin-
testinal complications. In early adulthood, cognitive decline
is common with a high risk of early onset dementia and
Alzheimer disease. In recent years, increased research, edu-
cation, health care, and intervention programs have all
contributed to people with Down syndrome now working
and leading longer, healthier lives.

As Down syndrome is a multigene, multisystem disorder,
accurately predicting neurocognitive abilities through the
lifespan and understanding the high degree of variability
across functional phenotypes remains a significant

challenge. As a result, most clinical research in Down syn-
drome has been focused on understanding the pathogenesis
of early onset dementia in adults, and clinical trials with
pharmacological agents have been focused on improving
cognition and delaying the development of dementia in
adolescents and adults. Here, neuroimaging has become an
increasingly useful modality to understand the progression
of the underlying brain abnormalities and monitor the
effects of potential therapeutic intervention. In contrast,
published brain phenotypes during the fetal and neonatal
period have been limited to only a handful of small post-
mortem case series. Therefore, whilst such studies have
provided vital information about how early brain develop-
ment is altered in Down syndrome, by nature, they cannot
inform about the natural history of the abnormalities and
crucially do not allow correlation of the identified brain
phenotypes with subsequent outcome. In this review we
describe how recent advances in developmental animal
models of Down syndrome and non-invasive imaging
methods can fill this gap in knowledge by enabling the first
in vivo studies in early human life.

INDIVIDUAL VARIABILITY
Hsa21 contains 222 protein coding genes, and 325 non-
protein encoding genes.3 Studies of partial trisomy of
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Hsa21 have revealed that multiple regions of Hsa21 con-
tribute to the observed physical and neurodevelopmental
characteristics of Down syndrome.4,5 The phenotype in
Down syndrome is thought to arise from the overexpres-
sion and dysregulation of these genes and their associ-
ated pathways, together with global cellular stress
responses and compensatory mechanisms early in devel-
opment.6 Epigenetic changes have also been observed in
the fetal brain and blood from newborn infants with
Down syndrome7,8 which may further impact develop-
ment and contribute to the range of observed cognitive
outcomes. The neurological phenotype constantly
changes over the life span of Down syndrome,9 with dif-
ferences continuing into adulthood. From 20 to 40 years
of age, the majority of individuals with Down syndrome
appear to develop characteristic Alzheimer disease neu-
ropathology such as amyloid-b plaques and neurofibril-
lary tangles; however, not all will develop dementia,
which has a clinical prevalence of 68 to 80 per cent by
65 years of age.9–12 Dementia is also strongly associated
with early mortality in older (>36y) adults with Down
syndrome.13 There are therefore multiple factors which
may explain why individual differences exist across all
levels of assessment: from gene expression, cellular
responses, and subsequent brain development, to cogni-
tive, motor, and behavioural phenotypes.6,12,14

NEURODEVELOPMENT IN DOWN SYNDROME
Variable but atypical behavioural and cognitive func-
tioning emerges throughout the lifespan in Down syn-
drome. IQ ranges from mild to severe disability (30–70;
average IQ 50),15 with females reported to have milder
degrees of intellectual disability compared to males.15,16

Varying degrees of impairment in speech and language,
memory, learning, and motor functions are also pre-
sent.9,14,17–19

In comparison to typically developing controls, infants
with Down syndrome may have only mild delays in
learning and cognition during early infancy. Delayed or
impaired cognitive and behavioural function then
becomes more prominent from 2 years of age, with the
rate of intellectual development slowing with increasing
age.12,20 Toddlers and young children with Down syn-
drome also have a higher prevalence (pooled prevalence
of 16%) of autism spectrum disorder, which is further
increased in those with greater cognitive impairment.21–23

Epilepsy (and in particular West syndrome) occurs at a
higher incidence (1–13%) in children with Down syn-
drome.24,25 Recent studies also suggest that preschool age
children with an associated CHD (typically atrioventricular
septal defects and ventricular septal defects) have poorer
neurodevelopmental outcomes.26–29 This wide spectrum of
outcomes and limited understanding regarding how they
relate to the underlying brain abnormalities therefore can
significantly hamper antenatal parental counselling and
undermine attempts to identify and assess potential treat-
ment strategies.

Neurological phenotype – what is known from
postmortem and adult studies
It has been widely reported that children and adults with
Down syndrome have smaller whole brain volumes, and a
smoother, simplified gyral appearance.30 Reduced cortical
surface area and increased cortical thickness have also been
observed in children and young adults with Down syn-
drome.31 By middle adulthood, premature structural brain
ageing can be detected.32 This includes disproportionate
volume reduction of the brain regions crucial for speech,
learning, and memory such as the prefrontal cortex, hippo-
campus, and cerebellum.30,33

Despite their small number of cases, postmortem studies
have provided important information about the range and
high variability of the neuropathological features evident in
Down syndrome across the life-span. These studies suggest
that the known reductions in brain size (2D and 3D mea-
sures) and weight emerge during the fetal and newborn
period.34,35 During the second trimester, reduced cellular
proliferation and increased cell death reflect the observa-
tion that fewer neurons are seen in the neocortex, hippo-
campus, and cerebellum.36–40 Fewer neurons in the
ventricular zone and subventricular zone further suggest an
underproduction of excitatory neurons, leading to
enhanced inhibitory neural activity that may underlie some
of the cognitive deficits observed in Down syn-
drome.37,40,41 A reduction in serotonin levels has also been
described in fetal brains with Down syndrome.42 In addi-
tion, there is growing evidence of a greater shift towards
neural progenitor cells differentiating into glia (microglia,
astrocytes, and oligodendrocytes),37,43 resulting in altered
regional expression and cellular densities of glia and
macrophages across gestation.44 During late gestation,
when neocortical expansion occurs, brains with Down syn-
drome also show delayed and disorganized patterns of cor-
tical lamination.45,46

After birth (and described up to 14y) there is a profound
decrease in neuronal number (20–50%) and altered mor-
phology of dendritic spines across the cortical layers.35,47,48

From 3 months of age, more distinct deviations in brain
growth and shape become evident, these include shorter
anterior–posterior diameter, flatter occipital poles, and
smaller frontal lobes, cerebellum, and brainstem.35 These
are accompanied by reductions in synaptic density and
length, and fewer dendritic spines (that are thinner and
shorter in length).35,48–50 Delays in myelination are also
observed postnatally (from 2mo), which correlates with
poorer psychomotor development.51 Collectively, these

What this paper adds
• Magnetic resonance imaging can provide non-invasive characterization of

early brain development in Down syndrome.

• Down syndrome mouse models enable study of underlying pathology and
potential intervention strategies.

• Potential therapies could modify brain structure and improve early cognitive
levels.

• Down syndrome may be the first genetic disorder to have targeted therapies
which alter antenatal brain development.

868 Developmental Medicine & Child Neurology 2019, 61: 867–879



observations are associated with overexpression of dosage-
sensitive genes including (but not exclusively): DYRK1A,
APP, S100b, and OLIG2, all located on Hsa21.43,46,52,53 In
addition, Cu/Zn superoxide dismutase (also on Hsa21) is
suggested to contribute to increased oxidative stress and
mitochondrial dysfunction.46,54

MOUSE MODELS OF DOWN SYNDROME
Advances in genome-wide analysis and the development of
animal models have provided valuable insight into under-
standing gene dosage imbalances in disorders such as
Down syndrome.55 Mouse models of Down syndrome have
been crucial to help investigate the genetic and develop-
mental origins of the Down syndrome phenotype and
importantly to test therapies that have the potential to
improve neurogenesis and long-term cognition.56,57 Hsa21
shares synteny with a large proportion of mouse chromo-
some (Mmu) 16 (approximately 102 protein coding genes)
and shorter regions of Mmu10 (37 protein coding genes)
and Mmu17 (19 protein coding genes).3 These have all
been key targets in generating mouse models of Down syn-
drome (for a comprehensive list of mouse models of Down
syndrome see Herault et al.57). Importantly, as in human
postmortem studies, an imbalance of excitatory and inhibi-
tory neurons, impaired neurogenesis, synaptogenesis, and
altered dendritic development are also observed in mouse
models of Down syndrome (detailed reviews are available
elsewhere).9,17–19,41,56,58,59

The Ts65Dn mouse (B6EiC3Sn a/A-Ts[1716]65Dn/J) has
historically been very important in the study of Down syn-
drome as it is trisomic for 90 protein coding genes on
Mmu16 (approximately 55% of orthologous genes to
Hsa21). However, Ts65Dn mice contain an extra copy of 60
genes (35 protein coding) located on Mmu17 (orthologous
to Hsa6) that are not triplicated in people with Down syn-
drome and the resultant Ts65Dn phenotypes may be more
severe than those seen in the human condition or possess
spurious phenotypes not relevant to Down syndrome.3,60,61

Other mouse strains have therefore been developed with
partial trisomy of genes on Mmu16. The Ts1Cje strain
(B6EiC3Sn-Ts[16C-tel]1Cje/DnJ) contains a partial trisomy
of approximately 71 to 81 genes on Mmu16, but also mono-
somy of seven genes on Mmu12, and has a milder phenotype
compared to Ts65Dn mice.3,62 Early studies of partial
human trisomies suggested that the Down syndrome pheno-
type was due to the increased gene dosage of a smaller num-
ber of specific genes, known as the Down syndrome critical
region extending approximately 5.4Mb.63,64 Using Cre-
LoxP technology, the Ts1Rhr mouse strain (B6.129S6-Dp
[16Cbr1-Fam3b]1Rhr/J) replicates trisomy of the Down
syndrome critical region (33 conserved and minimally con-
served genes).65 However, additional studies into partial tri-
somies and advances in gene mapping strongly suggest that
these genes alone are not sufficient to result in all Down syn-
drome phenotypes.4,5,65,66

The Tc1 (B6129S-Tc[HSA21]1TybEmcf/J) transchro-
mosomic (trans-species aneuploidy) mouse line contains a

freely segregated copy of Hsa21. Although some chromo-
somal rearrangement and deletions have been identified in
the construction process, it has allowed exploration of the
relationship between specific Hsa21 genes (including those
not found in the mouse) and phenotype.3,57,67 Whilst amy-
loid precursor protein (APP) is known to significantly con-
tribute to the early-onset of Alzheimer disease, recently it
has been shown that triplication of other genes on Hsa21
(Tc1 mouse is 75% trisomic for Hsa21 genes) can exacer-
bate plaque formation and cognitive deficits in mice.68

Advances in chromosomal engineering have facilitated the
design of more specific mouse models which include dupli-
cations of entire syntenic segments of Mmu16 (Dp[16]
1Yey)/Dp16 (B6.129S7-Dp[16Lipi-Zbtb21]1Yey/J) and
Dp1Tyb (Dp[16Lipi-Zbtb21]1TybEmcf)], Mmu17 (Dp[17]
1Yey), and Mmu10 (Dp[10]Yey). This has led to the devel-
opment of the most complete ‘triple trisomic mouse’ which
develops Down syndrome-related neurological impair-
ments.69 The Dp1Tyb and Dp16 contain the largest dupli-
cation of Mmu16, carrying an extra copy of 148 genes
which is the entire region of Mmu16 that is orthologous
to Hsa21 and does not perturb genes on any other chro-
mosomes.57,69,70 Whilst the triple trisomic mouse is
incredibly labour intensive and costly to produce, assessing
each individual trisomic mouse is providing further insight
into the contribution of gene imbalance to Down syn-
drome phenotype.

Studies in mouse models have primarily focused on
understanding the pathology of the adult and ageing Down
syndrome brain, despite knowledge that alterations in brain
development are observed from fetal life. Comparison with
human development can be challenging, as mice are post-
natal brain developers with a gestational length of 19 to
21 days. The bulk of cortical neurogenesis occurs during
the mouse embryonic period (corresponding to early fetal
life in the human), but is ongoing into postnatal life in the
hippocampus and cerebellum. The rate of cellular migra-
tion and maturation differ regionally, but around the time
of (rodent) birth, postnatal day 1 to postnatal day 3, neural
development is generally considered to be comparable to a
preterm human infant of 23 to 32 weeks postmenstrual
age. The brain growth spurt of rodents occurs at postnatal
day 7 to postnatal day 10, which is comparable to a term
human infant of 36 to 40 weeks postmenstrual age.56,71

Alterations at both embryonic and postnatal ages have been
reported in Ts65Dn and Ts1Cje mice72 and reviewed in
several recent publications.9,41,59 More recently, the Dp16
strain did not show any forebrain defects embryonically
(embryonic day 13.5–18.5), but did show delayed growth,
and delayed acquisition of milestones postnatally and a
decrease in cortical excitatory and interneuron populations
were observed at postnatal day 15, but were not evaluated
at earlier postnatal ages.73,74 Comparisons of embryonic
and adult gene expression, brain development, and mouse
behaviour have recently been done in the Ts65Dn, Ts1Cje,
and Dp16 mouse strains and suggest widespread differ-
ences between models.74 This highlights the importance of
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assessing which mouse models best mimic the human phe-
notype of interest and then choosing a mouse model that
is best suited for studying a specific outcome or genotype/
phenotype relationship.

CURRENT THERAPEUTIC APPROACHES
Studies are being conducted in mouse models of Down
syndrome to target dosage sensitive genes that are involved
in defects and delays in neurogenesis and neurotransmis-
sion, oxidative stress, and neurodegeneration (a compre-
hensive list has been previously reviewed, see Gardiner
et al.18 and Herault et al.57). Pharmacological treatments
in mouse models with DYRK1a inhibitors, selective sero-
tonin reuptake inhibitors (fluoxetine), and sonic hedgehog
agonists during the prenatal and/or postnatal period have
provided promising evidence of improved cellular and
behavioural outcomes.56,57 Whilst the vast majority of
these studies have been done in Ts65Dn mice, they pro-
vide crucial proof-of-concept that cognition can be
improved and that aspects of brain structure can be
restored, even if the drugs are administered well after peri-
ods of neuronal migration and maturation have ceased.

Current clinical trials in adolescents and adults with
Down syndrome are aimed at improving cognition and
delaying progression into Alzheimer disease. Two groups
of common medications used to treat the symptoms of
Alzheimer disease, acetylcholinesterase inhibitors (Aricept/
Donepezil, Rivastigmine) and N-methyl-D-aspartate recep-
tor antagonists (Memantine), are currently undergoing clini-
cal trials in patients with Down syndrome.56,75 With the
ultimate aim of reducing amyloid toxicity and regulating
myo-inositol levels, scyllo-Inositol (ELND005) has recently
also been shown to be well tolerated in a Phase II clinical
trial in young adults with Down syndrome without demen-
tia.76 In addition, further novel pharmacological interven-
tions have also been developed based on the improved
knowledge of the genes located on Hsa21 and their
specific pathways, including DYRK1a inhibitors
(Epigallocatechin gallate), a selective gamma-Aminobuty-
ric acid-A a5 receptor negative allosteric modulator
(Basmisanil/RG1662; CLEMATIS Study), and antioxidant
vitamin E.56

Searching for new therapeutic windows
Growing evidence suggests that alterations in key cellular
processes result in permanent modifications in structure
from a very early stage in brain development. It is there-
fore possible that an early life therapeutic window exists,
during which atypical brain development could be poten-
tially modified before the abnormalities and neurocognitive
impairment are fully established. In current clinical prac-
tice, commonly used early interventions include physio-
therapy, occupational therapy, and speech and language
therapy which may help to improve the acquisition of
developmental milestones in infants and children with
Down syndrome in the absence of any known effective
pharmacological intervention. Here it is important to

consider that the identification of novel candidate agents is
difficult, given the absence of detailed understanding of the
very early neurobiological trajectory in Down syndrome.

WHAT WE DO NOT KNOW
There is a lack of understanding about when deviations in
brain development arise in Down syndrome, how these
relate to subsequent function, and whether they are further
altered by additional congenital morbidities (e.g. cardiac
defects). Such information is best monitored by in vivo
studies that provide opportunities to follow development
longitudinally.

Comorbidities
CHD (without Down syndrome) are generally associated
with impaired clinical neurodevelopment and an underly-
ing reduction in cortical grey matter volumes, gyrification
index (indicative of less complex cortical folding), and
abnormal cortical microstructure in the neonatal period.
These changes were further associated with reduced cere-
bral oxygen delivery.77,78 This therefore highlights the
importance of understanding the additional and as yet
unexplored, effects of a CHD on brain development in
Down syndrome. Mouse models are also useful for this as
the Ts65Dn,79 Ts1Cje,80 Tc1,81 Dp1Tyb,70 and the genet-
ically similar Dp16 mouse strains all develop CHD, which
are identifiable by embryonic day 14.5. Importantly, Tc1
(38–55% based on background strain) and Dp1Tyb mice
(61.5% of embryos) share many of the specific features of
atrioventricular septal defects that are common in humans
with Down syndrome.70,81 Lana-Elola et al.70 have ele-
gantly generated a mouse mapping panel using segmented
duplications ranging in size to identify the location of a
4.9Mb genomic critical region for CHD, which consists of
39 genes (two of which are required in triplication).

Improve translation between human studies and mouse
models
Two studies in both human and mouse models of Down
syndrome have utilized transcriptomic analysis to charac-
terize the specific gene networks and associated biological
processes which are altered during prenatal and postnatal
development.6,82 The identification of consistently dis-
turbed signalling pathways could aid the recognition of
novel pharmacological treatments.6,82 However, to trans-
late the findings from bench to bedside, an improved
understanding of how molecular alterations impact on neu-
robiological development is needed through: (1) better
detailing of the human condition; and (2) cross-species val-
idation between Down syndrome mouse models and
human Down syndrome.

ADVANCES IN FETAL AND NEONATAL MAGNETIC
RESONANCE IMAGING
Whilst the aforementioned postmortem studies and animal
models have provided significant insights into the neu-
ropathology of Down syndrome, a true understanding of
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the natural history of the human condition and how the
pathology relates to neurodevelopmental outcome is only
possible through in vivo studies. Here, there is great
potential for an enhanced understanding of in utero and
neonatal brain development in Down syndrome through
the application of recent advances in non-invasive imaging.
Although ultrasound provides valuable insights into gross
fetal body and brain development, it cannot provide
detailed information about region and tissue specific brain
development and growth trajectories.

Therefore magnetic resonance imaging (MRI) is an
attractive alternative which is safe, does not use ionizing
radiation, and can provide more extensive, detailed bio-
metric data across gestation including information about
both brain macro- and microstructure.83,84 Although
there are MRI studies which have assessed structural
brain volume in early childhood,59,85 very little work
has been done with infants younger than 2 years of age
with Down syndrome. Quantitative early MRI data
could be related to data derived from clinical, cognitive,
and behavioural assessments, as well as genetic informa-
tion, thus allowing a comprehensive understanding of
the complex relationships which underpin the Down
syndrome phenotype. Such studies are currently ongoing
in adults with Down syndrome to assess the changes in
brain structure and function associated with cognitive
decline and progression into early onset Alzheimer
disease.86

Fetal MRI
Fetal MRI is challenging because of fetal motion, size, and
position (relative to the surrounding maternal tissue).
However, in comparison to ultrasound, it offers excellent
soft tissue contrast and benefits from a wide field of view
which allows the whole fetus to be imaged up until term
gestation. To combat the effects of fetal and maternal
motion, significant advances have been made in acquisition
and processing protocols (such as optimized fetal motion
correction and image registration pipelines) which can now
provide high resolution and high signal to noise volumetric
image data sets (Fig. 1).87–90 This has now made it possible
to obtain 3D magnetic resonance structural and functional
data within 30 minutes of image acquisition using snapshot
to volume reconstruction techniques.88,91 These advances
have led to increasing utilization of fetal MRI both in clin-
ical practice and as a research tool to assess the fetal brain,
heart, and organs, as well as the placenta.

Neonatal MRI
Whilst imaging a newborn or young infant also presents
technical and practical difficulties, there are now magnetic
resonance compatible incubators and population-specific
processing pipelines to overcome these. Examples include a
neonatal brain imaging system developed for the develop-
ing human connectome project (http://www.developingcon
nectome.org/) for non-sedated sleeping infants, consisting
of a neonatal head sized 32-channel receive array coil and

Axial Coronal Sagittal

R
aw

 T
2

R
ec

on
st

ru
ct

ed

Figure 1: T2 fetal image reconstruction. Top row: One loop of single shot T2 images acquired in the coronal plane (centre). Numerous black lines in
the sagittal and axial images represent missing or motion corrupted data. Bottom row: The reconstructed images have been obtained by registering
several loops of single shot T2 images to provide high signal to noise, high resolution volumetric data sets.87–90
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positioning system which significantly improves signal to
noise ratio, an MRI safe trolley to minimize disturbance of
the sleeping infant, additional ear protection, and a change
in the start of magnetic resonance sequences to reduce the
abrupt noise at the start of an acquisition sequence that
may wake the infant.92

Imaging infants and toddlers
During infancy and early childhood there is ongoing rapid
growth of the cerebral cortex and maturation of white mat-
ter including myelination. Studying this population is
therefore essential to provide a true characterization of
these fundamental developmental processes and understand
how a trajectory may deviate in pathological states. How-
ever, MRI of young children is associated with significant
technical and practical challenges.93 As a result, clinically
indicated magnetic resonance studies in children over
2 years of age are often done under general anaesthesia
which would not be appropriate for research studies.
Therefore in these children, other strategies have been
explored to reduce anxiety, including mock-scanner train-
ing sessions or a premeeting with the child and family to
talk through the MRI process.94 Although children under
2 years of age may settle with oral sedation, this is less
commonly done for research MRI scans because of increas-
ing concerns about possible neurotoxicity.95 In this situa-
tion, coordinating with sleep, nap, or feeding times and
modifying the magnetic resonance acquisition sequences to
reduce sudden noise and/or volume may help avoid the use
of sedation. Foam padding around the head and vacuum
immobilization bags can also be used to reduce head

motion.96 Although such approaches make scanning feasi-
ble, success rates are often variable, particularly for the
sequences which provide quantitative magnetic resonance
measures and are highly sensitive to motion artefact.

Structural
Single shot T1-weighted and T2-weighted sequences are
conventionally used to visualize the structure and composi-
tion of the fetal brain and can provide regional 2D mea-
surements and 3D volumetric information. The recent
development of detailed atlases of the fetal97 (Fig. 2) and
neonatal98–100 (Fig. 3) brain now allow robust automated
or semi-automated segmentation of brain regions and pre-
cise delineation of cortical sulcal and gyral development.
This allows characterization of the normal trajectories of
fetal brain growth and creation of population centile charts
(available for 21–38wks gestation at: https://www.develop
ingbrain.co.uk/fetalcentiles/; Fig. 4).101 Comparison with
these typically developing growth charts therefore provides
an ideal approach with which to assess, quantify, and iden-
tify when the deviations in regional and whole brain vol-
umes seen in postmortem and adult Down syndrome
brains are established. Our preliminary findings from fetal
MRI scans show enlargement of the fourth and lateral ven-
tricles, as well as cerebellar vermis rotation in a fetus with
Down syndrome (Fig. 5).

Diffusion MRI
Diffusion MRI can provide quantitative information about
tissue microstructure and structural connectivity by mea-
suring the total and directional diffusion of water

(a) (d)

(b)

(c)

(e)

Figure 2: Segmentation of the brain from a fetus with Down syndrome at 33+2 gestational weeks. Semi-automated segmentation of T2-weighted volu-
metric magnetic resonance images showing (a) whole brain; excluding cerebellum (red), (b) cortex (green), (c) lateral ventricles (dark blue), (d) extra
cerebral cerebrospinal fluid (light blue), (e) cerebellar hemispheres (purple), cerebellar vermis (bright green), pons (yellow), and fourth ventricle (blue).97

[Colour figure can be viewed at wileyonlinelibrary.com].
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molecules (Fig. 6). This can then provide specific measures
which reflect white matter and cortical microstructure,
such as fractional anisotropy which in high risk neonates
significantly relates to later specific clinical neurodevelop-
mental impairment102,103 and delays in cortical microstruc-
tural development.104 More complex models of voxel-wise
diffusion such as a fixel-based analysis (fixel refers to a fibre
population in a given voxel) can also provide measures of
white matter fibre density, fibre cross-sectional area, and
the fibre orientation distribution.105 Other techniques,

such as the neurite orientation distribution and density
imaging model can also provide measures of the neurite
density index and orientation dispersion index which may
help explore the cortical synaptic and dendritic develop-
mental abnormalities that are widely reported in Down
syndrome.9,41

Although diffusion MRI has not yet been used to study
white matter and cortical microstructure in fetuses and
neonates with Down syndrome, regional reductions in
white matter microstructural integrity have been seen in

(a)

(b)

(c)

Axial CoronalSagittal

Figure 3: Automated segmentation of a brain from a neonate with Down syndrome at 42+5 weeks post menstrual age. T2-weighted neonatal brain volu-
metric images in axial, sagittal, and coronal planes (left to right) segmented into multiple brain regions. (a) Raw T2 acquisition, (b) segmentation with
nine regions of interest, and (c) segmentation with 87 regions of interest.98–100 [Colour figure can be viewed at wileyonlinelibrary.com].

GA 23+6 26+4 28+1 30+2 33+5 36+0 38+2 40+0

Figure 4: Fetal brain development. T2-weighted axial images from fetal (23+6–38+2 GA) and neonatal (40+0 GA) magnetic resonance imaging showing
development of the brain across gestation. Note the marked increase in cortical complexity with increasing gestation. GA, gestational age expressed
as weeks+days.
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adults with Down syndrome, which are more severe in
those with additional signs of dementia.106 It has also been
recently reported that children with Down syndrome (aged

2–4y) have reduced fractional anisotropy in supratentorial
white matter tracts107 which mirrors both the reported
delays in myelination in early childhood51 and

Control Down syndrome Down syndromeControl

Control Down syndrome

(a) (b) (c) (d)

(e)
(f) (g) (h)

Figure 5: T2-weighted fetal magnetic resonance imaging in a control fetus and a fetus with Down syndrome. T2-weighted axial images showing the
fourth (a,b) and lateral ventricle (c,d) in control (34+1 GA; a,c) and fetus with Down syndrome (33+2 GA; b,d). White arrows indicate enlarged fourth and
lateral ventricles in a fetus with Down syndrome. T2-weighted sagittal (e,g) and axial (f,h) images in a fetus with Down syndrome (30wks GA, g,h) com-
pared to an age matched control (30wks GA, e,f). Red arrow indicates cerebellar vermis rotation (g) and fourth ventricle enlargement (h). GA, gesta-
tional age expressed as weeks+days. [Colour figure can be viewed at wileyonlinelibrary.com].

Axial CoronalSagittal

Figure 6: Fetal diffusion tensor imaging. Top row: Fibre orientations distributions per voxel. Bottom row: Tractography demonstrating major connections
within the developing brain. [Colour figure can be viewed at wileyonlinelibrary.com].
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transcriptome studies in both Down syndrome human
brain (fetal) and Down syndrome mouse models (embry-
onic) studies which describe defective oligodendrocyte dif-
ferentiation and myelination.82

Functional MRI
Functional MRI provides an indirect measure of neural
activity by detecting dynamic variation of the blood oxygen
level-dependant contrast caused by locally coupled changes
in cerebral blood flow and haemoglobin oxygenation.108

This allows detailed mapping of functional activity which
can be used to characterize the whole brain’s large-scale
functional architecture. Studies in the neonate and more
recently the fetus suggest that the perinatal period is of
particular importance for the establishment of this archi-
tecture, as patterns of functional activity appear to rapidly
increase in spatial complexity during this time.109–112

In addition to analysing blood oxygen level-dependant
signal changes when an individual is presented a specific
stimulus or performs a task (known as task-based func-
tional MRI), data can also be collected and analysed when
an individual is at rest (known as resting state functional
MRI). The latter can be used to identify spatial patterns of
temporal correlation of intrinsic signal fluctuations (known
as functional connectivity). Altered patterns of functional
connectivity are seen in neuropsychiatric conditions
and therefore may provide a suitable biomarker for
abnormal brain function and predicting later adverse

neurodevelopment in Down syndrome.113 In keeping with
this, impaired functional connectivity and a simplified net-
work architecture has been described in adolescents and
young adults with Down syndrome.114 Functional connec-
tivity could therefore potentially be used as a biomarker to
monitor the outcome of clinical trials, as in a recent Phase
II clinical trial in young adults with Down syndrome.115

By combining diffusion MRI and functional MRI data,
there is the potential to provide further insights into the
complex relationship between the brain’s structural con-
nections and its activity patterns, and crucially how it is
altered by different pathological states.116

Magnetic resonance spectroscopy
Magnetic resonance spectroscopy can non-invasively quan-
tify biochemical composition by sampling the resonant sig-
nal generated by hydrogen protons (1H) (and less
commonly other nuclei with an odd mass number [sodium
23Na or phosphorus 31P]) from a voxel placed on a specific
region of interest. Proton magnetic resonance spectroscopy
is most commonly used in human brain studies because of
the abundance of hydrogen in human tissue. The resultant
spectra demonstrate metabolite peaks at a specific fre-
quency (parts per million). Specific brain metabolites that
can be quantified include myo-inositol (osmoregulation,
glial cell marker), choline (cell membrane), creatine (energy
metabolism), N-acetyl aspartate (neuronal marker and/or
marker for mitochondrial function), and lactate (anaerobic

Control fetus (30+5 GA)Control fetus (30+5 GA)Control (22+2 GA)

Down syndrome (21+1 GA) Fetus with Down syndrome (31+0 GA)

(a) (b)

(d)(c)

Figure 7: Neuronal staining in the cortex of human fetal postmortem tissue. HuC/HuD, a marker for all neurons in brain from control fetus at 22+2 GA
(a) and fetus with Down syndrome at 21+1 GA (c). In the fetal brain with Down syndrome (c,d), the black arrow indicates evidence of aberrant cortical
folding, a ‘wavy’ pattern which is in contrast to the control brain (a,b) (Research Ethics Committee UK: 07/H0707/139). Scale bar=500lm. T2-weighted
fetal magnetic resonance imaging in the axial plane show decreased cortical folding in a fetus with Down syndrome (d), compared to an aged matched
control (b). GA, gestational age expressed as weeks+days. [Colour figure can be viewed at wileyonlinelibrary.com]
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glycolysis).117 The levels of different metabolites are often
expressed as ratios rather than absolute metabolite quantifi-
cation, particularly in cases with pathology where the
detected changes may be subtle. Such measurements are of
particular relevance in fetal and neonatal life as ongoing
processes such as neuronal and glial proliferation, differen-
tiation, and maturation are associated with constant fluctu-
ations in the levels of brain metabolites which can be
measured using magnetic resonance spectroscopy (e.g.
increases in N-acetyl aspartate and decreases in measurable
choline with increasing brain maturation).117 Of interest,
increased brain myo-inositol has been reported both within
the basal ganglia of children with Down syndrome118 and
in the hippocampus, occipital, and parietal regions in
adults with Down syndrome.119–121 The correlation of
altered brain metabolite levels, (such as N-acetyl aspartate
and N-acetyl aspartate/myo-inositol ratio) with cognitive
function can also provide insight into the progression of
dementia for adults with Down syndrome.122

FUTURE DIRECTIONS
Although current cognitive interventions target children
and adults with Down syndrome, evidence suggests that
deviations in brain development begin early in fetal life.
However, to understand how to potentially intervene at
this earlier time point, we need far greater knowledge
about how the Down syndrome brain grows and develops,
what causes the variability of neurodevelopmental out-
comes, and the genotypic/phenotypic relationship that
occurs in Down syndrome.

Significant advances in fetal and neonatal MRI sequence
acquisition, motion correction techniques, and analysis
methods now allow detailed characterization of the spec-
trum of early imaging phenotypes.84 These essential devel-
opments are of both research and clinical importance.
Such prognostic information can improve care, help to
counsel parents, and could potentially identify new thera-
peutic windows for intervention early in development.

In addition, histological studies of human Down syn-
drome tissue at equivalent gestational ages can be used to
determine the underlying neurobiological substrate for
imaging phenotypes identified in the early developing brain
in Down syndrome (Fig. 7). This combined early human
data can be compared with that from available mouse mod-
els to identify those which most closely mimic the human
condition and would therefore be suitable for use in inter-
ventional trials of early treatments designed to ‘normalize’
brain development and improve cognition.

The combination of preclinical animal, human post-
mortem, and in vivo imaging methods can therefore pro-
vide comprehensive and vital new insights into aberrant
brain development in Down syndrome. This also has the
potential to provide non-invasive imaging based surrogate
markers to predict later neurodevelopmental outcome. In
the future, this novel early human imaging data can also be
used in clinical trials as biomarkers to monitor the effec-
tiveness of new therapies intervening during antenatal or
neonatal time-points.
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RESUMEN

NUEVOS ENFOQUES PARA ESTUDIAR EL DESARROLLO CEREBRAL TEMPRANO EN EL S�INDROME DE DOWN El s�ındrome de Down es

el trastorno del desarrollo gen�etico m�as com�un en los seres humanos y es causado por la triplicaci�on parcial o completa del

cromosoma 21 (trisom�ıa 21). Es una condici�on compleja que se traduce en m�ultiples problemas de salud a lo largo de toda la

vida, incluidos diversos grados de discapacidad intelectual y retrasos en el habla, la memoria y el aprendizaje. Debido a que

la duraci�on y la calidad de vida est�an mejorando para las personas con s�ındrome de Down, ahora se est�a prestando atenci�on a la

comprensi�on y al tratamiento de las dificultades cognitivas asociadas y sus sustratos biol�ogicos subyacentes. Estos estudios han

incluido estudios de imagen y postmortem que han identificado vol�umenes cerebrales regionales disminuidos y anomal�ıas

histol�ogicas que acompa~nan a la demencia de inicio temprano. Adem�as, los avances en el an�alisis del genoma completo y los

modelos de ratones con s�ındrome de Down brindan informaci�on valiosa sobre los posibles objetivos de la intervenci�on que

podr�ıan mejorar la neurog�enesis y la cognici�on a largo plazo. Como se sabe poco sobre el desarrollo temprano del cerebro en el

s�ındrome de Down humano, revisamos los avances recientes en im�agenes de resonancia magn�etica que permiten la visualizaci�on

no invasiva de la macro y microestructura cerebral, incluso en el �utero. Se espera que, en conjunto, estos avances puedan

permitir que el s�ındrome de Down se convierta en uno de los primeros trastornos gen�eticos a los que se aplican tratamientos

prenatales dise~nados para “encauzar” el desarrollo cerebral.

RESUMO

NOVAS ABORDAGENS PARA O ESTUDO DE DESENVOLVIMENTO CEREBRAL PRECOCE NA S�INDROME DE DOWN A s�ındrome de

Down �e a desordem desenvolvimental de origem gen�etica mais comum em humanos. �E causada por triplicac�~ao parcial ou

completa do cromossomo 21 (trissomia do 21). Trata-se de uma condic�~ao complexa que resulta em m�ultiplos problemas de sa�ude

ao longo da vida, incluindo graus variados de deficiência intelectual, e atrasos na fala, mem�oria e aprendizagem. Como tanto a

durac�~ao quanto a qualidade de vida têm melhorado para indiv�ıduos com s�ındrome de Down, agora a atenc�~ao se volta para

compreender e potencialmente tratar dificuldades cognitivas associadas e seus substratos biol�ogicos de base. Incluem-se estudos

de imagem e p�os-morte que identificaram menores volumes cerebrais e anomalias histol�ogicas que acompanham a demência de

in�ıcio precoe. Al�em disso, avanc�os na an�alise do genoma em modelos de ratos com s�ındrome de Down fornecem informac�~oes
valiosas sobre potenciais alvos para intervenc�~ao que podem melhorar a neurogênese e a cognic�~ao em longo prazo. Como pouco

se sabe sobre o desenvolvimento cerebral precoce na s�ındrome de Down, n�os revisamos avanc�os recentes em imagens por

ressonância magn�etica que permitem visualizac�~ao n~ao-invasiva da macro- e micro-estrutura do c�erebro, mesmo no �utero. Espera-

se que, juntos, estes avanc�os possibilitem que a s�ındrome de Down se torne a primeira desorgem gen�etica a ser alvo de

tratamentos antenatais voltados para “normalizar” o desenvolvimento cerebral.
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