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Abstract: We presented and manufactured a triple-band terahertz (THz) metamaterial absorber with
three concentric square ring metallic resonators, a polyethylene terephthalate (PET) layer, and a
metallic substrate. The simulation results demonstrate that the absorptivity of 99.5%, 86.4%, and
98.4% can be achieved at resonant frequency of 0.337, 0.496, and 0.718 THz, respectively. The
experimental results show three distinct absorption peaks at 0.366, 0.512, and 0.751 THz, which is
mostly agreement with the simulation. We analyzed the absorption mechanism from the distribution
of electric and magnetic fields. The sensitivity of the three peaks of this triple-band absorber to
the surrounding is 72, 103.5, 139.5 GHz/RIU, respectively. In addition, the absorber is polarization
insensitive because of the symmetric configuration. The absorber can simultaneously exhibit high
absorption effect at incident angles up to 60◦ for transverse electric (TE) polarization and 70◦ for
transverse magnetic (TM) polarization. This presented terahertz metamaterial absorber with a triple-
band absorption and easy fabrication can find important applications in biological sensing, THz
imaging, filter and optical communication.

Keywords: a triple-band; metamaterial absorber; electric and magnetic fields; polarization independent

1. Introduction

Terahertz wave is usually defined as radiation at frequencies between 0.1 and 10 THz [1].
Terahertz technology is of significant interest to researchers and has a wide range of poten-
tial applications, including radar cross-section reduction [2], wireless communications [3],
selective thermal emission [4], and THz spectroscopy [5]. Metamaterials, with periodic sub-
wavelength structures, have attracted considerable attention owing to their novel physical
properties [6,7], such as near zero index [8], cloaking [9], cross polarization conversion [10],
and perfect absorption [11]. In order to regulate the electromagnetic wave, a large number
of metamaterial devices have been confirmed. In particular, metamaterial absorbers have
become a research hotspot because of their perfect absorption performance [12–14]. Meta-
material absorbers are designed for various devices, such as spatial light modulators [15],
thermal emitters [16], multiplexing detector arrays [17], sensors [18,19], etc. In 2008, the first
metamaterial absorber with a metal-dielectric composite structure was proposed, which exhib-
ited near-unity absorption at microwave frequency [20]. Subsequently, various metamaterial
absorbers with excellent performance have been reported in the visible [21], infrared [22],
terahertz [23], and microwave bands [24]. Among them, the absorber working in various
bands can achieve single band [23], multiband [24], and broadband absorption [1].

At present, one research hot spot of the absorber structure tends to realize multiband
absorption [25–27]. A common strategy is to include multiple resonators with different-size
in a unit cell [28,29]. This method can achieve multiband absorption because of multiple
resonance combinations of continuous resonance frequencies. For example, Zhang et al. [17]
presented a multispectral absorber using four metal squares of different sizes in a unit
cell, which exhibited a triple-band absorption. Zheng et al. [30] designed a four-band
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metamaterial absorber based on flower-shaped patterns of different sizes in a unit cell.
However, the arrangement of multiple resonant elements greatly increases the size of the
structure, which does not meet the requirements of the current integrated development. At
present, the unit structure composed of metal resonant elements with different shapes has
become a new design direction [25]. For example, an absorber that exhibited five-band peak
absorption was reported; it consisted of different metallic resonators on top of a dielectric
spacing layer and a gold ground plane [25]. Qin et al. [31] investigated a triple-band
absorber based on three different gold particles binding. Metal resonators with different
shapes are used to obtain multiband absorption, which greatly simplifies the structure.
Not only metal-based absorbers, but also other absorber structures can achieve good
absorption performance. For example, a graphene-based THz absorber [32] was proposed,
which realized a double broadband absorption. Michael. A.C. at al. [33] propose an all
dielectric metamaterial absorber; the structure achieved a narrow near-perfect absorption
in the THz band. The absorber based on graphene is complex in structure, and the
absorber based on all dielectric has higher requirements for the fabrication accuracy. With
the development of lithography technology, the practical application of absorbers based
on metal resonators becomes possible. As one of the core technologies of micro nano
processing, lithography is facing the challenges of high cost, complex process and low
resolution. To tackle the challenges for scalability of lithographic approaches, a template-
assisted colloidal self-assembly approach has been proposed as an alternative to fabricate
macroscopic magnetic metasurfaces [34]. The approach induces the gold nanorods to excite
a magnetic resonance, which has application values towards the colloidal fabrication of
functional optical metasurfaces [34]. Nowadays, various multiband absorbers have been
theoretically proposed, but few have been confirmed experimentally, limiting the further
application value.

In this paper, we designed and manufactured a triple-band terahertz metamaterial
absorber using a combination of three concentric square ring metallic resonators. The
absorber shows three narrowband absorption peaks at frequencies of 0.337, 0.496, and
0.718 THz with absorption rates of 99.5%, 86.4%, and 98.4%, respectively. The experimental
results are mostly in agreement with simulations. We also explored the absorption mech-
anism from the distribution of electric and magnetic fields. In addition, the absorption
characteristics are polarization insensitive owing to the structural symmetry. The designed
structure can simultaneously maintain a high peak absorptivity at incident angles up to
60◦ for TE polarization and 70◦ for TM polarization.

2. Structure and Design

Figure 1a shows the structure of the proposed metamaterial absorber, which has three
parts: three concentric square ring metallic resonators, a polyethylene terephthalate (PET)
layer, and a metallic substrate. Figure 1b,c show top and side views of the proposed
absorber, respectively. Aluminum, which has a conductivity of 3.56 × 107 S/m, was
selected as the metallic resonator and substrate, and the permittivity of PET is 3.2. The unit
size of the absorber is set as: a = 200 nm, h = 10 µm, t = 200 nm, p = 150 µm, l1 = 60 µm,
l2 = 90 µm, l3 = 120 µm, and w = 10 µm.

The performance of the proposed absorber was examined using Computer Simulation
Technology (CST) Microwave Studio (Computer Simulation Technology Ltd., Darmstadt,
Germany). Numerical simulation of absorption for the absorber was calculated using
the frequency domain solver provided by the CST software. In the simulation, unit
cell boundary conditions were applied in the x and y directions, and an open boundary
condition was applied in the z direction to eliminate scattering effects. The incident wave
was a plane wave propagating along the negative z axis. We define TE (TM) polarization
as occurring when the electric (magnetic) field is oriented along the x axis. This paper
presents the simulation results for TM polarization, as shown on the top of Figure 1a. The
absorption (A) can be calculated as A(w) = 1 − R(w) – T(w) = 1 − |S11|2 − |S21|2, where
T and R are the transmittance and reflectivity of the absorber, and S11 and S21 represent
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the reflection and transmission coefficients, respectively. Because the metallic substrate of
the absorber is thicker enough to block terahertz waves, the transmission is close to zero.
Consequently, the absorption can be written as A(w) = 1 − R (w) = 1 − |S11|2.
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Figure 1. (a) Three-dimensional structure diagram of the absorber; (b) top and (c) side views of unit
cell structure. The unit size is set as: w = 10 µm, p = 150 µm, l1 = 60 µm, l2 = 90 µm, l3 = 120 µm,
t = 200 nm, h = 10 µm, a = 200 nm.

Samples were fabricated according to the following steps, as shown in Figure 2a. A
3 mm-thick quartz wafer was selected as the sample substrate and was cleaned and
dried. We used a purchased composite film consisting of a PET layer (13 µm thick)
and an aluminum layer (200 nm thick). It should be explained that the simulation in
this paper was carried out for PET thickness of 10 µm in the optimal case. Since the
PET film that is readily available in the market is 13 µm, we choose this thickness for
experiment. Firstly, we applied ethanol to the quartz wafer; we then gently placed the PET-
aluminum film onto the quartz wafer with tweezers and pressed away the air between the
composite material and the quartz wafer with a cotton swab. After the liquid evaporated,
the composite film firmly adhered to the surface of the quartz wafer. Secondly, positive
liquid photoresist was spin-coated on the aluminum surface, and baked for 90 s in an oven
at 100 ◦C. Thirdly, photolithography was used to define the geometry of the metamaterials,
followed by wet etching (aluminum etching solution, HPO4/C2H5OH/HNO3/H2O =
16:1:1:3) to fabricate the metamaterial structures. Fourthly, photoresist was washed with
acetone and then gently removed from the quartz layer for subsequent processing. Fifthly,
a metallic aluminum substrate layer (200 nm) was deposited on the other side of the PET
layer by vacuum evaporation. Note that we used a high-temperature adhesive tape to
attach the PET material with the metamaterial structure on a hollowed-out mask during
metal substrate layer deposition to protect the side with the metamaterial structure. Finally,
a 60 × 60 periodic array was fabricated, and the size of this absorber is 9 × 9 mm2. The
reflection spectra were characterized using terahertz time-domain spectroscopy. In the
actual measurements, the spot diameter of the light source is 6 mm, and the central area
of the array is illuminated. The number of resonators covered by the light source is large
enough to maintain stable absorption performance. The experimental results are consistent
with the simulation results. An optical microscopy image of a portion of the fabricated
absorber structure is shown in Figure 2b.
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3. Simulation Results and Discussion

The simulated reflectivity, transmittance, and absorptivity curves under normal in-
cidence are shown in Figure 3. The absorber clearly produces three absorption peaks at
0.337, 0.496, and 0.718 THz, with absorption rates of 99.5%, 86.4%, and 98.4%, respectively.
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Figure 3. Simulated absorption, reflection, and transmission spectra of the absorber.

We used spectral decomposition to analyze the three absorption peaks of the structure.
Figure 4 shows the absorption spectrum of different square ring resonators, which responds
in three frequency bands. Figure 4a–c present the absorption spectra of absorbers consisting
of the outer, middle, and inner ring, respectively. In these three cases, the absorber exhibits
99.8%, 97.8%, and 88.9% narrowband absorption at 0.335, 0.48, and 0.709 THz, respectively.
We also simulated the absorption spectrum of the entire model, as shown in Figure 4d.
The results show three absorption peaks at 0.337, 0.496, and 0.718 THz, where each peak
corresponds roughly to the peak of a single ring. There is some spectral mismatch between
superposition and individual contributions. The first absorption peak of the entire model
is basically consistent with the resonance frequency of the outer resonant ring absorber,
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but the second and third peaks are not completely match with the absorber consisting of
the middle and inner resonant rings. The reason is that the electric and magnetic resonance
intensity of the second and third peak changes due to the coupling of these electromagnetic
waves. In addition, the interaction between the neighboring triple-square-rings also has
some influence on the absorption peak. We can determine that the first, second, and third
absorption peaks are generated by the outer, middle, and inner ring, respectively.
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In order to evaluate the performance of our absorbers, we compared the results with
other structures [31,35–38], as depicted in Table 1. From the table, we can see that of the
three peaks, the absorption rate of the first and third peak is more than 98%. There are
also absorbers with higher peak absorption, but their structures are relatively complex,
polarization sensitive, and have not been experimentally confirmed. Compared with
other absorbers, our structure has the advantage of being polarization insensitive, easy to
fabricate, and having a thin dimension and a simple construction.
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Table 1. Comparison results of various three-band absorbers.

Ref. Structure
Unit
Size
(µm)

Waveband
(THz)

Peak
Numbers

The First
Peak

Absorption

The Second
Peak

Absorption

The Third
Peak

Absorption
Polarization Experiment

[31] Au resonators-
SiO2-Au 0.6 100–300 3 96.8% 99.6% 99.2% insensitive No

[35] Au resonators-
Si-Au 200 0.1–1 3 97.6% 96.5% 84.1% insensitive No

[36] Al resonators-
polyimide -Al 300 0.15–0.85 3 80% 81% 79% sensitive Yes

[37] Au resonators-
GaAs-Au 30 1–6 3 99.4% 99.6% 98.2% insensitive No

[38]

Au resonators-
dielectric- Au

resonators-
dielectric- Au

resonators-
dielectric-Au

60 0.8–3.7 3 Nearly 100% Nearly 100% Nearly 100% sensitive No

This
work

Al resonators
-PET-Al 150 0.1–1 3 99.5%, 86.4% 98.4% insensitive Yes

The distributions of the electric and magnetic fields are presented to illustrate the
mechanism of absorption in the three bands in more detail. Figure 5a–c show the dis-
tributions of the electric field in the x–y plane, and Figure 5d–f show the distributions
of the magnetic field in the x–y plane at the three resonance frequencies of 0.337, 0.496,
and 0.718 THz, respectively. As shown in Figure 5a,d, the electric and magnetic fields
are concentrated mainly on the outer ring and its edge, indicating strong electrical and
magnetic resonances [23,39]. The distribution of the electric and magnetic fields proves
that the first absorption peak is excited by the outer ring resonator. Figure 5b,e show that
at the second peak frequency, 0.496 THz, electric and magnetic fields are focused primarily
on the middle ring and its edge, indicating strong electrical and magnetic resonances.
At the resonance frequency of 0.718 THz, the electric and magnetic fields are distributed
mainly on the inner ring and its edge, as shown in Figure 5c,f, respectively, demonstrating
that the third absorption peak is excited by this resonator. In order to explain the absorp-
tion mechanism more clearly, the distributions of electric and magnetic fields in the case
of three combinations of configurations with two rings (middle + inner, outer + inner,
outer + middle) at the resonance frequency 0.337, 0.496, and 0.718 THz are investigated in
Figure 5g–l, respectively. As can be seen from Figure 5g,j, when there are only middle and
inner resonators, the electric and magnetic fields at the first resonance frequency decrease
significantly. However, both the middle and inner rings have the phenomenon of electric
and magnetic fields enhancement, but the effect is not obvious and does not cause strong
electric and magnetic resonances. The phenomena indicates that the first peak is mainly the
outermost excitation. The mechanism of the second and third resonant peaks is the same
the first peak as shown in Figure 5h,k,i,l. The above analysis verifies that the electric and
magnetic resonances of the three concentric square rings produce three-band absorption.

We also explored the effects of various parameters on the absorption characteristics.
First, we adjusted the thickness of the PET layer while keeping other parameters unchanged.
Figure 6a shows the simulated absorption spectra for four different thicknesses values
of PET layer. As lossless dielectric, the PET layer is related to the coupling between the
bottom aluminum layer and the aluminum rings. As the thickness h increases from 10
to 19 µm, the intensity of the first and third absorption peaks decreases, whereas that
of the second absorption peak first increases and then remains constant. The change of
electric and magnetic resonance intensity leads to the change of the second absorption peak
amplitude. When the impedance of the absorber matches the impedance of the free space,
the absorption will reach to 100% [40]. The increased thickness h of PET enhanced the
impedance mismatch of the first and the third peak between the absorber and free space,
resulting in different peak shift [40]. Next, we examined the effect of the width (2, 4, 6, 8,
and 10 µm) of the metallic resonator on the absorption. Figure 6b clearly shows that when
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the width of the concentric square ring resonator is decreased from 10 to 2 µm, the three
absorption peaks red-shifted, and the absorption tends to decrease. The decrease in the
area of the ring resonators weakens the electric and magnetic resonance, which results in a
decrease in the peak absorption.
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To evaluate the sensing performance of this triple-band narrowband absorber, the
dependence of the absorption spectrum on the refractive index (n) change of the surround-
ing is presented in Figure 7. The refraction index varies from 1 to 1.6 and increases at
intervals of 0.2. As shown in Figure 7a, when the n of the surrounding is changed from 1
to 1.6, the three peak frequencies all redshifted. For sensing, sensitivity (S) is a significant
factor to describe the sensing performance, and the sensitivity S is defined as: S = ∆f/∆n,
where ∆f and ∆n are the changes of the peak frequency and the refractive index, respec-
tively [36]. Figure 7b–d show the fitting results of the three peak’s frequency with the
corresponding n. The sensitivity of the three peaks to the external refractive index are 72,
103.5, 139.5 GHz/RIU, respectively. As shown in Table 2, we compare the sensitivity to
the refractive index of this proposed absorber with some reported results [12,36,41]. Our
values are slightly higher than some of them. The above results prove the feasibility of the
proposed absorber for sensing applications [18,36].

Table 2. Sensitivity comparison results of various THz absorbers.

Ref. Waveband (THz) S(GHz/RIU)/Peak 1 S(GHz/RIU)/Peak 2 S(GHz/RIU)/Peak 3

[12] 0.5–3 1150 3050 -
[36] 0.15–0.85 54.18 119.2 139.2
[41] 0.5–4.5 83 100 125

This work 0.1–1 72 103.5 139.5

The polarization performance of the designed structure under TE and TM polarization
is shown in Figure 8a,b, respectively. The simulated results clearly present that the intensity
of the three absorption peaks is independent of the polarization angle ϕ under normal
incidence. The reason is the perfect symmetry of the structure. In fact, the light beam
is oblique incident to the device in most cases, so it is of great significance to design an
absorber with the performance of angle insensitive. As shown in Figure 8c,d, absorption
maps with incident angles θ varying from 0 to 70◦ for TE and TM polarization are presented.
When the incident angle θ increases from 0 to 60◦, the first absorption peak maintains
80% absorption, and the third absorption peak exhibits >80% absorption in Figure 8c. For
TM polarization, when the incident angle is increased to 70◦, the absorption efficiency
of the three peaks is maintained. For TE polarization, the peak absorption is gradually
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reduced with the increase of incident angle. The reason is that the direction of the electric
field varies with the incident angle, which leads to the decrease of the electric resonance
intensity [23,39]. However, there is no change in direction of the electric field in TM
polarization, under which the resonator maintains high absorptivity [23,39] for incident
angles up to 70◦, as shown in Figure 8d. The results in Figure 8c,d show that when the
incident angle exceeds 10◦, two additional weak absorption peaks are observed in TE and
TM polarization. The extra resonance peak is caused by the higher resonance mode, which
has been confirmed in experiments [4,42,43]. The higher resonance mode is generated by
resonance within the dielectric and occurs at shorter wavelengths with a slightly narrower
absorption peak at oblique incident [4,43].
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4. Experiment and Results

In this study, we manufactured four types of absorber structures: resonators con-
sisting of an outer, middle, or inner square ring or three concentric square rings. In our
measurement, firstly, we reduce the humidity of the test environment to 6%; then we paste
the film of the absorber on the bracket of the measurement system; finally, the reflection
spectrum is calculated. Figure 9 shows the simulated and measured absorption spectra of
each absorber. Microscopic images of the first three absorber structures are shown next to
the spectra in Figure 9a–c. The fabricated outer ring absorber exhibits an absorption peak
at approximately 0.385 THz, as shown in Figure 9a, with 66.4% absorption. The measured
spectrum for the middle ring resonator in Figure 9b shows 74.7% absorption at 0.531 THz,
which is slightly different from the simulation results. As shown in Figure 9c, the inner
ring absorber exhibits 88.6% absorption at 0.796 THz, which exceeds the simulated peak
absorption of 69.1%. Although there are minor differences in amplitude and absorption
bandwidth (which can probably be attributed to imperfections, aluminum oxidation, and
measurement errors), the measured spectra is basically consistent with the trends predicted
by numerical simulations. The slight frequency difference between the experiment and
the simulation should be attributed to the size error and the round corners of the square
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ring resonators obtained in the manufacturing process. The simulated peak frequencies of
the entire absorber structure are 0.337, 0.496, and 0.718 THz, as shown in Figure 9d. The
measurements show three absorption peaks at 0.366, 0.512, and 0.751 THz, which is in
reasonable agreement with the simulation results. In addition, as the PET substrate is very
soft owing to its thickness (approximately 13 µm), there is some undesired deformation
in the fabricated samples, and the surface flatness of the structure also has some effect on
the absorption. Because of the existing experimental conditions, the spectral quality is not
ideal. We are trying to improve the signal-to-noise ratio of the measurement system in
the aspects of increasing the signal collection time and restraining noise to improve the
spectral quality.
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5. Conclusions

In conclusion, we designed and manufactured a triple-band terahertz metamaterial
absorber consisting of three concentric square ring metallic resonators on top of a PET
layer and a metallic substrate. Simulation results showed that the resonators exhibit three
absorption peaks of 99.5%, 86.4%, and 98.4% at 0.337, 0.496, and 0.718 THz, respectively.
The experimental results verified the reliability of the simulation results. The electric and
magnetic field distributions at the three resonance frequencies were explored to examine the
peak absorption. This proposed absorber provides the feasibility for sensing applications.
The absorber can maintain 80% peak absorptivity at incident angles up to 60◦ for TE
polarization and >80% peak absorptivity for incident angles up to 70◦ for TM polarization.
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The advantages of our absorber include a thin size, polarization independence, multiband
absorption, and incident angle insensitivity. The use of PET raw material can provide a
reference for the future production of flexible absorbers. This study supports applications
in terahertz sensing, imaging, plasma-enhanced photoelectric devices, and other areas.
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