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Vaults are ubiquitous ribonucleoprotein complexes

involved in a diversity of cellular processes, including multi-

drug resistance, transport mechanisms and signal transmis-

sion. The vault particle shows a barrel-shaped structure

organized in two identical moieties, each consisting of 39

copies of the major vault protein MVP. Earlier data indicated

that vault halves can dissociate at acidic pH. The crystal

structure of the vault particle solved at 8 Å resolution,

together with the 2.1-Å structure of the seven N-terminal

domains (R1–R7) of MVP, reveal the interactions governing

vault association and provide an explanation for a reversible

dissociation induced by low pH. The structural comparison

with the recently published 3.5 Å model shows major dis-

crepancies, both in the main chain tracing and in the side

chain assignment of the two terminal domains R1 and R2.
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Introduction

The vault complex, with a mass of 13 MDa and overall

dimensions of 40� 40�70 nm, is the largest ribonucleopro-

tein particle found in eukaryotes (Kedersha et al, 1990;

Hamill and Suprenant, 1997; Herrmann et al, 1997). In

mammals, vaults contain three proteins: the 100-kDa

major vault protein MVP (Kedersha and Rome, 1986), the

193-kDa vault poly(ADP-ribosyl)ating polymerase VPARP

(Kickhoefer et al, 1999a) and the 240-kDa telomerase-

associated protein TEP1 (Kickhoefer et al, 1999b).

Additionally, at least one small and untranslated RNA is

found as a constitutive component (Kickhoefer et al, 1993).

Approximately 75% of the vault particle mass is due to MVP

(Kedersha et al, 1991). Vault-like particles (VLPs), similar to

purified endogenous vaults, are observed when rat MVP is

expressed in insect cells, indicating that MVP is sufficient to

direct the formation of VLPs (Stephen et al, 2001). Earlier

sequence analysis of the highly conserved MVP protein

indicated the presence of seven 50-residue repeats at its

N-terminus, whereas a two-stranded coiled coil was predicted

to be present at the C-terminal half of the protein (van Zon

et al, 2002).

Despite their diverse origin, vaults are uniform in size and

morphology when imaged by electron microscopy presenting

a barrel-like structure with an invaginated waist and two

protruding caps (Kong et al, 1999). The N-terminal region of

MVP forms the particle waist and accounts for the non-

covalent interface at the vault midsection (Mikyas et al,

2004), whereas the C-terminus builds the cap as well as the

cap/barrel junction.

The fact that the murine MVP was found to be orthologous

to the earlier described human lung resistance-related pro-

tein, known to be overexpressed in multiple chemotherapy

resistance models immediately associated vaults with intrin-

sic drug resistance (Scheffer et al, 1995). This particle has

also been implicated in the regulation of several cellular

processes including transport mechanisms, signal transmis-

sion and immune responses (Berger et al, 2009). An increas-

ing number of proteins have been described as being bound

and transported by MVP. Yu et al (2002) showed that MVP

binds through N-terminal repeats R3 and R4 to the C2 domain

of the tumour-suppressor phosphatase PTEN in a Ca2þ -

dependent manner. MVP has also been proposed to act as a

scaffold for the epidermal growth factor-induced MAPK path-

way (Kolli et al, 2004), and interactions have also been

described with the estrogen receptor (Abbondanza et al,

1998). Another function for vaults was proposed by

Herlevsen et al (2007) that found that MVP knockdown

disrupted the lysosomal compartment. Interestingly, an

independent set of experiments demonstrated vault dissocia-

tion at low pH (Goldsmith et al, 2007; Esfandiary et al,

2008). The former authors proposed that the acidic nature

of the lysosomes may serve as an excellent microenviroment

with which to trigger vault dissociation. Vault lability

was also observed by Poderycki et al (2006) that managed

to incorporate vault-associated proteins into preformed
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MVP-only recombinant vaults proving that they are not rigid,

impenetrable boxes, but more a fluctuating dynamic structure

presenting substantial flexibility. Their capsular structure and

the occasional occurrence of a mass in the inner hollow

cavity (Kong et al, 1999) led to the hypothesis that they

might represent transport vehicles. However, both the cellu-

lar signals responsible for vault opening and the nature of this

cargo have still to be determined.

Very recently, the structure of the rat vault at 3.5 Å resolu-

tion has been published (Tanaka et al, 2009). It shows that

the vault shell is organized in two identical moieties, each

consisting of 39 copies of MVP. The MVP monomers are

folded into 12 distinct domains: nine repeat domains, a

shoulder domain, a cap-helix and a cap ring. Here, we report

the high resolution structures of a recombinant MVP

fragment, containing the seven N-terminal domain repeats

(R1–R7), in three different crystal forms and of the intact

vaults from rat liver determined at 8 Å resolution.

The comparison between the structures of R1–R7 and the

equivalent region in the reported model (Tanaka et al, 2009)

shows fundamental discrepancies in the tracing of domains

R1 and R2. The discrepancies are most probably due to

difficulties in model building, using a 3.5-Å map of

the whole vault. The quality of the R1–R7 data allows

unequivocal tracing of domains R1 and R2 that form

the rims between the two vault halves. The positioning of

the 2.1-Å structure of R1–R7 into the 8-Å map of the entire

vault reveals the interactions stabilizing vault association

and suggests a pH-dependent mechanism for the reversible

disassembly of the particle.

Results and discussion

Structure of the MVP N-terminal fragment R1–R7

The N-terminal fragment of MVP (amino acid residues from

Met1 to Asp383) containing the first seven domain repeats R1–

R7 was crystallized in three different crystal forms: triclinic P1,

diffracting to 2.1 Å resolution and two monoclinic crystal

forms, P21A (3.0 Å) and P21B (2.5 Å) (Table I). The structure

was determined by multiwavelength anomalous dispersion

(MAD) of seleniomethionated protein from the monoclinic

P21B crystals. The P1 and P21A structures were solved by

molecular replacement, using the coordinates of the P21B

crystals as a starting model. The seven MVP repeats share a

similar fold, each consisting of five antiparallel b strands

connected by loops (Figure 1). The main structural differences

between domain repeats concentrate in the size and conforma-

tion of the loops, connecting strands. The loop between strands

b2 and b3 shows the highest variability and appears partially

disordered in repeat R7 in all crystal forms analysed. The

central repeats R3, R4 and R5 possess an additional b-hairpin

inserted in the protruding loop b2–b3 (Figure 1A).

Sequence analyses in earlier work (van Zon et al, 2002)

predicted two possible EF hand domains in repeats R3 and R4

with the putative calcium-binding loop located at the b2–b3

hairpin mentioned above (positions 130–146 of R3 and

Table I R1–R7 data collection, phasing and refinement statistics

Data collection P1 P21 Nat A P21 Nat B P21 Pk P21 Rm

Wavelength (Å) 0.979 0.979 0.979 0.979 0.976
Resolution (Å) 30–2.1

(2.2–2.1)
50–3.

(3.1–3.0)
50–2.5

(2.6–2.5)
42–2.4

(2.5–2.4)
42–2.8

(2.9–2.8)
Space group P1 P21 P21

Unit cell (Å) a¼ 29.4
b¼ 50.8
c¼ 76.8
a¼ 104.3
b¼ 92.4
g¼ 99.8

a¼ 58.6
b¼ 59.7
c¼ 68.3
b¼ 95.5

a¼ 36.5
b¼ 98.7
c¼ 140.8
b¼ 97.2

a¼ 36.5
b¼ 98.7
c¼ 140.8
b¼ 97.2

a¼ 36.5
b¼ 98.7
c¼ 140.8
b¼ 97.2

Total data 26128 38 501 96 598 84 955 59 212
Unique data 18 701 9260 34 051 28 695 24 204
Mean (oI/s4) 14.3 (2.6) 6.5 (1.6) 10.1 (2.0) 10.3 (1.1) 5.2 (1.4)
Rmerge 3.1 (12.9) 11.8 (22.6) 7.1 (37.2) 4.9 (26.8) 8.8 (38.1)
Completeness (%) 99.9 (72.0) 96.6 (95.5) 96.9 (81.8) 89.8 (73.6) 99.2 (99.2)
Phasing power 0.806 0.308/0.348

0.607/–
FOM acentric/centric 0.249/0.155 0.249/0.155
Rcullis iso/ano acentric/centric �/�

0.879/�
0.746/0.608

0.920/�
Refinement statistics
Rwork (%) 23.8 25.7 23.1
Rfree (%) 27.0 28.7 26.9
Number of residues
Protein 363 371 751
Solvent 59 45
RMSD
Bond lengths (Å) 0.006 0.005 0.005
Bond Angles (deg) 0.957 0.77 0.91
Average temperature factors (Å) 29.3 45.3 44.4
Model quality (Ramachandran plot)
Residues in most favoured regions (%) 95 93.5 95
Residues in additional allowed regions (%) 5 6.5 5

Values in parenthesis are for the highest resolution shell.
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181–197 of R4; Supplementary Figure 1A and B). Further

studies showed that MVP interactions with other proteins

such as PTEN were mediated through the proposed EF hands

and modulated by Ca2þ (Yu et al, 2002). The structures

determined here, with all b-conformation, do not show EF

hand domains, nor calcium-binding cavities. Moreover, no

Ca2þ or other ions were found in any of the structures

determined. These putative calcium-binding regions located

within the b2–b3 hairpins contain several acidic residues

(E130, E131, E135, D141, E146 in b2–b3 of R3 and E181,

D184, D186, E189, E194 in b2–b3 of R4; Supplementary

Figure 1C) totally exposed to the solvent. This large electro-

negative surface could be able to bind, either Ca2þ or the

electropositive surface of the CBR3 loop of the PTEN C2

domain, or both in an alternative unknown mechanism.

The overall structure of R1–R7 is maintained in the three

crystal forms, showing only minor variations in the relative

positioning of the repeats (Figure 1B). The seven modules are

separated by a short linker and closely packed through a

hydrophobic interface, formed by residues of strands b2 and

b3 and loops b4–b5 of consecutive domains. The interdomain

linker is also involved in interactions (Supplementary Table I).

The contact surface is particularly extensive between

domains R1 and R2 where, in addition to the interactions

mentioned above, the long b2–b3 loop of R2 extends over R1

making both, hydrophobic and polar contacts with residues

of the b3 strand (Figure 2; Supplementary Table I). The seven

repeats are organized in an extended conformation, showing

a characteristic bend between repeats R2 and R3 (Figure 1).

The structure of R1–R7 provides the building block

for the central vault barrel

In the P1 crystals, the R1–R7 repeats are packed in a parallel

arrangement, generating a flat wall of an B18 Å thickness

(Figure 3) in good agreement with the dimensions estimated

by cryo EM (Kong et al, 1999; Mikyas et al, 2004). With the

exception of R7, all repeats participate in lateral packing

contacts that are mediated by polar and hydrophobic inter-

actions between 26 different residues that are located in loops

b1–b2, b3–b4 and in the interdomain linker (Figure 3).

Intact vaults, purified from rat liver were crystallized in

different crystal forms, basically identical to the ones de-

scribed by Querol-Audi et al (2005) and Kato et al (2008).

Two of them, the monoclinic P21 and C2, were analysed by

X-ray crystallography (Supplementary Table II). Data from

the P21 crystals were used to solve the structure of the whole

vault particle to 8 Å resolution by molecular replacement.

R1

A B C

R2

Figure 2 R1–R2 interdomain interactions. (A) R1–R2 contacts found in the R1–R7 structure determined in this work. The contacting
residues at the interface are shown as sticks and labelled. Strands b2 and b3 of domain R1 form polar and hydrophobic interactions with the R2
residues located in the b2–b3 loop, strand b4 and in the interdomain linker. (B) View of the a-carbon trace of the recombinant R1–R7
(orange) with every five residues numbered. The structure of the equivalent region in the 3.5-Å structure of the complete vault (Tanaka et al,
2009) is superimposed (green). The residue numbers are written when structural correspondence was observed. (C) R1–R2 contacts found in
the 3.5-Å structure.

R1

A B C

R2

R3

R4

R5

R6

R7

Figure 1 The structure of the N-terminal fragment of MVP.
(A) Ribbon representation of domain repeats R1–R7 showing the
SSEs explicitly labelled. (B) Structural superimposition of the R1–R7
structures in the three different space groups P1 (orange), P21A
(yellow) and P21B (light green). The Ca root mean square devia-
tions are 0.42 and 0.45 Å for the superimposition of 220 residues,
corresponding to the central R3–R6 domains, between the P1, P21A
and P21B structures, respectively. (C) Structural superimposition of
the R1–R7 fragments in the isolated R1–R7 structure (orange) and in
the 3.5-Å structure of the complete vault (Tanaka et al, 2009)
(green). Ca root mean square deviation is 0.9 Å for the super-
imposition of 150 Ca atoms, corresponding to the central R4–R6
domains.
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Initial models were generated as rings of the R1–R7 structure

with different rotational symmetries (see Materials and

methods). The interactions observed in the triclinic crystal

packing served as a restraint for building the central barrel of

the vault. The bending between domains R2 and R3 could

explain the invagination in the central part of the vault

particle, with the R1 module located in this central part, as

suggested earlier by cryo-EM and mutational studies (Mikyas

et al, 2004). The positioning of the R1–R7 rings in both the C2

and P21 vault crystals indicate that only models with rota-

tional symmetry of 39 allow intermolecular interactions

between neighbour vault particles without introducing steric

problems (Supplementary Figure 2), in complete agreement

with the D39 symmetry suggested by Kato et al (2008).

Density averaging and solvent flattening with DM (CCP4,

1994) were applied for the P21 crystals, using the independent

positioning of the two R1–R7 rings as starting phases and

rotational symmetry 39 (see Materials and methods). The

final averaged maps at 8 Å resolution (Supplementary Figure

3) showed unambiguous density, fitting the complete MVP

protein. In particular, two additional b domains (R8 and R9)

and the long helical domain, for which no information was

included in the initial model were clearly defined

(Supplementary Figure 3). The small changes required in

the orientation of repeats R1, R2 and R7, departing from the

R1–R7 model used, were also visible in the averaged maps.

Furthermore, to automatically evaluate the quality of the

8-Å averaged density of the vault particle, the secondary

structural elements (SSEs) were quantitatively detected and

annotated with the program SSEHunter (Baker et al, 2007),

rendering the same overall structure to that reported by

Tanaka et al (2009) (Supplementary Figure 4).

Structural comparisons of the seven N-terminal

domains in the R1–R7 structure and in the 3.5-Å particle

Overall comparisons between the R1–R7 structures deter-

mined here with the same region in the intact vault particle

(Tanaka et al, 2009) showed a good superimposition of the

central domains, from R3 to R6, but different changes in the

relative positioning of domains R1, R2 and to a lesser extent

R7, affecting the relative curvature of the fragment

(Figure 1C). Structural superimpositions of the individualized

domains revealed close similarities in repeats R3 to R7, as

indicated by the root mean square deviations ranging from

0.6 to 1.3 Å, for the superimposition of all the residues within

the repeats. However, critical differences were observed

when repeats R1 and R2 from the R1–R7 structures were

compared with those reported by Tanaka et al (Figure 2B).

Repeat R1 shows well-defined SSEs (strands R1b1–R1b5;

Figure 1A) in all three crystal forms determined. In the 3.5-

Å vault structure, most of the SSEs of R1 are lost and the main

chain is out of register from residue Ile10 to Gln88. The

Figure 3 R1–R7 packing contacts in the P1 crystal. Three R1–R7 fragments are represented in orange, the reference molecule and in yellow, the
neighbour molecules in the crystal. The different boxes show the details of the interactions established between the different domains. Residues
directly participating in hydrogen bonds or in hydrophobic contacts are shown as sticks and are explicitly labelled. The largest network of
interactions involves R1 and R2 domains. R7 does not participate in lateral packing contacts.
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largest discrepancies concentrate in the b2–b3 loops of both,

R1 and R2 domains (Figure 2B) and affect most of the R1–R2

and R1–R1 interdomain interactions, including those respon-

sible for the contacts between the two vault halves (Figures 2

and 4). Real space map correlation, calculated with SFcheck

(CCP4, 1994) for R1R2 domains in the P1 structure, show an

overall value of 93.1% with minor deviations (Supple-

mentary Figure 5). The overall density correlation for the

same region in the 3.5-Å vault structure is 88.5% with the

largest deviations concentrated in the b2–b3 loop of R2

A

B

C

+H+

Figure 4 Interdomain interactions at the interface between vault halves. (A) Ribbon diagram of the R1–R1 contacts at the half vault interface.
The reference R1 domain (orange) contacts two consecutive R1 molecules (yellow) through the molecular two-fold axis. Interacting residues
are shown in sticks and labelled. (B) Thirty-nine-fold averaged density of the vault particle at 8 Å resolution and inner view of the molecular
surface of the central vault barrel. The electrostatic potential is represented in blue and red for the positive and negative charges, respectively.
Nine R1–R7 protomers per half vault subunit are shown. The left side inset shows a close-up of the contacting residues at the interface between
the two vault halves. The right side inset shows a close-up of the contacting interfaces between MVP protomers. Two consecutive R1–R7
molecules are shown. The amino acids involved in these lateral contacts are the same as that are shown in Figure 3. The electrostatic potential
was calculated and rendered with PyMOL (DeLano, 2002), with colouring levels ranging from �66.7 to 66.7. (C) Schematic drawing, showing
the mechanism of vault opening. At low pH, the acidic residues at the vault interface would become neutral, leaving a highly electropositive
charge and inducing the disassembly of the vault particle by charge repulsion. At higher pH, the aspartate and glutamate residues, would
present their acidic state establishing attractive electrostatic interactions between the two vault halves. The half vault moiety at the right side of
the figure represents the flower-like structures described in Kedersha et al (1991).
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(Supplementary Figure 5). The loops b2–b3 of both, R1 and

R2 domains show well-defined electron density in all

R1–R7 structures determined (Supplementary Figure 6).

In the 3.5-Å structure of the vault particle, the N-terminal

residues (from Met1 to Glu4) were organized in an inter-

molecular antiparallel b sheet around the two-fold axis. An

ionic interaction was also observed at the interface (Tanaka

et al, 2009). The R1–R7 structures reported here show that

the most N-terminal residues of MVP are highly flexible. In

P21A and P21B crystals, the seven first residues point out of

the domain core and participate in crystal packing interac-

tions. In the P1 crystal form, the first four amino acids are

disordered and from residue Glu5 onward the region runs

parallel to the R1 core, following similar trajectory to that

found in the equivalent domain of the entire particle

(Figure 1).

Hypothetical mechanism for vault opening

The correct positioning of the 2.1-Å R1–R7 structure into the

8-Å map of the complete particle (this work) as well as in the

3.5-Å averaged map, calculated from the deposited structure

factors (PDB id; 2ZV4) of the Tanaka structure (Tanaka et al,

2009), reveals important charge complementarity at the inter-

face between the two vault halves (Figure 4). R1–R1 interac-

tions involve two R1 subunits in each half vault moiety

(Figure 4A and B). Side chain of residue Asp39 forms a salt

bridge with Arg42 and contacts the main chain N atoms of

Ala21 and Gln22. The charged amino acids Glu4, Glu5 and

Arg37 and a cluster of hydrophobic residues (Ala6, Ile7 and

Ile36), interacting through the two-fold axis of the particle,

also determine the contact surface (Figure 4A).

Recent data obtained by combining fluorescence spectro-

scopy, multiangle laser light scattering and electron micro-

scopy, provided evidences that vaults dissociate into halves at

low pH (Goldsmith et al, 2007). The interactions determined

in this work let us propose a reversible mechanism of

dissociation of the vault particle induced by a pH change

(Figure 4C). At low pH, the 234 acidic residues at the vault

interface would become neutral (Grimsley et al, 2009), leav-

ing a highly electropositive charge and inducing the disas-

sembly of the vault particle by charge repulsion (Figure 4). At

higher pH, the aspartate and glutamate residues would

recover their acidic state and re-establish the electrostatic

interactions, allowing the re-association between the two

vault halves. Subsequently, the hydrophobic interactions

would contribute to stabilize the locked conformation of

the particle.

Among all the acidic residues located at the interface

between the two vault halves, Asp39 seems to be directly

involved in the opening (Figure 4). Crystallization of the

R1–R7 fragment occurred at relatively low pH (pH¼ 5.6)

probably leading to protonation of some acidic side chains

in particular environments.

Examination of the packing interactions shows that, for all

the R1–R7 structures determined, Asp39 is in fact protonated,

in close contact with the peptide oxygen of Gly354 from the

R7 repeat of a neighbour R1–R7 subunit (Supplementary

Figure 7).

Early experiments, using freeze-etch electron microscopy,

in polylysine-coated mica supports, showed that vaults can

change to an opened state appearing as flower-like structures,

which were usually seen in pairs (Kedersha et al, 1991). On

close examination, each flower appeared to be composed of

eight rectangular petals surrounding a central ring and with

the corner of each petal connected to the ring by a short hook

(Kedersha et al, 1991). After the separation of the two vault

halves, the external acidic surfaces observed in the R1–R7

region (Supplementary Figure 1C), would try to maximize

their electrostatic interactions with the polylysine-coated

support. About eight petals, with four or five MVP protomers

each, seem to provide suited flattened interacting surfaces,

while still retaining a high percentage of the lateral interac-

tions among MVP protomers (Figure 4C). The vault cap

regions, stabilized by extensive hydrophobic interactions

(Tanaka et al, 2009), are expected to retain native-like

conformations, which might correspond to the central ring

of the flowers.

Understanding the mechanisms governing vault opening

constitutes an important step towards unravelling vault func-

tions. Moreover, exploiting recombinant vaults as nanocap-

sules for the delivery of biomolecules (Esfandiary et al, 2008)

is a promising therapeutic application that would benefit

from such understanding.

Materials and methods

Production and purification of the N-terminal fragment
of MVP
The coding sequence for the N-terminus region of MVP, spanning
residues 1–383, was amplified by PCR using the commercially
available Mus Musculus MVP cDNA (RIKEN full-length enriched
library, clone: E430002N03) as a template. This fragment was
cloned into the pGemT easy vector system (Promega). pGex_R1–R7
plasmid was generated by subcloning this insert into the pGex-6P1
vector (Amersham Biosciences), an expression vector that incorpo-
rates an amino-terminal GST-tag to the expressed protein. The
resulting fusion protein contains a Prescission protease (Promega)
specific cleavage site. BL21 DE3 Escherichia coli cells (Stratagene)
were transformed with pGex_R1–R7 and grown at 310K in LB
medium supplemented with 100mM ampycillin until an OD600 of
0.4. The expression of R1–R7 fusion protein was induced by adding
0.5 mM IPTG to the medium. After 24 h at 293K cells were harvested
by centrifugation and resuspended in PBS supplemented with
complete EDTA-free protease inhibitor cocktail (Roche) and lysed by
sonication. The soluble fraction was applied to a GST affinity
column following manufacturer’s recommendations. Immobilized
R1–R7 fusion protein was subjected to an overnight cleavage with
Prescission protease (GE Healthcare). After elution, R1–R7 protein
was purified to homogeneity by two additional chromatographic
steps through MonoQ and Superdex200 columns (GE Healthcare).
Selenometionyl R1–R7 was expressed in E. coli BL21 DE3 in
minimal media supplemented with Selenomethionine and purified
in the same way.

Crystallization, data collection and processing
R1–R7 recombinant proteins, both the native form and the
seleniomethionine (SeMet) derivative, were crystallized using the
hanging drop vapour diffusion method. Typically, 1ml of protein
solution (4 mg/ml) in 40 mM Tris–HCl, pH 8.5, 0.2 M NaCl was
mixed with an equal volume of reservoir solution containing
18–20% PEG 5K, 0.1 M sodium citrate, pH 5.6. Triclinic crystals,
with cell parameters of a¼ 29.39 Å, b¼ 50.79 Å, c¼ 76.85 Å,
a¼ 104.321, b¼ 92.441 and g¼ 99.751, and containing one R1–
R7 molecule per asymmetric unit (a.u) were obtained for both
native and SeMet derivative when plates were incubated at 201C.
However, two different monoclinic crystals belonging to space
group P21 were obtained using the same crystallization conditions
when plates were incubated at 41C: crystal form A (P21A;
a¼ 58.6 Å, b¼ 59.7 Å, c¼ 68.3 Å and b¼ 95.51; one molecule in
the a.u) and crystal form B (P21B; a¼ 36.5 Å, b¼ 98.8 Å, c¼ 140.6 Å
and b¼ 97.21; two molecules in the a.u.). X-ray data of native and
seleniomethionine-R17 crystals were collected using synchrotron
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radiation (beamlines ID23-EH1, ESRF, France and X06SA, SLS,
Switzerland).

Seven datasets were recorded at 100K from the R1–R7 crystals, in
the different space groups (Table I). Diffraction images were
processed using MOSFLM and SCALA (CCP4, 1994). Anisotropic
scaling was then applied to the merged datasets using Xprep
(Sheldrick, 2008) to compensate both the anisotropy and scaling
problems derived from radiation damage and the low symmetry
space group. The anisotropically scaled data were used throughout
(Supplementary Figure 8).

R1–R7 structure solution and refinement
The structure was solved using the MAD technique, combining one
MAD and two SAD data from three isomorphous SeMet derivatives,
using the crystal form P21B (Table I). This data yielded phasing
information to 2.7 Å using program SHARP (Bricogne et al, 2003).
Phase improvement with both RESOLVE (Terwilliger, 2001) and
ARP/WARP (CCP4, 1994) allowed an automatic tracing of B400
Ala residues out of the 766 total amino acids. Initial maps were
improved and extended to 2.5 Å with program DM (CCP4, 1994),
using solvent flattening and non-crystallographic symmetry re-
straints for the two molecules found in the a.u. The appropriate
masks were calculated by combining the initial 400 Ala residues
model with a partial molecular replacement solution, obtained with
the program MOLREP (CCP4, 1994), using the earlier reported NMR
structure of repeat 4 (Kozlov et al, 2006). This procedure resulted in
an electron density map of sufficient quality to position accurately
mostly the backbone of the two independent R1–R7 molecules in
the a.u. Some particular features in the map, especially the presence
of bulky densities that would correspond to highly conserved Trp
residues allowed the sequence assignment of about 20% of the
residues. Several cycles of manual rebuilding using COOT (Emsley
and Cowtan, 2004) and refinement using both CNS (Brunger et al,
1998) and REFMAC5 (Murshudov et al, 1997) were performed until
model reached an Rfactor and Rfree below 30%. This model was
then used to solve the structure of the R1–R7 protein within the two
other crystal forms by molecular replacement using MOLREP.
Additional rounds of manual rebuilding and refinement produced
the present model for the three crystal forms. A summary of the
refinement statistics is given in Table I. Coordinates and structure
factors have been deposited at PDB with accession codes 3GNF,
3GF5 and 3GNG for the P1, P21A and P21B, respectively.

Crystallization and X-ray analysis of the vault particle
3D crystals of native vault particles purified from rat liver were
obtained as described earlier (Querol-Audi et al, 2005). Purified
vault particles were subjected to extensive crystallization trials and
a diversity of crystals were obtained, though only for two of them X-
ray diffraction data have been collected (Supplementary Table II).
The first crystals were monoclinic, space group C2, with unit cell
parameters a¼ 726.2 Å, b¼ 391.4 Å, c¼ 607.6 Å and b¼ 124.11 and
diffracted to a maximum of about 10 Å resolution. The second type
of crystals, that in a few cases diffracted well beyond 7 Å resolution,
were also monoclinic, space group P21, with unit cell parameters
a¼ 601.1 Å, b¼ 386.6 Å, c¼ 627.1 Å and b¼ 108.61. Data collection
was performed at 100K, using synchrotron radiation (beamlines
ID23-EH1, ESRF, France and X06SA, SLS, Switzerland). Crystals
were very sensitive to radiation, being stable to the X-ray for only
10–15 exposures (0.31 per exposure). Diffraction images were
processed and scaled using the programs MOSFLM and SCALA
(CCP4, 1994). Large number of crystals were analysed but most of
them resulted non-isomorphous. The P21 data, 50.1% complete,
were obtained from five crystals and the C2 data, with 48%
completeness, were obtained form four crystals (Supplementary
Table II). A detailed comparison of the crystal packing modes of
vaults in the two space groups is provided as Supplementary data.

Molecular replacement and density modification
Initial models corresponding to the R1–R7 region of the vaults were
generated as rings of the R1–R7 structure with different rotational
symmetries. Interactions between neighbour R1–R7 chains are
essentially identical in the ring and in the P1 crystal, except for the
small departures introduced by the curvature of the ring (Supple-
mentary Figure 1). In the modelled rings, the average radius of the
modules differs only for the R1 module, which allows the definition
of the internal face of the ring as the one with the R1 module having
the smallest radius. This would explain the invagination in the

central part of the vault, implying also that the R1 module is located
in the central part, in full agreement with what had been reported
by EM and mutational studies. When the R1–7 rings were placed in
both the C2 and P21 vault crystals, the models with a rotational
symmetry of 38 or smaller result in unfeasible, loose packings in
which no direct interactions can be established between neighbour
vault particles. In turn, models with rotational symmetries of 40 or
higher result in unacceptable steric clashes between neighbour
vaults in the crystal (Supplementary Figure 2). A rotational
symmetry of 39 allows interaction between neighbour vault
particles without introducing steric problems (Supplementary
Figure 2).

Density averaging and solvent flattening were applied, for the
P21 crystals, using the program DM. The averaging (and corre-
sponding solvent flattening) masks were initially defined as
cylindrical shells following the external profile of the vaults
reported from EM (Kong et al, 1999). Shrinkage factors for the
profile (with a final value of 0.95) were used to minimize the
overlaps between masks from neighbour vaults. The masks were
also limited by the middle planes of the straight line joining (and
perpendicular) to the longest axis of the close neighbour vaults,
similarly to what is often done in virus studies. The thickness of the
shells were initially set very large (even values of 4100 Å in the
central part of the vault were tested) to avoid any limiting
assumption. The solvent averaging masks were taken, in general,
as the complementary of the averaging masks, though buffer
regions were also tested.

Initial phases were either taken from models of continuous
density within the mask, by placing the R1–R7 rings in different
orientations or by combinations of both. Cycles of averaging and
phase extension, performed using for averaging only the rotational
symmetry, consistently resulted in a thin shell of continuous density
with details differing depending on the initial phasing and in the
phase extension protocol used. Therefore, a new averaging mask
was then defined adjusted to the thin shell of density. The volume
inside the averaging mask represented a density of 20%, close to the
one estimated using the Matthew coefficient for 2� 39 MVP
subunits.

With these new averaging and solvent flattening masks, cycles of
phase extensions were preformed with the initial phases obtained
using only one R1–R7 ring whose orientation around and
positioning along the vault axis were systematically screened. To
reduce model bias, the no-combine mode in DM was used and
starting figures of merit were set to 0.3. The best result gave a final
electron density map in which the second R1–R7 ring was clearly
visible in the second half of the vault, even despite no model had
been introduced in that region. This density required only minor
changes in the available R1–R7 ring model with a rotational
symmetry of 39. Then, the process was repeated using the
positioning of only the second R1–R7 for initial phasing. The
corresponding electron density map showed again the density
corresponding to the R1–R7 ring in the first half of the vault, where
now no model had been introduced. Therefore, the two R1–R7 rings
have been well fitted in the vaults density derived without any
model bias. The process was then repeated using as starting phases
the two R1–R7 rings and either the 39 rotational symmetry or the
complete point group symmetry of the vault, 39 2, where the
position of the vault two-fold axis was determined from the
relationships between the chains in the two R1–R7 rings.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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