

POSTER PRESENTATION

High-permittivity thin dielectric pad improves peripheral non-contrast MRA at 3T

Marc D Lindley¹, Daniel Kim^{1*}, Glen Morrell¹, Marta E Heilbrun¹, Pippa Storey², Christopher Hanrahan¹, Vivian S Lee¹

From 17th Annual SCMR Scientific Sessions New Orleans, LA, USA. 16-19 January 2014

Background

Non-contrast magnetic resonance angiography (NC-MRA) is an alternative diagnostic tool for assessment of peripheral vascular disease in patients with impaired kidney function. While peripheral NC-MRA based on subtraction of two turbo-spin-echo acquisitions may benefit from

increased signal-to-noise ratio (SNR) at 3T, it also suffers from signal loss in the right femoral artery due to B1 inhomogeneities[1], which can be minimized using highpermittivity dielectric pads[2]. The purpose of this study was to utilize high-permittivity dielectric pad to reduce NC-MRA signal loss associated with B1 inhomogeneity.

¹UCAIR, Radiology, University of Utah, Salt Lake City, Utah, USA Full list of author information is available at the end of the article

© 2014 Lindley et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Methods

Six healthy volunteers were imaged at 3T(Tim_Trio, Siemens) to compare the following NC-MRA acquisitions with spatial resolution = $1.5 \times 1.6 \times 2.0$ mm and scan time = 3 min: without pad, with commercially available bulky dielectric pad($37 \times 25 \times 5$ cm), and with high-permittivity

thin dielectric pad (barium titanate, $38 \times 20 \times 2$ cm), which is 60% thinner than the commercial pad. For details on the MRA protocol, see reference[3]. For each MRA acquisition, we also acquired a B1 map (see reference[4] for more details) in the axial plane to cross-section the common femoral arteries. For quantitative analysis, we calculated apparent contrast-to-noise ratio(CNR) of the left(control) and right common femoral arteries, where apparent CNR is defined as(SIartery-SIbackground_Tissue)/noise. Given that the three acquisitions used identical imaging parameters, except for the dielectric pad, we used the same noise value for CNR comparison for each subject. The mean normalized B1 encircling the left and right common femoral arteries was measured(see Figure 1). ANOVA was used to compare the three CNR groups(with Bonferroni correction to compare each pair). Images were graded by three radiologists in consensus on a Likert scale 1-5(worst-best) for conspicuity of common femoral arteries. Kruskal-Wallis test was used to compare the three compa

Results

Compared with baseline and commercial-dielectric-pad acquisitions, high-permittivity-dielectric pad acquisition minimized signal loss in right femoral artery (Figure 1, see B1 map). Over 6 subjects(Figure 2), the mean normalized B1, CNR, and conspicuity score in the left common femoral artery were not different(p > 0.5). In contrast, the mean normalized B1, CNR, and conspicuity score in the right common femoral artery were significantly better with high-permittivity pad acquisitions than baseline and commercial pad acquisitions(p < 0.001).

Conclusions

Our study shows that NC-MRA signal loss in the right common femoral artery at 3T can be minimized through the use of high-permittivity dielectric pad. This B1 correction allows for the signal loss from the inhomogeneities to be corrected and the common femoral artery to be seen in NC-MRA images.

Funding

NIH (5R01 HL092439) and Ben B. and Iris M. Margolis Foundation.

Authors' details

¹UCAIR, Radiology, University of Utah, Salt Lake City, Utah, USA. ²Radiology, New York University, New York, New York, USA.

Published: 16 January 2014

References

- 1. Storrey P, et al: ISMRM 2009.
- 2. de Heer P, et al: MRM 2012.
- 3. Storey P, et al: JMRI 2011.
- 4. Chung S, et al: MRM 2010.

doi:10.1186/1532-429X-16-S1-P166

Cite this article as: Lindley *et al.*: High-permittivity thin dielectric pad improves peripheral non-contrast MRA at 3T. Journal of Cardiovascular Magnetic Resonance 2014 16(Suppl 1):P166.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit