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Abstract
In high-dimensional regression models, variable selection becomes challenging from a computational and theoretical per-
spective. Bayesian regularized regression via shrinkage priors like the Laplace or spike-and-slab prior are effective methods
for variable selection in p > n scenarios provided the shrinkage priors are configured adequately. We propose an empirical
Bayes configuration using checks for prior-data conflict: tests that assess whether there is disagreement in parameter infor-
mation provided by the prior and data. We apply our proposed method to the Bayesian LASSO and spike-and-slab shrinkage
priors in the linear regression model and assess the variable selection performance of our prior configurations through a
high-dimensional simulation study. Additionally, we apply our method to proteomic data collected from patients admitted to
the Albany Medical Center in Albany NY in April of 2020 with COVID-like respiratory issues. Simulation results suggest
our proposed configurations may outperform competing models when the true regression effects are small.

Keywords Kullback–Leibler divergence · MCMC · Bayesian variable selection · COVID-19 · High-dimensional data

1 Introduction

Advancements in information technology have made the
collection and storage of highly detailed data relatively
inexpensive, leading to data with more predictors, p, than
observations, n. Such data are referred to as being high-
dimensional and examples include biological data like
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genomic, proteomic, and metabolomic data, high-resolution
imaging likemagnetic resonance imaging (MRI), hyperspec-
tral satellite imaging, and others (Fan and Li 2006; Donoho
et al. 2000).

Whether the modelling purpose is to make accurate pre-
dictions or to understand the underlying data-generating
process, it is often necessary to identify which predictors are
associated with the outcome. This is referred to as variable
selection and is particularly important, and challenging, in
high-dimensions. It is important because high-dimensional
data necessarily contains a lot of irrelevant information
(noise) that, when modelled, can decrease model perfor-
mance (Fan and Li 2006; Fan and Fan 2008). Additionally,
high-dimensional data can be collected and analyzed pre-
cisely to identify predictors associated with an outcome as
in genome-wide association studies or quantitative trait loci
mapping (Myles and Wayne 2008; Fan and Lv 2010). When
p exceeds n, variable selection becomes challenging due to
severe collinearity of predictors and inapplicability of clas-
sical variable selection techniques, such as those based on
successive significance tests and information criteria.

Regularized regression is a popular variable selection
method applicable in p > n scenarios. In the frequen-
tist framework, regularization is obtained by maximizing
a penalized likelihood. In the Bayesian framework, it is
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obtained through shrinkage priors: prior distributions that
shrink the posterior distribution towards 0. The benefits
of Bayesian regularization include automatic uncertainty
quantification via the posterior distribution and ranking of
importance of variables. Additionally, shrinkage is attained
through adjustment of the prior distribution and so fits natu-
rally in a Bayesian framework. Limitations of the Bayesian
framework include increased computation time when com-
pared to frequentist methods and the necessity for prior
configuration controlling the degree of shrinkage. Indeed,
the issue of adequate configuration of shrinkage priors has
been investigated by researchers for a variety of priors (Car-
valho et al. 2010; Piironen and Vehtari 2017; Fernandez et al.
2001; Chipman et al. 2001; Narisetty and Hel 2014). In this
manuscript, we propose a novel empirical Bayes methodol-
ogy for configuring the degree of shrinkage applied to the
Laplace and point-mass spike-and-slab priors.

1.1 Variable selectionmethods

A variety of frequentist and Bayesian methods for perform-
ing data-driven variable selection have been developed. In the
frequentist case variable selection can be done by evaluating
an information criterion like theAkaike information criterion
(AIC) (Akaike 1998) for all possible subsets of predictors,
but becomes infeasible for large p as it involves computa-
tion of the AIC for 2p models. Variable selection can also
be done using successive significance tests like backward
and forward selection (Harrell 2001) but are are inapplicable
in p > n scenarios as there are no asymptotically valid p-
values when p > n (Meinshausen et al. 2009). Applicable in
high-dimensional scenarios however are regularized regres-
sion methods like the LASSO (Tibshirani 1996), Elastic-Net
(Zou and Hastie 2005), and SCAD (smoothly clipped abso-
lute deviation) (Fan andLi 2001), also referred to as penalized
regression methods.

Similar Bayesian methods have been developed. For an
arbitrary prior on the space of possible models, the Bayesian
information criterion (BIC) is asymptotically equivalent
to selecting the model with highest posterior probability
(Schwarz 1978). When multiple nested models are com-
pared, as in backwards elimination or forward selection,
Bayes factors (Kass and Raftery 1995) or pseudo Bayes
factors like the intrinsic Bayes factor (Berger and Peric-
chi 1996) can be used. Lastly, regularized regression can
be obtained using Bayesian shrinkage priors: priors placed
on the regression effects β1, β2, ..., βp that shrink the pos-
terior distribution of βββ = (β1, β2, ..., βp)

T towards 0 like
the Laplace prior, which corresponds to the LASSO. A sec-
ond Bayesian methodology related to penalized regression
is Bayesian variable selection from a decision theoretical
perspective (Hahn and Carvalho 2015; Kowal 2022). In this
context, variables are selected by minimizing a posterior loss

function subject to a penalty for including irrelevant variables
and can be used with a variety of priors (Hahn and Carvalho
2015).

In this paper we focus on shrinkage priors and propose
a methodology for determining the level of shrinkage based
on the data being analyzed, contributing to the literature con-
cerning hyperparameter tuning of shrinkage priors (Carvalho
et al. 2010; Piironen andVehtari 2017; Fernandez et al. 2001;
Chipman et al. 2001; Narisetty and Hel 2014; Vivekananda
and Chakraborty 2017). We do so by aiming to configure a
shrinkage parameter prior that is minimally affected by the
data, as measured by the Kullback–Leibler divergence, moti-
vated by checks for prior-data conflict (Evans andMoshonov
2006; Nott et al. 2020). This idea is related, though opposite,
to the notion of an objective or reference prior (Berger et al.
2009): a prior which aims to be maximally affected by the
data, as measured by a related quantity referred to as the
Shannon expected information (Lindley 1956).

1.2 Bayesian regularized regression

A variety of shrinkage priors exist in the literature but come
in two main flavours: discrete and continuous shrinkage pri-
ors, with each differing in the way mass is placed around 0.
In the discrete case, the prior is a mixture of a distribution
highly concentrated about 0, referred to as the ‘spike,’ and
a more diffuse distribution centered about 0, referred to as
the ‘slab’. For this reason, discrete shrinkage priors are often
referred to as ‘spike-and-slab’ priors. Different specifications
of the spike and slab components of the mixture prior have
been proposed. The Kuo and Mallick (1998) Spike-and-Slab
uses a point mass at 0 spike and a centered normally dis-
tributed slab. Stochastic Search Variable Selection (George
andMcCulloch1993) adopts a normally distributed spike and
slab, with a small variance for the spike and large variance for
the slab. Priorsmay be placed on variance parameters leading
to non-normal spikes or slabs (Ročková and George 2018;
Castillo andMismer 2018). Continuous shrinkage priors aim
to emulate spike-and-slab priors with a single distribution
that has a tall mode at 0 and relatively thick tails elsewhere.
Continuous shrinkage priors include theLaplace prior used in
theBayesian LASSO (Park andCasella 2008), theHorseshoe
prior (Carvalho et al. 2010), Dirichlet-Laplace prior (Bhat-
tacharya et al. 2015), and the Double-Pareto prior (Armagan
et al. 2013). All these priors vary in thickness of their tails
and whether shrinkage is induced locally (per covariate)
and/or globally (simultaneously for all covariates). Though
continuous shrinkage priors are generally more computa-
tionally efficient than spike-and-slab priors, spike-and-slab
priors have distinct advantages. As will be seen in Sect. 2,
spike-and-slab priors are expressedwith latent indicator vari-
ables that specify whether the spike, or slab, is used in the
model. This allows spike-and-slab priors to output posterior
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model inclusion probabilities for each covariate, and allows
for group information to be easily encoded into the prior
(Tadesse and Vannucci 2021; Chekouo et al. 2015; Chekouo
and Safo 2022; Chekouo et al. 2016). Additionally, spike-
and-slab priors are shown to have good theoretical properties
in regression models (Castillo et al. 2015), while the same
results have not been obtained for continuous shrinkage pri-
ors (Tadesse and Vannucci 2021).

Sparsity of variable selection in Bayesian regressionmod-
els with shrinkage priors is controlled by the variance of the
shrinkage prior or, equivalently, how much probability mass
the prior places away from 0. One of two approaches may
be adopted when specifying parameters of a prior: either the
data is used to estimate the parameter, or the parameter is
elicited using prior knowledge or absence thereof. The for-
mer refers to empirical Bayes methods, while the latter to
fully Bayes methods. In this paper we adopt the empirical
Bayes approach. One consideration tomakewhen specifying
any prior distribution is whether a given prior is reasonable
in light of the data being analyzed. A prior may disagree
or be in conflict with the observed data when, under that
prior, the assumedmodel would hypothetically generate data
very different from the observed data (Evans and Moshonov
2006). If such a conflict is present, the validity of the assumed
model and results of the analysis may be called into question.
We propose specifying the variance of Bayesian shrinkage
priors by minimizing conflict between a variance parameter
and data, yielding a prior heavily informed by the data. A
variety of checks have been developed to identify prior-data
conflict and, motivated by a distributional divergence-based
check, we propose a method for configuring the variance in
the Bayesian LASSO and point mass spike-and-slab prior in
the linear regression model.

2 Methods

For a sample of n independent response observations YYY =
(Y1,Y2, ...,Yn)T and n × p matrix of predictors XXX =
(X1, ..., X p)

T where possibly p > n, the linear regression
model has the form

YYY = β0111n + XXXβββ + εεε , (1)

with error variance εi ∼ N(0, σ 2) independent for i =
1, 2, ..., n where N(0, σ 2) refers to the normal distribution
with mean 0 and variance σ 2. The vector of regression coef-
ficients is denoted by βββ = (β1, ..., βp)

T .

2.1 The Bayesian LASSO

TheBayesianLASSOproposedbyPark andCasella (2008) is
the Bayesian linear regression model with a Laplace prior on

βββ|σ 2. Conditioning on the error variance σ 2 ensures that the
posterior distribution of βββ is unimodal. The Laplace density
is a scale-mixture of normal distributions with exponential
mixing density, meaning it may be expressed as

β j |τ 2j , σ 2 ∼ N (0, τ 2j σ
2) ,

τ 2j ∼ Exponential(λ2/2)
(2)

independent for each j = 1, 2, ..., p. Equivalently, after inte-
grating out τ 2j from (2), β j |σ 2 is Laplace distributed with

variance 2σ 2

λ2
. Larger values of λ correspond to a smaller

prior variance on β j |σ 2 and hence induce more shrinkage
of regression effects towards 0. Figure1 (center) shows a
centered Laplace density with λ = 1. It should be noted
that unlike the frequentist LASSO, variable selection in the
Bayesian LASSO is not automatic, but is done through
analysis of the posterior distribution π(βββ|yyy). This poste-
rior is not known in closed form but samples can be drawn
using a Gibbs sampler as all the full-conditional distributions
π(βββ|τττ 2, σ 2, λ, yyy), π(τττ 2|βββ, σ 2, λ, yyy) and π(σ 2|βββ,τττ 2, λ, yyy)
are known in closed-form. The posterior sample of βββ can
be used to construct a credible interval for each β j , j =
1, 2, ..., p, or to compute a posterior mode, median, or mean
for each β j . Slopes whose posterior credible interval exclude
0 or whose absolute mode, median, or mean exceed some
user-defined threshold are selected for inclusion in the final
model. In general, variable selection performance based on
either credible intervals or posterior summary statistics are
influenced by the size of the true underlying effects, degree
of shrinkage, and threshold selection (size and construc-
tion of interval when using credible intervals, threshold for
significant effect when using a summary statistic) (Tadesse
and Vannucci 2021; van der Pas et al. 2017; Castillo et al.
2015; Lykou andNtzoufras 2013). Indeed,when independent
identical Laplace priors are placed onβ1, β2, ..., βp uncondi-
tional on error variance σ 2 (corresponding to the frequentist
LASSO), posterior credible intervals, while honest (contain
the true parameter value), are too large to be used for effective
uncertainty quantification (Castillo et al. 2015).

For the frequentist LASSO, λ is generally specified
using cross validation and similar methods for the Bayesian
LASSO are applicable if λ is assumed fixed. For a candidate
λ0, the model may be fit for one or more data splits and an
average prediction error computed, with the λ0 that gives the
smallest prediction error chosen.Aλvalue can also be chosen
that maximizes a cross-validated log-likelihood (Genking
et al. 2007). In either case, posterior means or modes of
regression coefficients are used to generate predictions or
compute log-likelihoods for the test data. Another approach
is to compute the marginal maximum likelihood estimate
of λ using a Monte-Carlo Expectation-Maximization (MC-
EM) algorithm as proposed in Park and Casella (2008);
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Casella (2001). The MC-EM algorithm for maximizing the
marginal likelihood L(λ|ỹyy), where ỹyy is the centered response
vector, iteratively updates the value of λ using λ(k+1) =√
2p/

∑p
j=1 Êλ(k) (τ 2j |ỹyy) until some convergence criterion is

met, where Êλ(k) (τ 2j |ỹyy) is the posterior sample mean of τ 2j
obtained from a run of the Gibbs sampler. The MC-EM
algorithm requires repeatedly fitting the data, possibly hun-
dreds of times, until convergence, making it computationally
expensive. Atchadé (2011) proposes a stochastic approxima-
tionmethod for estimating themaximum-likelihood estimate
(MLE) of λ with only a single run of the Gibbs sampler,
but the algorithm requires defining a sequence of step sizes
which is itself an important problem of stochastic approxi-
mation (Leng et al. 2014). Methodology based on efficient
importance sampling schemes can also be used to estimate
the MLE of λ (Vivekananda and Chakraborty 2017). Genk-
ing et al. (2007) use a norm-based value of λ for the logistic
Bayesian LASSO inspired by the regularization parameter in
a Support Vector Machine model. Lastly, λmay be informed
by previous analyses and fixed at a value known to be suitable
for the data at hand.

If λ is not fixed in the Bayesian LASSO, a Gamma(a, b)
prior may be placed on λ2 for which a variety of methods
exist for specifying a, b. The gamma prior is placed on λ2 as
opposed to λ to obtain conjugacy of its full-conditional distri-
bution (Park and Casella 2008). A semi-Bayesian approach
includes choosing hyperparameters that place sufficientmass
around the MLE of λ2 and have little mass as λ2 becomes
very large (Park and Casella 2008). Alternatively, the shape
parameter a may be fixed and rate b estimated using theMC-
EMalgorithm (Leng et al. 2014).Camli et al. (2022) proposes
giving the parameters a, b flat priors, computing their poste-
rior modes â, b̂, and using the prior λ2 ∼ Gamma(â, b̂) for
analysis. The hyperparameters can also be chosenwith cross-
validation as described in the simulation results of Huang
et al. (2013). If a fully Bayesian approach is taken, where no
part of the prior on λ2 is estimated from the data, a relatively
flat prior may be placed on λ2, or a, b can be chosen so that
the regression coefficients are within a range known to be
suitable to the data (Biswas and Lin 2012).

2.2 The spike-and-slab prior

The spike-and-slab prior is a mixture between a distribu-
tion highly concentrated at 0, and a more diffuse distribution
about 0. For the linear regression model (1), we may impose
spike-and-slab priors on the regression effects β1, β2, ..., βp

to perform variable selection (George andMcCulloch 1993).
For instance, the point-mass spike-and-slab prior uses a
point-mass at 0 spike and a centered normally distributed

slab:

β j |γ j ∼ (1 − γ j )δ0(β j ) + γ jN(0, τ 2) ,

γ j ∼ Bernoulli(θ0)
(3)

independent for each j = 1, 2, ..., p, where δ0 denotes the
Dirac function at 0, γ j the variable selection indicator for
covariate j , where γ j = 1 indicates covariate j is selected
and 0 otherwise, and θ0 is the prior probability of feature
inclusion. Figure1 (left) shows a point-mass spike-and-slab
density with θ0 = 0.25 and τ 2 = 10. The point-mass spike-
and-slab allows the selection of covariates based on how
well their regression effects can be distinguished from 0.
Since some covariates may have negligible nonzero effects,
selection based on a variable’s meaningful effect size can be
facilitated by replacing the point-mass at 0 with a narrow,
normally distributed spike at 0. Hence, the prior of each β j

can be defined as

β j |γ j ∼ (1 − γ j )N(0, τ 20 ) + γ jN(0, τ 21 )

γ j ∼ Bernoulli(θ0)
(4)

independent for each j = 1, 2, ..., p, where τ 20 < τ 21 .
Selection using spike and slab priors defined in (3) or (4)
gives Stochastic Search Variable Selection (SSVS) where
latent variables are used to identify subsets of important fea-
tures (George and McCulloch 1993). While the prior used
in the Bayesian LASSO allows for individual shrinkage
of regression effects through local variance parameters, the
spike-and-slab priors considered here perform simultaneous
shrinkage of regression effects through the global variance
parameter τ 2 in the point-mass spike-and-slab, and through
τ 20 , τ 21 in SSVS. Increasing values of τ 2 or τ 21 correspond
to increasing shrinkage of regression effects (Chipman et al.
2001). Sparsity is additionally controlled by θ0, which can
be viewed as the prior proportion of active covariates. In
the absence of prior information regarding the level of spar-
sity, θ0 may be given a Beta(1, 1) prior. Moreover, unlike
the Bayesian LASSO, spike-and-slab priors (3) or (4) do
not undershrink negligible coefficients and overshrink large
coefficients as pointed out inBai et al. (2021) andGhosh et al.
(2016). As with the Bayesian LASSO, variable selection is
done through analysis of the marginal posterior distribution
π(γγγ |yyy). For some j ∈ {1, 2, ..., p}, let {γ (1)

j , γ
(2)
j , ..., γ

(S)
j }

be a sample of size S drawn from the marginal posterior
distribution π(γ j |yyy). The estimate of the posterior mean

Ê(γ j |yyy) = γ̄ j = 1
S

∑S
k=1 γ

(k)
j gives the proportion of times

the j th variable was included in the model throughout the
sampling process and is referred to as the j th variable’s
posterior inclusion probability. Median probability model
selection (Maddalena and Berger 2004) refers to selecting
covariates whose posterior inclusion probability exceeds 0.5.
A subset of predictors can also be selected based on which
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Fig. 1 The point-mass spike-and-slab prior (left) with θ0 = 0.25, τ 2 = 10, the Laplace prior (used the Bayesian LASSO model, center) with
λ = 1, and the Laplace spike-and-slab prior (used in the Spike-and-Slab LASSO model, right) with θ0 = 0.25, λ0 = 3, and λ1 = 1

subset appears most often in the sampling process, referred
to as the highest posterior probability model. A minimum
of 2p posterior samples would have to be drawn for each
submodel to be visited once, but it is presumed that those
models not visited often or at all in the sampling process have
a low posterior probability and are not of interest (George
and McCulloch 1993). Aside from being easier to identify in
high-dimensions, Barbieri and Berger (2004) show that the
median probability model is often optimal for prediction.

Different recommendations exist for the treatment of the
variance parameters in spike-and-slabmodels. In SSVS, indi-
vidual variance parameters must be specified for both the
spike (if normal) and slab components and can be specified
based on thresholds of practical significance (George and
McCulloch 1997). Correlation among regression effects may
also be accounted for by using a Np(000, cσ 2(XXXT XXX)−1) dis-
tributed slab, referred to as Zellner’s g-prior (Zellner 1986),
with c > 0. Chipman et al. (2001) recommend choosing c
large enough that the slab is relatively flat over plausible val-
ues of βββ, with Fernandez et al. (2001) recommending c =
max{p2, n}. In simulations,O’hara andSillanpää (2009) con-
sidered slab variances as small as 1 and as large as 109, though
note instability of parameters estimates for large slab vari-
ances when using the point-mass spike-and-slab prior. For
the linear spike-and-slab model with Np(000, cσ 2(XXXT XXX)−1)

distributed slab, it is possible to obtain marginal maximum-
likelihood estimates of c and the mixing weight θ0 provided
the number of covariates is not large, as it involves compu-
tation of the maximum-likelihood estimate of βββ for all 2p

possible submodels (Chipman et al. 2001). However, if XXX is
orthogonal, the marginal likelihood of (c, θ0) simplifies and
can be maximized with numerical methods even when p is
moderately large (George and Foster 2000).

The slab variance may not be fixed and given a prior
distribution. In the case of SSVS with a normal spike, an
exponentially distributed spike variance and slab variance
yield the Spike-and-Slab LASSO (Ročková and George
2018) model. An Inverse-Gamma(a, b) prior may also be
placed on the slab variance giving a scaled-t distributed
slab (Ročková et al. 2012), with small values like a =
b = 0.1 supporting a wide range of prior slab variances.
For a Bayesian sparse group selection model using spike-

and-slab priors, a Gamma(mg+1
2 ,

η2

2 ) prior is placed on the
group-specific slab variance and η estimated with an MC-
EM algorithm, where mg denotes the size of group g =
1, 2, ...,G (Xu andGhosh 2015).Aswell, Uniform(a, b) dis-
tributed slab variances may be considered, as recommended
in Gelman (2006), with O’hara and Sillanpää (2009) noting
improved mixing when compared to a fixed slab variance.

2.3 Prior-data conflict

Let f (yyy|θ) denote the sampling model with parameter vec-
tor θ , and let π(θ) be its prior distribution. The sampling
model assumes how the data might be generated, while the
prior specifies distributions for the unknown parameters in
the data-generating model. The choice of prior may be influ-
enced by computational convenience as well as whether or
not the analyst has prior knowledge they wish to include in
the model. Regardless of what drives the choice of a prior, if
the sampling model under a given prior gives rise to data that
are very different than the observed data, the validity of the
inferences made using that prior may be called into question
(Evans and Moshonov 2006). When this occurs there is said
to be prior-data conflict.
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Many methods have been developed to check for prior-
data conflict. The basis for a number of these checks involves
assessing the discrepancy between observed data and data
generated by the sampling model f (yyy|θ) assuming θ ∼
π(θ) (Nott et al. 2020) where π(θ) is the prior distribu-
tion. Data generated by the sampling model under the prior
π(θ) are data drawn from the prior predictive distribution
m(yyy) = ∫

f (yyy|θ)π(θ)dθ . To check for prior-data conflict,
Evans andMoshonov (2006) suggest comparing an observed
minimal sufficient statistic for θ , T0 = T (yyy0) for observed
data yyy0, to its prior-predictive density, m(T ), to assess if
T0 is a surprising value from this distribution. They suggest
doing so by computing the p-value P(m(T (yyy0)) > m(T )).
If the p-value is small this indicates that T0 is in the tails
of m(T ) and hence the data observed is surprising assum-
ing our prior, π(θ). A similar check, proposed primarily
for use in regression models, builds on this previous check
by comparing a sufficient statistic for a given regression
coefficient to a pseudo-prior predictive distribution of that
estimator, allowing for component-wise assessment of prior-
data conflict (Egidi et al. 2022). A score-type statistic has
also been proposed to check for prior-data conflict (Nott
et al. 2021), as well as a prior-to-posterior divergence statis-
tic (Nott et al. 2020). In both tests, the observed value of
the statistic is compared to its prior-predictive distribution to
assess whether it is a surprising value from this distribution.
Another divergence-based prior-data conflict check has been
proposed, but requires specification of a non-informative
prior (Bousquet 2008).

The divergence-based check proposed inNott et al. (2020)
uses the prior-to-posterior Rényi divergence as a statistic,
of which the Kullback–Leibler (KL) divergence is a special
case. The prior-to-posterior Kullback–Leibler divergence for
parameter θ is defined as

KL(yyy) = KL(π(θ |yyy) || π(θ)) =
=

∫
log

π(θ |yyy)
π(θ)

π(θ |yyy)dθ,
(5)

where π(θ |yyy) is the posterior distribution of θ . For observed
data yyy0, the check computes the p-value

P(KL(YYY ) > KL(yyy0)), (6)

where YYY ∼ m(yyy) = ∫
f (yyy|θ)π(θ)dθ , the prior-predictive

distribution. If the p-value is small this indicates that KL(yyyo)
is in the tails of the distribution of KL(YYY ). This check is
attractive in that it is intuitive; if a prior were to hardly change
from prior to posterior, this would indicate that whatever
information the data has regarding that parameter is already
assumed in the prior. If the change from prior to posterior is
very large, the prior is in some sense specified contrary to

the data indicating a possible prior-data conflict (Nott et al.
2020).

Example 2.1 We illustrate the divergence-based check given
by (6) with a simple example taken from Evans and
Moshonov (2006). Suppose yyy0 is a sample of size n drawn
from N(μ, 1) and assume the prior μ ∼ N(μ0, σ

2
0 ). The

posterior distribution of μ is also normal and so the prior-
to-posterior divergence of μ can be obtained in closed-form.
Using the divergence between two normal distributions (Gil
et al. 2013) and results fromExample 3.1 ofNott et al. (2020),
we get that

P(KL(YYY ) > KL(yyy0)) = P

(
χ2 >

(ȳ − μ0)
2

σ 2
0 + 1/n

)

whereχ2 is chi-squared distributedwith 1 degree of freedom.
Suppose we observe ȳ0 = 2.83 from a sample of size n = 10
andwant to use the priorμ ∼ N(5, 1). The prior-data conflict

p-value is then P(χ2 >
(ȳ0−μ0)

2

σ 2
0 +1/n

) = P(χ2 > 4.30) = 0.04,

meaning that if a significance level of 0.05 is used, there is
evidence of prior-data conflict. However, if we increase the
spread of π(μ) by increasing its variance to 4, we get a p-
value of 0.28, meaning that such a prior on μ would not
conflict with the data.

As is often the case in more complex models, the poste-
rior density π(θ |yyy) and/or the prior-predictive distribution
m(yyy) are intractable, making computation of the p-value (6)
challenging. When m(yyy) is not known, the distribution of
KL(YYY ) must be simulated by computing values of KL(yyy(i))

for a series of draws yyy(1), yyy(2), ..., yyy(B) from m(yyy). However
when π(θ |yyy) is not known, then KL(yyy(i)) must be estimated
with K̃L(yyy(i)) = KL(π̃(θ |yyy(i)) || π(θ)), where π̃(θ |yyy(i)) is
a density that estimates π(θ |yyy(i)) obtained through a sample
from π(θ |yyy(i)).

Regardless of the check being used, if there is evidence
of prior-data conflict for some prior θ ∼ π(θ), the question
of what to do about it arises. Though not entirely Bayesian,
new hyperparameters for π(θ) based on the data could be
used which would likely resolve the issue. However, if the
prior π(θ) contains information that the analyst would like to
include in the model, like a prior mean for θ , then discarding
this information in order to avoid conflict is not appealing.
Instead, as inExample 2.1, amore conservative prior, referred
to as being weakly informative relative to π , may be used.
Such a prior avoids conflict not by abandoning available prior
knowledge but by inputting a reduced amount of it into the
model. Evans and Jang (2011) outline a definition of weak
informativity and provide methods for identifying a weakly
informative prior when the original prior conflicts with the
data. Lastly, it is also possible to proceed with a conflicting
prior if it is not desirable to allow the data to have any bearing
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on the choice of prior. Though an opinion held by some pure
Bayesians, Evans and Moshonov (2006) argue that it is at
least informative to check for prior-data conflict, particularly
if the results of the analysis are to be used by others.

2.4 Minimum-divergence prior expectation

The motivation behind prior-data conflict checks is to ensure
that an elicited prior is sound in light of the observed data.Our
use of prior-data conflict is instead for the purpose of find-
ing a prior that might conflict least with the data, in hopes
that such a prior improves variable selection performance of
the model, i.e. the models ability to identify relevant predic-
tors. Since such a prior would be heavily dependent on data,
whatwe propose is an empirical Bayesmethodology.Assum-
ing there is no reliable prior information regarding shrinkage
level, our idea is that a good estimate of the shrinkage param-
eter may improve the model’s ability to distinguish between
relevant and irrelevant predictors when compared to a non-
informative prior placed on the shrinkage parameter. This is
because, depending on how strongly identified the shrink-
age parameter is in the data, a non-informative prior may
result in no clearly determined level of shrinkage. Indeed,
Cui and George (2008) show that an empirical Bayes treat-
ment of the point-mass spike-and-slab with Zellner’s g-prior
distributed slab outperforms the fully Bayes treatment, with
Nott et al. (2007) showing promising results for an empirical
Bayes variable selection method in microarray experiments.

Suppose for the likelihood f (yyy|θ) and prior π(θ |α) with
hyperparameter α, we wish to specify a value α = α0 that
conflicts least with the data using the divergence-based check
outlined in the previous subsection. Asymptotically, the p-
value (6) is a measure of how far out in the tails of π(θ)

the true value of θ lies (Nott et al. 2020), so a point of least
conflict could be seen as the α that maximizes this p-value.
Ifm(yyy), π(θ |yyy, α), KL(π(θ |yyy, α) ||π(θ |α)) are all tractable,
then the function g(α) = P(KL(YYY |α) > KL(yyy0|α)) could
be maximized with respect to α directly. If some or none of
those quantities are tractable then g(α) could be estimated
by evaluating the p-value (6) at possible values of α.

In the Bayesian LASSO, the only tuning parameter is λ

so we aim to find a value or prior on λ that conflicts least
with the data. In the point-mass spike-and-slab prior, how-
ever, regularization is controlled by the slab variance τ 2

in addition to the prior inclusion probability θ0. We focus
only on configuring τ 2 for consistency with the Bayesian
LASSO as well as because an empirical Bayes estimate of
θ0 can be obtained by numerically optimizing the marginal
likelihood of θ0 (Castillo and Mismer 2018). Assuming the
linear regression model (1) and using the check given in (6),
if βββ|σ 2 follows the Laplace prior defined in (2), finding a
minimally conflictingfixed value ofλ involves assessing con-
flict between either τττ 2 = (τ 21 , τ 22 , ..., τ 2p)

T and the data or

between each τ 2j , j = 1, 2, ..., p and the data. In the former

case, a p-dimensional posterior density for τττ 2 would have to
be estimated which for large p is not feasible, or in the latter
case, conflict would be assessed per-covariate in which case
a method for determining the overall conflict associated with
a given value of λwould have to be proposed. The same issue
would arise for the point-mass spike-and-slab prior except at
the level of regression coefficients βββ.

To avoid these issues we propose placing a prior on the
parameter λ2 in the Bayesian LASSO, and a prior on the
parameter τ 2 in the point-mass spike-and-slab, fixing each
of their prior variances to some small value, and identifying
prior means that may conflict least with the data. We assume

λ2 ∼ Gamma(μλ2 , σ
2
λ2

) (7)

τ 2 ∼ Inverse-Gamma(μτ 2 , σ
2
τ 2

) , (8)

where μλ2 , σ
2
λ2

and μτ 2 , σ
2
τ 2

are the prior means and vari-

ances of λ2 and τ 2, respectively.We use aGamma distributed
λ2 in the Bayesian LASSO as it preserves Gibbs sampling,
and an Inverse-Gamma distributed τ 2 in the spike-and-slab
model as it is a conjugate prior and a popular configuration
(Ročková et al. 2012; Ishwaran and Rao 2003; Malsiner-
Walli andWagner 2018). Ideally, the p-value P(KL(YYY |μ) >

KL(yyy0|μ)) could be maximized with respect to μ, the prior
mean of either π(λ2) or π(τ 2). As the quantities KL(yyy0|μ)

and KL(YYY |μ) are intractable, maximizing with respect to μ

directly is not feasible for eithermodel. Thismeans in order to
identify aμ that conflicts the leastwith the data, a sequence of
prior means {μ1, μ2, ..., μl}must be specified and ameasure
of conflict computed for eachμi , i = 1, 2, ..., l, where l is the
length of the sequence. Computing the p-value (6) for just
one μi requires simulation of the distribution of KL(YYY |μi ),
which requires fitting many draws from the prior predictive
distribution m(yyy). As a computationally feasible alternative,
we decide instead to measure the conflict of each μi with
only the test statistic of the p-value (6), the prior to posterior
divergence.While computing a prior-to-posterior divergence
for each μi , i = 1, 2, ..., l requires running an MCMC algo-
rithm for each μi , it avoids simulation of the distribution
KL(YYY |μi ) which would require running tens if not hundreds
of MCMC algorithms for eachμi under investigation. So for
prior means μλ2 , μτ 2 we compute

KL(π(λ2|yyy, μλ2) || π(λ2|μλ2)) (9)

KL(π(τ 2|yyy, μτ 2) || π(τ 2|μτ 2)) (10)

Our justification for computing only the divergence is that,
since we are aiming to compare the level of conflict at dif-
ferent prior means as opposed to testing for significant prior
data conflict at a given mean, a prior-to-posterior divergence
is informative.
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Since the posterior distributions π(λ2|yyy), π(τ 2|yyy), and
the prior-predictive distribution m(yyy) are intractable, the
divergences (9), (10) must be estimated. We first esti-
mate the posterior distributions π(λ2|yyy, μλ2), π(τ 2|yyy, μτ 2)

with standard normal kernel density estimates π̃(λ2|yyy, μλ2),
π̃(τ 2|yyy, μτ 2) computed with posterior samples using the
function density() in R version 4.2.0, and then esti-
mate (9), (10) with the estimated divergence between
π(λ2|μλ2) and π̃(λ2|yyy, μλ2), and between π(τ 2|μτ 2) and
π̃(τ 2|yyy, μτ 2). Kernel density estimation is used as it does
not assume a known distribution for the density. For a sam-
ple {x1, x2, ..., xm} of size m from some distribution f (x),
the standard normal kernel density estimate of f is:

f̃ (x) = 1

mh

m∑
i=1

φ

(
x − xi

h

)

where φ(x) is the standard normal density and h a tuning
parameter referred to as the bandwidth (Chen 2017). The
bandwidth can be specified using Silverman’s rule of thumb,
h = 0.9∗min{σ̂ ,

IQR
1.34 }n−1/5, where σ̂ is the sample standard

deviation and IQR the interquartile range (Sheather 2004).
The divergence between prior and kernel-estimated posterior
is done analytically through estimation of the integral (5).

An issue arises when we observe that the divergences (9),
(10) tend to sharply decrease and stabilize once the prior
means μλ2 , μτ 2 become large enough, meaning that for
certain sets of candidate means it is likely that the largest
mean will correspond to the smallest divergence. The intu-
ition behind this is that for large values ofμλ2 , μτ 2 , the level
of shrinkage is high enough that new observations are inter-
preted by themodel as having occurred due to chance or error,
resulting in large posterior error variance σ 2 and a posterior
of βββ similar to its prior (see Supplementary Material Section
1.4). We note however that before the divergence sharply
decreases a local minimum can usually be observed. As such
for some increasing sequence of prior means {μ1, μ2, ..., μl}
for either λ2 (when using the Bayesian LASSO) or τ 2 (when
using spike-and-slab regression), we denote the minimum-
divergence prior means μMD

λ2
, μMD

τ 2
to be the smallest μk ,

1 ≤ k < l, such that KLk ≤ KLk+1, where KLk refers
to the prior-to-posterior KL-divergence of either λ2 or τ 2 at
prior mean μk . Equivalently, μMD

λ2
, μMD

τ 2
refer to the prior

means corresponding to the first local minimum of the prior-
to-posterior divergence (9) or (10). If no such k exists then a
finer sequence of prior means may be defined or k is just
chosen based on the value that minimizes the KL in the
specified sequence. Let the minimum-divergence Bayesian
LASSO (MD-BLASSO) denote the Bayesian LASSO using
the prior λ2 ∼ Gamma(μMD

λ2
, σ 2

λ2
) where σ 2

λ2
fixed at

some small value like 1 or 10. Let the minimum-divergence
spike-and-slab (MD-SS) model denote the linear regression

model with point-mass spike-and-slab prior where τ 2 ∼
Inverse-Gamma(μMD

τ 2
, σ 2

τ 2
) where σ 2

τ 2
fixed at some small

value like 1 or 10. The general algorithm for identifying
the minimum-divergence prior mean for λ2 in the Bayesian
LASSO is given in Algorithm 1. The procedure for τ 2 in the
spike-and-slab prior is identical, with λ2 replaced with τ 2.

Some preliminary analyses may be required to arrive at a
suitable sequence of prior means for λ2 or τ 2. Such analyses
can involve assessing prior-to-posterior divergence, conver-
gence of the MCMC algorithm, and variable selection at an
initially coarse sequence of means covering a wide range of
values. This can identify prior means past which no vari-
ables are selected, as well as prior means that may result in
convergence issues, like very small values of μλ2 . With this
knowledge, a finer grid of values can be defined until an area
of locally minimal divergence is identified.

For a samplingmodel f (yyy|θ) and priorπ(θ) on parameter
vector θ , prior-data conflict checks are used to check if π(θ)

lies in a region where the likelihood for θ is very low. As
such, a prior on θ that conflicts minimally with data should
place much of its mass in a region where the likelihood for
θ is high, i.e. near the maximum-likelihood estimate of θ .
An example of this using prior-to-posterior divergences in
the Bayesian LASSO can be found in the Supplementary
Material (in Section 1.2).

Algorithm 1 Identifying μMD
λ2

Require: Increasing sequence of prior means of λ2, {μ1, μ2, ..., μl },
and hypervariance σ 2

λ2

Ensure: The minimum-divergence prior mean of λ2, μMD
λ2

1: for i in 1 to l do
2: Run the MCMC algorithm to obtain posterior samples of λ2

3: Compute an estimate of the prior-to-posterior KL-divergence of
λ2, denoted K̂L(μi )

1. Obtain a kernel density estimate of the posterior distribution of
λ2, π̃(λ2|μi , yyy0)

2. For a sequence of equidistant values of λ2,
{λ21, λ22, ..., λ2d }, obtain the estimated posterior probabili-
ties {π̃(λ21|μi , yyy0), π̃(λ22|μi , yyy0), ..., π̃(λ2d |μi , yyy0)}

3. Compute

K̂L(μi ) = �λ2
d∑
j=1

π̃(λ2j |μi , yyy0)

{
log

π̃(λ2j |μi , yyy0)

π(λ2j |μi )

}
(11)

where �λ2 denotes the distance between each λ2 in
{λ21, λ22, ..., λ2d }

4: end for
5: Set μMD

λ2
to be the smallest μk ∈ {μ1, μ2, ..., μl−1} such that

K̂L(μk) ≤ K̂L(μk+1). If no such k exists either use k corresponding
to the smallest divergence or define a larger/finer sequence of prior
means for λ2, repeating steps 1 to 4.

6: return The minimum-divergence prior mean μMD
λ2
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3 Simulation

In this Section, we conduct simulation studies to assess
the variable selection performance of the MD-BLASSO
and MD-SS against their non-informative counterparts. We
assess the performance of the different variable selection
methods for multiple sparsity levels and number of pre-
dictors. We consider an uncorrelated as well as correlated
predictor design, using real proteomic data from Overmyer
et al. (2021) to simulate responses for the correlated design.
The performancemetrics include the true positive rate (TPR),
false discovery rate (FDR), false nondiscovery rate (FNDR),
and the F1 score, as defined in Sect. 3.2.

3.1 Design of the simulation

3.1.1 Competing models

We compare the variable selection performance of the
minimum-divergence models against the Bayesian LASSO
and spike-and-slab prior when λ2 and τ 2 are given non-
informative priors. We view a somewhat non-informative
prior on λ2 to be a Gamma distribution with a large vari-
ance like 103, with a prior mean of 10 or 100, as smaller
priormeans tended to lead tomixing issues. Let NI-BLASSO
denote the Bayesian LASSO with non-informative prior
λ2 ∼ Gamma(α = 10, β = 0.1) corresponding to E(λ2) =
100 and Var(λ2) = 103, and let NI-SS denote the spike-and-
slab model with non-informative prior τ ∼ Uniform(0, 100)
as in Gelman (2006); O’hara and Sillanpää (2009). In all
spike-and-slabmodels, we assume a prior mixing probability
of θ ∼ Beta(1, 1), which corresponds to a uniform distribu-
tion over (0, 1), reflecting an absence of prior knowledge
regarding sparsity. No intercept parameter β0 is assumed
as continuous responses are centered and predictors cen-
tered. The error variance is given the non-informative prior
σ 2 ∼ Inverse-Gamma(0.1, 0.1). For models using spike-
and-slab priors, covariates are selected if their posterior
inclusion probability exceeds 0.5, and for Bayesian LASSO
models a covariate is selected if its corresponding regression
effect β j has a 95% posterior credible interval that excludes
0. Comparisons with penalized models like the LASSO,
Elastic-Net, and the Spike-and-Slab LASSO can be found
in Supplemental Material (Tables S1-S5).

3.1.2 Configurations of the data

We simulate continuous responses from the linear regres-
sion model (1) with σ 2 = 1 and β0 = −1. We assign
c = s × p nonzero effects to the p-dimensional regres-
sion vector βββ, where s denotes the sparsity level s ∈
{0.01, 0.02, 0.04, 0.08}, with effects of ±0.5. We consider
uncorrelated and correlated designs, using synthetic data

(both covariates and responses are simulated) for the uncorre-
lated design and semi-synthetic data (real-world covariates
are used to simulate responses) for the correlated design.
Covariates used for the semi-synthetic data are proteomic
data from the multi-omics study Overmyer et al. (2021)
which analyzes the relationship between biomolecules and
the presence or severity of COVID-19. The data contained
measurements of 517 proteins, 13, 263 RNA transcripts, 646
lipids, and 110 metabolites from 128 individuals admitted to
ICU with COVID-19 like symptoms (Overmyer et al. 2021).
We use only the proteomic data to simulate responses for the
correlated designwith correlation assessed using the Pearson
correlation coefficient.

• Uncorrelated design: All predictor variables are drawn
from independent and identically distributed standard
normal distributions. The c effects are assigned to the first
c covariates X1, X2, ..., Xc out of a total of p covariates.

• Correlated design: The proteomic data is perturbed to
form a block-correlated design, and the c effects are
assigned to the initial covariate of the first c blocks, result-
ing in no more than one significant covariate per block as
shown in Fig. 2. The block size is fixed at B = 10, and
the blocking process follows from Wang et al. (2020):

(i) The two most highly correlated predictors are
selected to form the first two entries of the first block.
(ii)The remaining B−2 covariatesmost highly corre-
lated with the first form the remainder of the B-sized
block.
(iii)Repeat steps (i)-(ii)with the remaining covariates
for the desired number of blocks.

We fix the number of samples across all uncorrelated
scenarios to be n = 100 and consider combinations of
p ∈ {200, 500} with s ∈ {0.01, 0.02, 0.04, 0.08}, though
no combination of p and s producing s × p = c < 4 or
s × p = c > 20 active covariates is used. For the correlated
data, we have n = 128 observations and p = 517 measured
proteins and consider the number of active covariates (i.e.,
proteins) to be c = 5 and c = 10. All configurations of n, p,
and c are considered with ±0.5 small effects. Each scenario
is replicated 100 times. Additional scenarios with±1 effects
and sample sizes different from n = 100 can be found in
Supplemental Material.

3.2 Performancemetrics

To assess variable selection performance, we report the aver-
age true positive rate (TPR), false discovery rate (FDR), false
non-discovery rate (FNDR), and F1 score across all replicates
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Fig. 2 Correlation plots of the
proteomic data. The left plot is
of the original unperturbed data,
and the right of the perturbed
block-correlated data

Table 1 Factors varied and
values considered in simulation
study

Correlation n p Number of significant covariates c Effect size

Uncorrelated 100 200 4, 8, 16 ±0.5

100 500 5, 10, 20 ±0.5

Correlated 128 517 5, 10 ±0.5

of a given scenario:

TPR = TP

TP + FN
; FDR = FP

TP + FP
;

FNDR = FN

TN + FN
; F1 = 2TPR(1 − FDR)

TPR + 1 − FDR

The TPR captures the proportion of significant variables
selected, the FDR gives the proportion of false selections
out of the total number of selections and the FNDR gives
the proportion of false non-selections out of the total number
of non-selections, where non-selections are predictors not
selected by the model. The F1 score is the harmonic mean
of TPR and precision, where precision is 1 − FDR, or the
positive predictive value (PPV).

3.3 Implementation of methods

JAGS (Just another Gibbs sampler), an open-source sam-
pling program for Bayesian hierarchical models, is used to
obtain posterior samples of parameters, interfaced through
the R package runjags in R version 4.2.0. As the
minimum-divergence models require fitting the data mul-
tiple times, these computations are done in parallel in
a computer cluster, resulting in no increase in computa-
tion time for repeated fits. Kernel density estimation of
the posterior densities of λ2 and τ 2 is done using the
density() function in R with standard normal kernel
and bandwidth h = 0.9 ∗ min{σ̂ ,

IQR
1.34 }n−1/5 (Silverman’s

rule of thumb, Sheather (2004)). For the proposed minimum
divergence models we assess divergence at 12 prior means

μ ∈ {0.1, 0.5, 1, 2.5, 5, 10, 50, 100, 250, 500, 750, 1000}.
This sequence was chosen based on preliminary simula-
tions which also evaluated the sensitivity of our method to
other common choices of kernel density bandwidth (Sheather
and Jones 1991; Sheather 2004) for the Bayesian LASSO
at this sequence of prior means. The choice of bandwidth
did not affect identifying the first local minimum. Results
of the sensitivity to bandwidth are in the Supplementary
Material (in Sect. 1.3). For the Bayesian LASSO, 30, 000
samples of the joint posterior are drawn with the first 10, 000
discarded as burn-in for scenarios with p = 200. For
p ≥ 500 scenarios, 45, 000 posterior samples are drawn
with the first 15, 000 discarded as burn-in. For spike-and-
slab models, 37, 500 samples of the joint posterior are drawn
with the first 12, 500 discarded as burn-in for scenarios
where p = 200. For p ≥ 500 scenarios, 75, 000 poste-
rior samples are drawn with the first 25, 000 discarded as
burn-in. All samples refer to samples drawn from each of
the two parallel chains. Convergence of continuous param-
eters is monitored using the potential scale reduction factor,
referred to as R-hat (Gelman and Rubin 1992). As recom-
mended in Gelman et al. (1995) convergence is indicated
with an R-hat of < 1.1. For the spike-and-slab prior, we
assess agreement of γγγ = (γ1, γ2, ..., γp)

T between the
two chains by computing the correlation of the p poste-
rior inclusion probabilities γ̄1, γ̄2, ..., γ̄p from each chain,
with a correlation of > 0.98 indicating good agreement.
For the Bayesian LASSO, initial values of β1, β2, ..., βp are
randomly drawn from independent standard normal distri-
butions, initial values of τ 21 , τ 22 , ..., τ 2p are randomly drawn
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Fig. 3 Distribution of minimum-divergence prior means of τ 2 and λ2

in the MD-SS and MD-BLASSO models based on 100 replicates. For
uncorrelated p = 200 scenario with var(τ 2) = var(λ2) = 10

Fig. 4 Distribution of minimum-divergence prior means of τ 2 and λ2

in the MD-SS and MD-BLASSO models based on 100 replicates. For
uncorrelated p = 500 scenario with var(τ 2) = var(λ2) = 10

from Exponential(rate = 1
2 ), and initial λ2 are randomly

drawn from its prior distribution. For the spike-and-slabmod-
els, initial values of β1, β2, ..., βp are randomly drawn from
independent standard normal distributions. The initial value
of slab-variance τ 2 is drawn from the prior and each indicator
γ1, γ2, ..., γp is initialized from a Bernoulli(0.5) distribution
and the mixing weight θ0 initialized at 0.25 and 0.75 for the
first and second chain, respectively.

3.4 Simulation results

Results of the uncorrelated simulation scenarios based on
100 replicates are shown in Tables 2 and 3, and results of the
correlated scenarios in Table 4.
Minimum-divergence spike-and-slab: Performance of the
minimum-divergence spike-and-slabmodel (MD-SS) is gen-
erally better or as good as the noninformative spike-and-slab
model (NI-SS) (Tables 2,3). In most uncorrelated scenarios,

the minimum-divergence model outperforms the noninfor-
mative model by obtaining a higher TPR, lower FDR, and F1
score nearer to 1. In the cases where p = 200, c = 4, 16
and p = 500, c = 5 however, the MD-SS has a slightly
higher FDR resulting in nearly the same F1 score as the non-
informative model. Both models have similar small FNDR
values of ≤ 0.04 across all uncorrelated scenarios. In the
correlated scenarios performance between the minimum-
divergence and noninformative spike-and-slab models are
comparable (Table 4), with the minimum-divergence model
obtaining a smaller TPR and FDR but F1 scores slightly
nearer to 1. Both models have similarly small FNDR values
of ≤ 0.02. Overall, the MD-SS model performs as well as
the NI-SS model but shows improved performance against
the noninformative model when the data are uncorrelated
by obtaining a better trade-off between true-positives and
false-discoveries as reflected in larger F1 scores. Addition-
ally, the MD-SS model was not sensitive to the choice of
slab hypervariance var(τ 2), though we note that very small
hypervariances of 0.05, 0.1 resulted in poorer performance
(results not shown). As seen in Figs. 3, 4, the minimally-
divergent prior mean for τ 2 was identified as μMD

τ 2
= 0.1 in

the majority of replicates across all sparsity levels s = p×c,
i.e. μMD

τ 2
does not depend on s. As the slab variance τ 2 is

used tomodel nonzero effects, andnonzero effects arefixed at
±0.5 across all scenarios, it is reasonable that the minimum-
divergence prior mean μMD

τ 2
does not vary greatly.

Minimum-divergence Bayesian LASSO: Performance of
the minimum-divergence Bayesian LASSO (MD-BLASSO)
is generally slightly worse than its noninformative coun-
terpart (NI-BLASSO) in almost all scenarios (Tables 2, 3,
4). The MD-BLASSO on average detects fewer significant
covariates than the NI-BLASSO as seen in a smaller TPR,
except in the cases where p = 200 or p = 500 and c ≥ 10,
where it is slightly larger when var(λ2) = 1. However
when p = 500 and c ≥ 10 the Bayesian LASSO fails to
make any selection most of the time. The MD-BLASSO in
all cases but one has a higher FDR than the NI-BLASSO
and a smaller F1 score. The FNDR is equally low for both
Bayesian LASSO models with the highest being 0.06. Addi-
tionally, the performance of the MD-BLASSO was slightly
sensitive to the hypervariance var(λ2). For instance, when
p = 200, c = 16, using the hypervariance var(λ2) = 1
gave an F1 score of 0.45 and using var(λ2) = 10 gave a
score of 0.35. Overall, the MD-BLASSO tended to select
fewer covariates than the NI-BLASSO and often failed to
make any selection at all, resulting in low TPRs and rela-
tively high FDRs. This is explained when we note that the
prior mean of λ2 that gave minimal prior-to-posterior diver-
gence was often larger than the prior mean that gave the best
selection, resulting in too much shrinkage of the regression
vector βββ towards 0. As seen in Figs. 3 and 4, the minimally-
divergent prior mean μMD

λ2
varied greatly across replicates
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Table 2 Uncorrelated
simulation study results for
p = 200, c = 4, 8, and 16 using
100 replicates. Each entry refers
to the average value of the
performance metric and
simulation standard error (in
parentheses). MD-SS:
Minimum-Divergence
Spike-and-Slab, NI-SS:
Noninformative Spike-and-Slab,
MD-BLASSO:
Minimum-Divergence Bayesian
LASSO, NI-BLASSO: Bayesian
LASSO with non-informative
prior

C = 4
Model Var(τ 2) TPR FDR FNDR F1

MD-SS 1 0.96 (0.013) 0.22 (0.024) 0.00 (0.000) 0.84 (0.019)

10 0.96 (0.010) 0.22 (0.023) 0.00 (0.000) 0.84 (0.017)

NI-SS 0.90 (0.024) 0.21 (0.029) 0.00 (0.000) 0.81 (0.025)

MD-BLASSO 1 0.54 (0.034) 0.17 (0.035) 0.01 (0.001) 0.62 (0.032)

10 0.53 (0.034) 0.20 (0.037) 0.01 (0.001) 0.60 (0.033)

NI-BLASSO 0.77 (0.022) 0.07 (0.012) 0.00 (0.000) 0.82 (0.016)

C = 8

Model Var(τ 2) TPR FDR FNDR F1

MD-SS 1 0.95 (0.009) 0.22 (0.018) 0.00 (0.000) 0.84 (0.013)

10 0.94 (0.013) 0.23 (0.020) 0.00 (0.000) 0.83 (0.016)

NI-SS 0.88 (0.025) 0.24 (0.026) 0.00 (0.001) 0.79 (0.024)

MD-BLASSO 1 0.45 (0.026) 0.13 (0.029) 0.02 (0.001) 0.56 (0.027)

10 0.41 (0.028) 0.19 (0.036) 0.02 (0.001) 0.52 (0.031)

NI-BLASSO 0.55 (0.017) 0.03 (0.007) 0.02 (0.001) 0.69 (0.015)

C = 16

Model Var(τ 2) TPR FDR FNDR F1

MD-SS 1 0.90 (0.110) 0.38 (0.023) 0.04 (0.017) 0.71 (0.019)

10 0.90 (0.010) 0.38 (0.022) 0.02 (0.010) 0.70 (0.019)

NI-SS 0.80 (0.026) 0.32 (0.025) 0.02 (0.002) 0.70 (0.024)

MD-BLASSO 1 0.32 (0.018) 0.13 (0.029) 0.06 (0.001) 0.45 (0.022)

10 0.24 (0.018) 0.29 (0.043) 0.06 (0.001) 0.35 (0.025)

NI-BLASSO 0.29 (0.011) 0.04 (0.013) 0.06 (0.001) 0.43 (0.014)

of any given scenario, which may be due to lack of data-
information regarding the parameter λ2 at the sample size
n = 100.

3.5 Comparison betweenminimum-divergence
models

The minimum-divergence configuration of τ 2 generally
results in better variable selection than a non-informative
prior on τ 2, but the same is not true for the Bayesian LASSO,
where the NI-BLASSO outperforms the MD-BLASSO in
almost all scenarios, with the MD-BLASSO often induc-
ing too much shrinkage on βββ. A noticeable difference in
behaviour between the MD-SS and MD-BLASSO models
is in the distribution of their prior means μMD

λ2
and μMD

τ 2

across realizations of a given scenario (Figs. 3, 4). The prior
mean that locally minimizes divergence of τ 2 for the spike-
and-slab model is generally the same across datasets for
a single scenario, whereas the prior that locally minimizes
divergence of λ2 may differ between simulated datasets for
a single scenario. This is further seen in Figures S1-S4 (Sup-
plementary material), where the average prior-to-posterior
divergence (averaged across replicates) of each prior mean
for a given scenario achieves a local minimum for the spike-
and-slab model, but generally achieves no local minimum

for the Bayesian LASSO model, indicating that a locally
minimal divergence is not consistent across replicates of a
single scenario for the Bayesian LASSO. This difference in
behaviour may be a result of the difference in data informa-
tion regarding the parameters λ2, τ 2 since, if a parameter
is not identified strongly in the data, it may be difficult to
determine a prior for it that conflicts least with the data.
Figure5 compares the posterior distributions of λ2 and τ 2

when λ, τ are given the non-informative prior distribution
π(λ), π(τ) ∼ Uniform(0, 100), for the 7th replicate of the
uncorrelated simulation scenario with p = 200, c = 4.
Since this prior distribution is highly non-informative, these
posterior distributions largely reflect what information the
data has regarding λ2, τ 2. We see in Fig. 5 that the posterior
distribution of λ2 is multimodal and quite diffuse relative
to the posterior of τ 2. To illustrate why this is problematic
for the MD-BLASSO model we note firstly that, for this
simulated dataset, the MD-BLASSO model uses the prior
mean μMD

λ2
= 750 on λ2. The divergence at this mean

is, however, only very slightly smaller than at neighbour-
ing means indicating that this is likely not an actual point
of minimal prior-data conflict but is just a point where the
prior-to-posterior divergence of λ2 is underestimated, or its
neighbours’ overestimated. Due to the wide range of λ2 val-
ues supported by the data we are unable to identify a mean
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Table 3 Uncorrelated
simulation study results for
p = 500, c = 5, 10, and 20
using 100 replicates. Each entry
refers to the average value of the
performance metric and
simulation standard error (in
parentheses). MD-SS:
Minimum-Divergence
Spike-and-Slab, NI-SS:
Noninformative Spike-and-Slab,
MD-BLASSO:
Minimum-Divergence Bayesian
LASSO, NI-BLASSO: Bayesian
LASSO with non-informative
prior

C = 5
Model Var(τ 2) TPR FDR FNDR F1

MD-SS 1 0.91 (0.017) 0.22 (0.019) 0.00 (0.000) 0.82 (0.016)

10 0.91 (0.017) 0.22 (0.019) 0.00 (0.000) 0.82 (0.017)

NI-SS 0.88 (0.025) 0.20 (0.025) 0.00 (0.000) 0.82 (0.023)

MD-BLASSO 1 0.21 (0.018) 0.33 (0.047) 0.01 (0.000) 0.31 (0.024)

10 0.18 (0.019) 0.41 (0.049) 0.01 (0.000) 0.27 (0.025)

NI-BLASSO 0.23 (0.018) 0.28 (0.045) 0.01 (0.000) 0.33 (0.024)

C = 10

Model Var(τ 2) TPR FDR FNDR F1

MD-SS 1 0.77 (0.023) 0.28 (0.022) 0.00 (0.000) 0.73 (0.020)

10 0.76 (0.021) 0.27 (0.019) 0.00 (0.000) 0.73 (0.018)

NI-SS 0.69 (0.036) 0.30 (0.035) 0.01 (0.001) 0.66 (0.033)

MD-BLASSO 1 0.06 (0.008) 0.57 (0.050) 0.02 (0.000) 0.10 (0.013)

10 0.05 (0.008) 0.63 (0.049) 0.02 (0.000) 0.09 (0.014)

NI-BLASSO 0.06 (0.008) 0.55 (0.050) 0.02 (0.000) 0.10 (0.013)

C = 20

Model Var(τ 2) TPR FDR FNDR F1

MD-SS 1 0.45 (0.015) 0.43 (0.019) 0.02 (0.001) 0.49 (0.014)

10 0.46 (0.013) 0.39 (0.018) 0.02 (0.001) 0.51 (0.013)

NI-SS 0.39 (0.028) 0.53 (0.034) 0.05 (0.014) 0.39 (0.026)

MD-BLASSO 1 0.01 (0.003) 0.73 (0.046) 0.04 (0.000) 0.03 (0.005)

10 0.01 (0.003) 0.77 (0.065) 0.04 (0.000) 0.02 (0.006)

NI-BLASSO 0.01 (0.002) 0.74 (0.044) 0.04 (0.000) 0.03 (0.005)

Table 4 Correlated simulation
study results for p = 517, c = 5
and 10 using 100 replicates.
Each entry refers to the average
value of the performance metric
and simulation standard error (in
parentheses). MD-SS:
Minimum-Divergence
Spike-and-Slab, NI-SS:
Noninformative Spike-and-Slab,
MD-BLASSO:
Minimum-Divergence Bayesian
LASSO, NI-BLASSO: Bayesian
LASSO with non-informative
prior

C = 5
Model Var(τ 2) TPR FDR FNDR F1

MD-SS 1 0.31 (0.017) 0.42 (0.033) 0.01 (0.000) 0.42 (0.019)

10 0.31 (0.019) 0.41 (0.034) 0.01 (0.000) 0.43 (0.020)

NI-SS 0.41 (0.024) 0.46 (0.034) 0.01 (0.000) 0.40 (0.022)

MD-BLASSO 1 0.00 (0.000) 1.00 (0.000) 0.01 (0.000) 0.00 (0.000)

10 0.00 (0.000) 1.00 (0.000) 0.01 (0.000) 0.00 (0.000)

NI-BLASSO 0.01 (0.003) 0.97 (0.017) 0.01 (0.000) 0.01 (0.001)

C = 10

Model Var(τ 2) TPR FDR FNDR F1

MD-SS 1 0.36 (0.015) 0.47 (0.025) 0.01 (0.000) 0.42 (0.015)

10 0.36 (0.015) 0.47 (0.026) 0.01 (0.000) 0.42 (0.015)

NI-SS 0.44 (0.018) 0.50 (0.027) 0.02 (0.011) 0.41 (0.017)

MD-BLASSO 1 0.01 (0.002) 0.95 (0.022) 0.02 (0.000) 0.01 (0.004)

10 0.00 (0.002) 0.97 (0.017) 0.02 (0.000) 0.01 (0.003)

NI-BLASSO 0.01 (0.003) 0.89 (0.032) 0.02 (0.000) 0.02 (0.006)
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of minimal prior-data conflict and, as a result, choose a
prior mean that results in a divergence that is only spuri-
ously small relative to its neighbours. Here μMD

λ2
= 750 is

unsurprisingly large since a spuriously minimal divergence
is likely to occur at large μλ2 due to stabilization of the
divergence as λ2 increases. The main issue with the MD-
BLASSO model is its use of too large a prior mean on λ2 so
instances like this may be responsible for this model’s poor
performance relative to the NI-BLASSO model. The reason
why the data seems to support a wide range of λ values is
possibly due to the assumption that each β1, β2, ..., βp in
the MD-BLASSO is Laplace distributed only when condi-
tioned on the error variance σ 2, i.e. β j |λ, σ ∼ Laplace( σ

λ
)

resulting in var(β j |λ, σ ) = 2σ 2/λ2 for all j = 1, 2, ..., p.
Preliminary simulations show that when we assume β j |λ,∼
Laplace( 1

λ
) for all j = 1, 2, ..., p, the MD-BLASSO perfor-

mance improves (results not shown).Another possible reason
for this may be that τ 2 in the spike-and-slab prior controls
the effect size variability of active covariates, whereas λ2 in
the Laplace prior is used in modelling the effect size vari-
ability of all covariates. There may be less data information
regarding the average effect size of all covariates than those
of covariates that can be distinguished from 0. Lastly, selec-
tion using the Bayesian LASSO is generally worse than with
a spike-and-slab prior, with the Bayesian LASSO models
having lower TPR’s across all scenarios and larger FDR’s
when p ≥ 500, possibly relating to the coverage of poste-
rior credible intervals arising from the Laplace prior (Bhadra
et al. 2019), and the shrinking issue of Bayesian LASSO
mentioned in Sect. 2.2.

Additional simulation scenarios with effects of ±1 and
p = 200, c = 4 active covariates were explored to deter-
mine whether the MD-BLASSO model could outperform
the non-informative Bayesian LASSO. We find that if the
prior variance on λ2 is set to 0.005 as opposed to 1 or 10, the
MD-BLASSO is better able to select relevant covariates and
achieves a lower false-discovery rate than the NI-BLASSO
when the number of observations is reduced to n = 50 (Table
5). This illustrates that a small hypervariance of the tuning
parametermay allow the divergence to better detect the subtle
differences in possible prior-data conflict that arise when the
tuning parameterλ2 is not strongly identified in the data. Sim-
ilar performance is seen when n is set to 200 and c increased
to 16 (see Supplementary Material).

4 Application to a proteomics COVID-19
dataset

In this Section, we apply the minimum-divergence spike-
and-slab model to proteomic data predicting the severity of
COVID-19. The data are the same as those used to generate

Fig. 5 Posterior distributions of τ 2, λ2 in the spike-and-slab and
Bayesian LASSOmodel where π(τ), π(λ) ∼ Uniform(0, 100), for the
7th replicate of uncorrelated simulation scenario with p = 200, c = 4.
π(τ 2|yyy) is scaled down by a factor of 10 for comparability

responses for the correlated simulation scenarios in section
3.

4.1 Overview of proteomic data

The data comes from the multi-omics study by Overmyer
et al. (2021), where RNA-sequencing and mass spectron-
omy were performed on blood samples from 128 individuals
admitted to the Albany Medical Center in Albany NY with
COVID-19-like respiratory issues betweenApril 6 andMay1
of 2020. This study began less than 3months after the record-
ing of the first COVID-19 case inAmerica andmonths before
the development of any vaccines (Carvalho et al. 2021). At
the time of enrollment, patients were tested for the SARS-
CoV-2 infection, ofwhom102 tested positive.At this time the
alpha variant had already been detected in all 50 states (Web-
ster 2021), so it is possible that individuals in the study were
infected with a variant of the original virus. Various clinical
data like age, sex, Charleston comorbidity index, whether
the patient was admitted to the intensive care unit, and the
number of days spent on a ventilator, were collected. The
severity of illness was measured by recording the number of
days a patient spent out of the hospital in a 45-day period fol-
lowing admittance. If a patient remained in the hospital after
the 45th day a score of 0 was given, indicating very severe
illness. Blood samples were drawn at the time of enrollment
and mass spectronomy of blood plasma was used to obtain
abundance measurements of 517 proteins, 646 lipids, and
110 metabolites. RNA-sequencing yielded measurements of
13, 263 leukocyte mRNA transcripts (Overmyer et al. 2021).
The measurements of all molecules were normalized and
transformed with a base 2 logarithm (Overmyer et al. 2021).
The proteomic data has a dimension most comparable to our
simulation so we restrict our analysis to this data set. Due to
some missing data, we exclude 2 of the COVID-19 patients,
leaving 100 patients diagnosed with COVID-19. To improve
mixing, we remove all proteins with sample variances of
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Table 5 Uncorrelated simulation study results for n = 50, p = 200,
c = 4 significant effects of size ±1 using 100 replicates. Each entry
refers to the average value of themetric and simulation standard error (in

parentheses). MD-BLASSO: Minimum-Divergence Bayesian LASSO,
NI-BLASSO: Bayesian LASSO with non-informative prior

Model Var(λ2) TPR FDR FNDR F1

MD-BLASSO 0.005 0.39 (0.029) 0.22 (0.042) 0.01 (0.001) 0.49 (0.032)

NI-BLASSO 103 0.24 (0.023) 0.39 (0.049) 0.02 (0.000) 0.33 (0.029)

< 0.25, as in Lipman et al. (2022), leaving 441 proteins for
analysis.

4.2 Methods

We use linear regression to model the relationship between
protein measurements and hospital-free days (HFD). We
apply only the MD-SS model as the Bayesian LASSO
fails to make any selection regardless of prior configu-
ration. We center and scale all proteins to have mean 0
and variance 1, and center HFDs. We assign the prior
σ 2 ∼ Inverse-Gamma(0.1, 0.1) to the error variance and
assume a prior mixing probability of θ0 ∼ Beta(1, 1)
for the MD-SS model. Since we center HFDs and XXX
we assume no intercept. Preliminary analysis identified
a minimally conflicting region for the prior mean of τ 2

to be ≤ 10, so we define the sequence of prior means
for the minimum-divergence spike-and-slab model to be
{0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 7.5, 10}. We assume a
hypervariance for τ 2 of 10, based on simulation perfor-
mance.We run 2MCMCchains for each priormean, drawing
375, 000 posterior samples with the first 25, 000 discarded as
burn-in for each chain to obtain convergence of the sampling
algorithm. As in the simulation study, all computations are
done in parallel in a computer cluster, resulting in no increase
in computation time for repeated fits.

4.3 Results

Figure6 shows the inverse prior-to-posterior divergences
of the slab variance τ 2 for each prior mean μτ 2 ∈
{0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 7.5, 10}, identifying
μMD

τ 2
= 1.5 as the priormean corresponding to a locallymin-

imal divergence. We plot the inverse divergence as opposed
to the divergence as it more clearly identifies this prior mean.
The correlation of posterior inclusion probabilities between
the two MCMC chains was > 0.98, indicating good agree-
ment of inclusion probabilities, with a total run-time of 13
hours and 3 minutes. Figure7 denotes the posterior inclu-
sion probabilities of each protein using the MD-SS model.
All proteins have inclusion probabilities of > 0.5 mean-
ing that if a cut-off of 0.5 were used, all proteins would
be selected as important. Figure7 shows no obvious larger
cut-off for inclusion and the Bayesian false-discovery rate

Fig. 6 Standardized inverse prior-to-posterior KL Divergences of τ 2.
Vertical dashed lines denote the first local maximum

Fig. 7 Posterior model inclusion probabilities of proteins for the MD-
SS model. Red probabilities denote selected proteins

is > 0.1 for all cut-offs 0 < k < 1, so we instead
choose the 10 proteins that have highest probability of
being associated with COVID-19 severity, corresponding to
a cut-off of 0.6738. We select proteins P24821, P20742,
P15814,Q15166,A0A075B7D0,C9JF17,Q14766,O95445,
Q5JP53, andK7ER74,which correspond to genesTNC, PZP,
IGLL1, PON3, IGHV1OR15-1, APOD, LTBP1, APOM,
TUBB, and APOC4-APOC2. Of these 10 proteins, all but
IGLL1 and LTBP1 were also identified as being related to
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COVID-19 severity in a separate analysis of the same data
that used univariable filtering followed by elastic-net stabil-
ity selection (Lipman et al. 2022). In that analysis, the genes
TNC, PZP, APOD, and TUBB were found to be function-
ally associatedwith neurological disease, supportingfindings
that patients infected with the SARS-CoV-2 virus are more
likely to develop certain neurological or psychiatric illnesses
like ischaemic stroke and anxiety than those infected with
influenza viruses, particularly in those who require hospital-
ization (Taquet et al. 2021; Lipman et al. 2022). Identification
of IGLL1, a gene coding for a protein critical in B-cell devel-
opment (a type of white blood cell) (Gemayel et al. 2016),
is consistent with research showing a significant decrease
in pre-B cells among patients with severe COVID-19 com-
pared to healthypatients,where IGLL1 is used to characterize
clusters of pre-B cells (Wang et al. 2021). Selection of the
gene LTBP1, involved in the TGF-β pathway, supports other
findings that TGF-β is potentially important in COVID-19
symptom control (Wu et al. 2022). The remaining genes
were associated with inflammation response, infectious or
metabolic disease, or cell function and maintenance, based
on the analysis of Lipman et al. (2022).

For comparison, we also apply the NI-SS model and find
that, of the top 10 proteins it identifies as associated with
severe COVID-19 infection, 2 differ from those identified by
the MD-SS model. These correspond to genes HLA-C and
APOM, both ofwhich have been shown to be down-regulated
in patients with severe COVID infection when compared to
those with no or mild infection (Vigón et al. 2022; Shen et al.
2020; Overmyer et al. 2021).

A limitation of our analysis is that we restrict our attention
to the proteomic dataset as opposed to the analysis of all omic
datasets from this study. Like previous analyses of this data,
significant lipids, metabolomes, and RNA transcripts may be
identified and cross-ome correlation analysis done to assess
whether selected biomolecules from different datasets are
associated with one another. Additionally, we do not assess
the relationship between selected proteins and clinical covari-
ates like age, comorbidity, white blood cell count, and others.
A strength of our analysis, however, is that we can proba-
bilistically rank the importance of proteins to select the most
relevant ones.

5 Conclusions

Bayesian regularization through shrinkage priors requires
specification of the level of shrinkage. One way to achieve
this is through empirical Bayes methods, where parameters
are estimated from data. Empirical Bayes estimates of the
shrinkage parameters τ 2 and λ2 in the spike-and-slab and
Bayesian LASSO priors, respectively, require, to our knowl-
edge, either a computationally expensive MC-EM algorithm

or stochastic approximation with the latter option sensitive
to a step-size parameter (Leng et al. 2014). As an alter-
native, we propose placing a narrow prior on τ 2 or λ2

with a prior mean that results in minimal prior-to-posterior
Kullback–Leibler divergence. Simulation results show that
the minimum-divergence configuration of the spike-and-slab
linear regression model outperforms a non-informative con-
figuration for a weak effect size, providing evidence for the
use of empirical Bayesmethods in high-dimensional variable
selection problems. For the Bayesian LASSO the minimum-
divergence configuration largely results in over-shrinkage of
regression effects, possibly due to λ2 often being weakly
identified in the data.

The performance of the MD-BLASSOmodel illustrates a
limitation of theminimum-divergencemethodology, namely,
that the prior-to-posterior divergence may not be able to
detect the subtle differences in possible prior-data conflict
that arise when the parameter being tuned is not strongly
identified in the data. While using a small hypervariance
of var(λ2) = 0.005 may remedy this issue, more investi-
gation is needed to identify when the minimum-divergence
configuration of the Bayesian LASSO is beneficial. Addi-
tionally, selection using the Bayesian LASSO is done here
using 95% credible intervals, but credible intervals arising
from shrinkage priors are not necessarily honest (contain the
true parameter value) (Bhadra et al. 2019). Indeed, Li (1989)
show there is fundamental disagreement between honesty
and adaptation to sparsity, and Van Erp et al. (2019) illus-
trate in simulation that a credible interval of 95% is often too
wide for variable selectionwhen using the Bayesian LASSO.
A drawback of our proposed methodology is that it requires
running as manyMCMC algorithms as there are prior means
for λ2 or τ 2 under consideration. Though this is less com-
putationally intensive than computing the prior-data conflict
p-value given in (6) for each prior mean, computation of (6)
would make our proposed methodology more rigorous, in
particular when the sample size is small.

Due to the computational cost associated with obtain-
ing marginal maximum-likelihood estimates of λ2 and τ 2,
we were unable to compare our minimum-divergence ver-
sions of the Bayesian LASSO and spike-and-slab prior with
the versions using those estimates, which would be a mean-
ingful area of future work. Another meaningful comparison
would be with variable selection done from a Bayesian deci-
sion theoretical perspective, which does not necessitate the
use of shrinkage priors (Hahn and Carvalho 2015). Future
work could also involve minimizing conflict between λ2 or
τ 2 and data by other means, such as the score-based check
proposed in Nott et al. (2021). Additionally, computing the
actual divergence-based p-value given in (6) as opposed
to only the statistic could be made computationally feasi-
ble if the posterior distribution of λ2 or τ 2 was estimated
using Laplace approximation or Variational Bayes methods.
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The Bayesian LASSO and point-mass spike-and-slab prior
are only two of many shrinkage priors that our minimum-
divergence method could be applied to. One extension would
be to a grouped variable selection scenario using group-level
indicator variables, as in Li andChekouo (2022), with shrink-
age priors placed on individual effects. For a spike-and-slab
prior we may use either a common shrinkage parameter τ 2

or a group-specific shrinkage parameter τ 2g , g = 1, ...,G,
where g represents the group index, and G is the number
of groups. In the first case our algorithm is directly applica-
ble, while in the second case a grid of prior specifications
of {τ 2g , g = 1, ...,G} could be defined. As our methodology
requires running an MCMC algorithm for each prior speci-
fication, this would be computationally expensive which, as
mentioned earlier, is a drawback of our approach. Another
application is to multiple-response data, where a different
level of shrinkage would be defined for each response. The
novel R2D2 prior (Zhang et al. 2022) induces shrinkage
through a distribution on R2, the coefficient of determina-
tion. This prior contains only one tuning parameter, b, and so
could be configured with minimum-divergence by assessing
the prior-to-posterior divergence of R2 at different values of
b. Our simulation tested performance of ourmethodology at a
sample size of n = 100, but assessing performance at smaller
and larger sample sizes would be of interest. A limitation of
our work, as in empirical Bayes methods, is that it uses the
same data to estimate hyperparameters as it does to derive a
posterior distribution for inference; it would bemeaningful to
extend our method to a fully Bayesian context, for which the
notion of weak informativity of one prior relative to another
would be useful (Evans and Jang 2011). Lastly, the prior-
to-posterior divergence of a parameter is closely related to
a measure of statistical evidence referred to as the relative
belief ratio (Baskurt and Evans 2013; Evans 2016). Future
work could involve using the relative belief ratio in high-
dimensional variable selection problems, as investigated in
Evans and Tomal (2016).

Supplementary information

Additional plots and further simulation results can be found
in the Supplementary Material. Tables S1 and S3 are
expanded versions of Tables 2 and 3 that include the per-
formance of penalized regression models like the LASSO
(Tibshirani 1996), Elastic-Net (Zou andHastie 2005), and the
Spike-and-Slab LASSO (Ročková andGeorge 2018). For the
LASSO and Elastic-Net, tuning parameters are selected via
10-fold cross validation, and a mixing weight of α = 0.6 is
used in the Elastic-Net, encouraging a light grouping effect.
Cross-validation and estimation are done in the R pack-
age glmnet. For the Spike-and-Slab LASSO a sequence
of spike penalty parameters λ0 ∈ {5, 6, 7, ..., 100} is used,

which is similar to the sequence used in the simulation of
the original paper (Ročková and George 2018), and a slab
penalty parameter fixed at the default λ1 = 1. Estimation is
done with the R package SSLASSO. Tables S2 and S4 are
simulation study results for additional uncorrelated simula-
tion scenarios where the active effect size is ±1 as opposed
to ±0.5, including the performance of penalized regression
models. Figures S1-S4 show the average prior-to-posterior
divergences of λ2 or τ 2 across replicates of a scenario, sim-
ilar to Fig. 6. Simulation results for the Bayesian LASSO at
samples sizes different from n = 100, sensitivity analysis of
the prior-to-posterior KL-divergence to kernel density band-
width, KL-divergence of λ2 for large prior means μλ2 , and
insight into the relationship between minimal divergence of
λ2 and the MMLE of λ2 are also provided. Included also is
R code for performing linear spike-and-slab regression with
τ 2 ∼ Inverse-Gamma(μτ 2 , στ 2) and Beta distributed prior
inclusion probability, as well as implementing the Bayesian
LASSO with λ2 ∼ Gamma(μλ2 , σλ2), both using JAGS
interfaced with the R package runjags.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-025-10582-
1.
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Ročková, V., George, E.I.: The spike-and-slab lasso. J. Am. Stat. Assoc.
113(521), 431–444 (2018)
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