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Accurate molecular subtypes prediction of cancer patients is significant for
personalized cancer diagnosis and treatments. Large amount of multi-omics data
and the advancement of data-driven methods are expected to facilitate molecular
subtyping of cancer. Most existing machine learning–based methods usually classify
samples according to single omics data, fail to integrate multi-omics data to learn
comprehensive representations of the samples, and ignore that information transfer
and aggregation among samples can better represent them and ultimately help in
classification. We propose a novel framework named multi-omics graph convolutional
network (M-GCN) for molecular subtyping based on robust graph convolutional
networks integrating multi-omics data. We first apply the Hilbert–Schmidt
independence criterion least absolute shrinkage and selection operator (HSIC
Lasso) to select the molecular subtype-related transcriptomic features and then
construct a sample–sample similarity graph with low noise by using these features.
Next, we take the selected gene expression, single nucleotide variants (SNV), and copy
number variation (CNV) data as input and learn the multi-view representations of
samples. On this basis, a robust variant of graph convolutional network (GCN) model is
finally developed to obtain samples’ new representations by aggregating their
subgraphs. Experimental results of breast and stomach cancer demonstrate that
the classification performance of M-GCN is superior to other existing methods.
Moreover, the identified subtype-specific biomarkers are highly consistent with
current clinical understanding and promising to assist accurate diagnosis and
targeted drug development.
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INTRODUCTION

Cancer is a complex and highly individualized disease with diverse subtypes, andmolecular heterogeneity
exists among different subtypes of the same cancer type (González-García et al., 2002; Shipitsin et al.,
2007). As cancer patients of distinct molecular subtypes usually respond differently to same treatment, so
accurate subtype classification can not only assist precision diagnosis but also facilitate effective targeted
treatment (Toss and Cristofanilli, 2015; Lee Y.-M. et al., 2020).
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High-throughput sequencing technologies generate a large
amount of multi-omics data (Subramanian et al., 2020), which
promotes the proposal of many computational methods to
identify the molecular subtypes of cancer. Some methods focus
on similarity network fusion (SNF) to cluster cancer subtypes.
Wang et al. (2014) used SNF to combine similarity networks
obtained from mRNA expression, DNA methylation, and
microRNA expression data into one network. Chen et al.
(2021) proposed a similarity fusion method to fuse the high-
order proximity of different omics data and preserve cluster
information of multiple graphs. Xu et al. (2019) developed a
method named high-order path elucidated similarity (HOPES),
which integrated the similarity of different data by high-order
connected paths. These methods apply unsupervised spectral
clustering to identify cancer subtypes without using the
additional information of sample labels. With the
accumulation of labeled data, some supervised machine
learning methods are utilized to learn non-linear associations
of samples’ features and subtype labels (Shieh et al., 2004; Wu
et al., 2017). Guan et al. (2012) applied splitting random forest to
discover a highly predictive gene set for sample classification. Gao
et al. (2019) utilized transcriptomic data and leveraged
feedforward neural networks to build molecular subtyping
classifiers. Chen et al. (2020) proposed a DeepType
framework, which performed joint supervised classification,
unsupervised clustering, and dimensionality reduction to learn
cancer-relevant data representation with the cluster structure.
These methods treat each sample as an independent individual
and do not take full advantage of the similarity and mutual
representation ability between samples.

With the strong representation ability of graph-structured
data, graph neural networks (GNNs) have achieved great
success and are gradually used in a node classification task. It
provides one way to obtain new representations of nodes by
combining the connectivity and features of its local
neighborhood. Recently, some GNN-based methods have been
proposed to predict molecular subtyping of cancer. Rhee et al.
developed a GCN-based model to explore the gene–gene
association and information passing for cancer subtyping
(Rhee et al., 2017). Lee et al. developed a GCN model with
attention mechanisms to learn pathway-level representations of
cancer samples for their subtype classification (Lee et al., 2020a).
Although GNN are powerful, they are reportedly vulnerable
when the skeleton of the graph and nodes’ feature are mixed
with noise (Dai et al., 2018; Jin et al., 2020; Zhang and Zitnik,
2020), so a robust GNN model is necessary for accurately and
stably predicting cancer subtypes.

It is well known that abnormal behaviors of cancer cells are the
result of a series of gene mutations, gene copy number variation,
and gene transcription level changes in key regulatory pathways
(Greenman et al., 2007; Bradner et al., 2017; Kuijjer et al., 2018;
Memon et al., 2021). A single type of omics data can only capture
part of the biological complexity, whereas integrating multiple
types of omics data can provide a more holistic view to better
understand the interrelationships of the involved biomolecules
and their functions and demonstrably improve the prediction
accuracy of patients’ clinical outcome (Huang et al., 2019; Singh

et al., 2019). To learn integrative representations of different
omics data, Li et al. developed a graph autoencoder model by
utilizing the prior knowledge graph and integrating mRNA
expression and CNV data (Li et al., 2021). Lin et al. used
multi-omics data and applied deep neural networks to
improve the classification accuracy of breast cancer sample
(Lin et al., 2020).

In this study, we propose a novel and general framework
M-GCN (Figure 1) for molecular subtyping of cancer. It
integrates RNA-seq, SNV, and CNV data and learns the
node representation based on a robust GCN model. In
order to reduce dimension and eliminate noise of
transcriptomic data, we first apply HSIC Lasso to select the
molecular subtype-related transcriptomic features, which are
further used for constructing sample–sample similarity graph,
and utilize statistics analysis to find genes with high mutational
rates and significant copy number changes. The clean data and
purified graph structures are prerequisite for building a robust
GNNmodel. Then we use different non-linear transformations
to learn multi-view representations of these three types of data.
Furthermore, M-GCN strengthens connections between the
new generated features and the graph and assigns weight to
edges by layer-wise graph memory based on GNNGUARD
(Zhang and Zitnik, 2020). GNNGUARD is originally
developed to purify the graph structure and nodes’ features
to eliminate the effect of possible noise edge message passing of
GCN. Next, a robust GCN model is developed to get samples’
new representations by aggregating their subgraphs for
predicting their subtype category. When applying M-GCN
to study molecular subtyping of breast cancer and stomach
cancer, the experiment results show that the subtype
classification performance of M-GCN outperforms other
state-of-the-art methods. In addition, we further identify a
few specific biomarkers for each molecular subtype, which can
potentially contribute to disease diagnosis.

MATERIALS AND METHODS

Data Collection and Preprocessing
We collect gene expression, SNV and CNV data, and clinical
information of breast cancer (BRCA) and stomach
adenocarcinoma (STAD) patients from The Cancer Genome
Atlas (TCGA) database (Weinstein et al., 2013). As shown in
Table 1, there are 518 and 221 samples of BRCA and STAD
having all three types of omics data. Specifically, BRCA
includes molecular subtypes of estrogen receptor positive
(ER+), human epidermal growth factor receptor 2 positive
(HER2+), and triple-negative breast cancer (TNBC) (Vuong
et al., 2014), and STAD includes molecular subtypes of
chromosomal instability (CIN), Epstein–Barr virus (EBV),
microsatellite instability (MSI), and genomically stable (GS)
(Bass et al., 2014), respectively.

Genes whose expression values are lower than 10 and 3 are
considered as not expressed in BRCA and STAD and then
deleted, respectively. As RNA-seq data of these two cancer
types are obtained from different platforms in TCGA, we set

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8840282

Yin et al. M-GCN Model for Molecular Subtyping

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


different cutoffs according to their data distributions. Then,
fragments per kilobase of exon per million fragments mapped
(FPKM) values of gene expression are normalized with log2-
transformation. In each cancer type, a gene’s mutation frequency
is defined as the number of samples with this mutation divided by
the total number of samples. Genes with mutation frequency
greater than 0.03 are selected and their SNV data are used as SNV
features in BRCA. For STAD, mutation frequency threshold is set
as 0.1. Similarly, the genes having significant amplifications or
deletions rates across cancer samples are selected and their CNV
data are used as CNV features. Finally, the number of SNV
features and CNV features are 62 and 74 in BRCA and 166 and
169 in STAD, respectively. The details of the datasets are listed in
Table 1.

Feature Selection
To obtain molecular subtype-related transcriptome features
with low noise for constructing a purified sample–sample
similarity graph and effective message passing, we apply a

supervised non-linear feature selection method HSIC Lasso
(Yamada et al., 2014), which captures non-linear
dependency of molecular subtyping labels and genes’
expression level.

Let Xt � {xi, yi}ni�1 denote the supervised data with the n
samples. xi and yi are the gene expression vector and label of
i-th sample, respectively. Its optimization goal is as follows:

min
γεRd

1
2
‖ �L −∑d

l � 1
γl �K

(l)‖2Frob + λ ‖ γ‖1, s.t. γ1, γ2, . . . , γd ≥ 0, (1)

where ‖ γ ‖ is the Frobenius norm, �L � ΓLΓ is centered Gram
matrices, Γ � In − 1

n1n1
T
n is the centering matrix, In is the

n-dimensional identity matrix, 1n is the n-dimensional vector
that all the elements are ones, d is the number of features, γl is the
regression coefficient of the l-th feature, �K(l) � ΓK(l)Γ is the
centered Gram matrix, K(l)

i,j � K(x(l)
i , x(l)

j ) and Li,j � L(yi, yj)
are calculated by kernel functions K(x, x’) and L(y, y’), λ is the
regularization parameter, and γ � [γ1, . . . , γd ]T is a regression
coefficient vector.

FIGURE 1 | Flowchart of M-GCN. (A) Filtered SNV and CNV features and molecular subtype-related transcriptomic features selected by HSIC Lasso are used as
the input. Three type-specific non-linear transformation layers are used. The sample–sample similarity graph is constructed by molecular subtype-related transcriptomic
features. (B) Output of non-linear transformations and sample–sample similarity graph are used as the input of GCN; convolution process is used for message passing
and aggregation among samples; output of the final GCN layer is the prediction of samples’ subtype category.

TABLE 1 | Dataset attributes.

Cancer #Subtype #Samples of
each subtype

#CNV features #SNV features # Gene
expression features

BRCA ER+ 386 74 62 124
HER2+ 35
TNBC 97

STAD CIN 107 169 166 128
EBV 23
MSI 46
GS 45
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Sample—Sample Similarity Graph
Construction
Since samples with similar features are more likely to fall into the
same category, we first construct a sample–sample graph based
on similarity of each samples pair. From the perspective of the
whole biological system, compared with SNV and CNV, gene
expression is the most fundamental level at which the genotype
gives rise to the phenotype. So we only use transcriptomic data
and apply spearman’s correlation to calculate the similarity of
each two samples. We select sample pairs whose correlation
coefficient (ρ) are greater than the threshold r with p value
less than 0.05 and then generate adjacency matrix A ∈ Rn×n

Aij � { 1, ρij ≥ r, p≤ 0.05
0, others

, (2)

where 1 and 0 (Eq. 2) represent that there is and there is not an
edge between sample i and sample j, respectively.

In the generated undirected graphG � (V , E),V andE denote the
sample nodes and edges, respectively. There are n samples in the graph.
X = [Xm,Xc,Xe] are the nodes’ feature matrix, where [] is the concat
operation. Xm ∈ Rn×f1 , Xc ∈ Rn×f2 , and Xe ∈ Rn×f3 represent SNV
feature matrix, CNV feature matrix, and gene expression feature
matrix, respectively. The number of features in each data type is
f1, f2, and f3. The features of SNV and CNV are selected by data
preprocessing. Gene expression features are obtained by HSIC Lasso.

GCN Model Integrating Multi-Omics Data
for Sample Classification
Some noises could be introduced as there could be somemismatch
between the graph and the new concatenate features. According to
similarity between the new features, we introduce the idea of a
robust variant into theGCNmodel tomitigate the impact of noises.
Specifically, we apply GNNGUARD, which originally is a defense
method against adversarial attacks. It improves robustness of GCN
models by detecting fake edges of graph structure and removes or
reduces their weights in message passing of GCN. GNNGUARD is
implemented by neighbor importance estimation and layer-wise
graph memory. We use GNNGUARD here to strengthen
connections between the new features and the graph by
assigning weight to edges. In addition, our framework can be
more robust using dirty data with noises.

Multi-Omics Data Features Transformation
To improve samples’ feature representations, we adopt different
non-linear transformations to separately project gene expression
features, SNV features, and CNV features into their feature space,
and then concatenate them together. The projected latent feature
matrix H(0) is as follows:

H0 � [ σ(XmWm), σ(XcWc), σ(XeWe)], (3)
where σ is the ReLU activation function, Wm ∈ Rf1×f’

1 ,
Wc ∈ Rf2 ×f’

2 , and We ∈ Rf3×f’
3 represent the learnable non-

linear transformation matrix of SNV, CNV, and gene
expression data, respectively. H0 ∈ Rn×(f’

1+f’
2+f’

3) is the final
output multi-view representations of samples.

Neighbor Importance Estimation
To quantify the relevance between node i and node j for
successful message passing of GCN, GNNGUARD evaluates
the importance weight of each edge eij in each layer based on
similarity measure between nodes’ representations. The similarity
skij is defined as follows based on the hypothesis that similar nodes
are more likely to interact with each other:

skij � (hki ⊙ hk
j )/( ‖ hki ‖2 ‖ hk

j ‖2), (4)
where skij is the cosine similarity between i and its neighbor j in
the k-th layer of GCN, hki ∈ RDk and hkj ∈ RDk denote the
representations of node i and node j in the k-th layer of
GCN, ⊙ is dot product, Dk is the dimension of hki (or hkj),
and ‖ ·‖2 is the L-2 norm. Node similarity skij is normalized at the
node-level within i’s neighborhood as follows:

αk
ij �

⎧⎪⎪⎨⎪⎪⎩
skij/Σj∈Np

i
skij × N̂

k

i/(N̂k

i + 1) if i ≠ j

1/(N̂k

i + 1) if i � j
, (5)

where αkij is an importance weight between node i and node j in
the k-th layer,Np

i represents i’s neighborhood (excluding node i),
and N̂

k
i � Σj∈Np

i
‖ skij‖0. The noises can be defensed by using

important weights on the basis of reducing the weight of
dissimilar nodes. Edge pruning probability for edge eij is
calculated by a binary indicator 1P0: σ(ckijWn), as follows:

1P0(σ(ckijW)) � { 0 if σ(ckijWn)<P0

1 otherwise
, (6)

where ckij � [αkij, αkji] is a characteristic vector in the k-th layer of
GCN which describes edge eij,Wn is the learnable parameter, σ is
a non-linear transformation, and P0 is a pre-defined threshold.
We update importance weight αkij to α̂

k
ij and prune edges with Eq.

7 in order to ignore perturbed edge.

α̂kij � αk
ij1P0(σ(ckijWn)). (7)

Layer-Wise Graph Memory
Neighbor importance estimation and edge pruning change the
structure of graph. Because the weighted graph changes in each
layer, for a stable training to keep partial memory of the weighted
graph structure from the k − 1-th layer for the k-th layer,
GNNGUARD introduces a trick called layer-wise graph memory
(Figure 2). The layer-wise graph memory is defined as follows:

φk
ij � βφk−1

ij + (1 − β)α̂k
ij, (8)

where β ∈ [0, 1] is a learnable parameter and φk
ij denotes weight

for edge eij in the k-th layer of GCN.

Node Aggregation with Multi-View Representations
Based on GCN
To learn comprehensive representations of sample nodes and
multi-omics data, a multilayered graph convolutional network
(Kipf and Welling, 2016) based on the message passing is defined
as follows:
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Hk+1 � σ(Âk
HkWk), (9)

where Â
k � ~D

k−1
2 ~A

k ~D
k−1

2 represents the normalized Laplacian of
the weighted graph in k-th layer, Ak

ij � Ak
ij φk

ij is recalculated at
each layer to update the adjacency matrix, ~A

k � Ak + I is the
adjacency matrix with added self-connections, ~D

k
ii � ∑j

~A
k
ij is the

degree matrix,W is a layer-specific learnable weight matrix from
training, H0 represents the input of the first GCN layer, Hk is the
input of the k + 1-th layer, and Hk+1 is the comprehensive
representation by aggregating neighbor features Hk. The
activation function softmax is used in the last graph
convolutional layer to calculate the probability P ∈ Rn×V of
which molecular subtyping of each sample belongs to Eq. 10.

P � softmax(Hk), (10)
whereHk is the output of final graph convolutional layer k, and Pi

is the prediction probability vector of the sample node i.

Loss and Optimization
Cross-entropy is used as the loss function of our model:

L � −1
n
ΣiΣV

v�1yiv log(Piv), (11)

where V is the number of molecular subtypes, n is the number of
total samples, yiv is the ground truth label of i -th sample, and Piv

is the probability score that sample i in molecular subtype v.

Adam is used to minimize the loss function (Kingma and Ba,
2014).

New Sample Prediction
When predicting which molecular subtype a new sample is, we first
add it into dataset and the sample–sample similarity graph according
toEq. 2. The new data isXnew ∈R(n+1)×(f1+f2+f3), wheref1, f2, and
f3 are the number of selected features of SNV data, CNV data, and
gene expression data, respectively. The new graph is
Anew ∈ R(n+1)×(n+1). The projected latent feature matrix H ’0 is
obtained from Eq. 3. Therefore, given Xnew and Anew, we can
predict cancer subtype of the new sample by Eqs 2–11.

Experiment settings
We implement M-GCN using the deep learning framework of
PyTorch and train 500 epochs for M-GCN with a learning rate of
0.0001. The dropout rate is set as 0.4 to avoid overfitting. We set
0.82 and 0.79 as spearman correlation coefficient thresholds of
BRCA and STAD, respectively. The similarity threshold
parameter (P0) in neighbor importance estimation is set to 0.1
and 0.25 on BRCA and STAD, respectively. For BRCA, after
transformation, the data dimensions of SNV (f’

1), CNV (f’
2), and

gene expression (f’
3) are set as 25, 20, and 60, respectively.

M-GCN model has two GCN layers in which the number of
neurons in first and second hidden layer are 32 and 3,
respectively. As for STAD, we set f’

1, f
’
2, f

’
3, and the number

FIGURE 2 | Illustration of GNNGUARD. An example of one node (orange node) is chosen to demonstrate the process of layer-wise graph memory. (A) Message
passing in i’s local neighborhood in the k-th layer of GCN. (B) Thickness of the gray arrow represents the weight in the message passing of GCN. The weight between
node i and node j is utilized to determine message passing between nodes, such as strengthening message or blocking message. To stably train model, the k-th layer
weight coefficient keeps a partial memory of the k − 1-th layer.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8840285

Yin et al. M-GCN Model for Molecular Subtyping

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


of neurons in first and second hidden layer of GCN are 35, 40, 65,
32, and 4, respectively.

Evaluation Metrics
We perform 10-fold cross-validation to evaluate the performance
ofM-GCN inmolecular subtyping tasks of BRCA and STAD. The
samples are divided into ten groups according to stratified
sampling, nine of which are used for training data and one for
test data in turn. In each training process, we select
transcriptomic features by using HSIC Lasso on gene
expression data of training samples (see Eq. 1) and then
construct a separate sample–sample similarity graph. In order
to evaluate the performance of the method comprehensively, we
take several evaluation metrics, that is, accuracy (ACC),
precision, recall, F1 − score, Precisionmacro, Recallmacro, and
F1 − scoremacro, which are calculated as follows:

accuracy � TP + TN

TP + TN + FP + FN
, (12)

precision � TP

TP + FP
, (13)

recall � TP

TP + FN
, (14)

F1 − score � 2pprecisionprecall
precision + recall

, (15)

Precisionmacro � 1
v
∑v

c�1precisionc, (16)

Recallmacro � 1
v
∑v

c�1recallc, (17)

F1 − scoremacro � 2pPmacropRmacro

Pmacro + Rmacro
, (18)

where true positive (TP) is an outcome where the model correctly
predicts the positive class, and true negative (TN) is an outcome
where the model correctly predicts the negative class. For a multi-
class classification task, as long as it is not a positive class, we
define it as a negative class. False positive (FP) is an outcome
where the model incorrectly predicts the positive class, and false
negative (FN) is an outcome where themodel incorrectly predicts
the negative class.Accuracy, precision, recall, and F1 − score are
the most commonly used evaluation indexes for classification
performance based on the above TP, TN, FP, and FN.
Considering the evaluation bias caused by an unbalanced
sample size in multi-classification task, Precisionmacro,
Recallmacro, and F1 − scoremacro are finally used for evaluation.
They are weighted average of precision, recall, and F1 − score on
each category, with each category being equally weighted.

Identification of Specific Genes of Each
Molecular Subtype and Functional
Enrichment Analysis
Since selected transcriptomic features have the potential to
classify samples, we further identify the specific genes of each
molecular subtype. We first take z-score normalization on the
expression matrix of selected genes in order to make the genes’
specificity comparable between samples. Then, in every subtype,

we calculate the mean value of each gene and sort the genes in
descending order. Finally, we select top 10 genes of each subtype
as specific markers excluding the genes that are present in at least
two subtypes.

In order to understand biological function of each certain gene
set, we perform biological process (BP) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways enrichment analysis
on top 40 subtype-specific genes. The R package “clusterProfiler”
is used.

RESULTS

Subtype Classification Performance of
M-GCN on BRCA and STAD
To demonstrate the performance of our method, we compare the
performance of M-GCN with six commonly used or advanced
methods on STAD and BRCA molecular subtyping including
traditional machine learning–based methods, neural
network–based method, and a GCN-based method:

• K-nearest neighbor classifier (KNN), random forest (RF),
support vector machine classifier (SVM), and Gaussian
naive Bayes (GNB) are traditional machine learning
methods and we utilize gene expression, SNV, and CNV
data as features.

• DeepCC is a neural network-based method which utilizes
transcriptomic data and leverages feedforward neural
networks to classify molecular subtypes.

• Li’s method is a GCN-based molecular subtyping method
which integrates CNV data and gene expression data.

For BRCA, our frameworkM-GCN achieves best performance
(Figure 3). M-GCN achieves the highest averaged ACC of 94%,
which is 1.5% higher than the second best method RF, 2.5%
better than SVM and DeepCC, 3% higher than GNB, and 4.8%
and 6.7% better than Li’s method and KNN, respectively. Under
the Precisionmacro index, RF outperforms others and M-GCN
ranks second. For Recallmacro and F1 − scoremacro indexes,
M-GCN has the significantly advantage. Overall, KNN has the
worst performance.

Furthermore, we analyze the detailed results of subtype
classification. As shown in Table 2, M-GCN achieves the best
performance in diagnosis of ER+ subtype patients, where 95.9%
samples can be accurately predicted. By comparison,HER2+ patients
are relatively hard to predict. Through 10-fold cross-validation, there
are average 6 out of 30 samples are wrongly predicted as TNBC.

For the subtype classification task with more classes and
smaller sample size, our method still performs best on STAD
than other methods in all metrics (Figure 4). The performance of
neural network–based method DeepCC ranks second, which
ignores the sample–sample graph structure information. These
traditional machine learning–basedmethods have better scores in
four metrics by utilizing multi-omics data. Compared with the
results in BRCA, Li’s method has the largest decline of
performance in STAD. According to the detailed classification
results of each subtype by M-GCN under 10-fold cross-validation
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FIGURE 3 | Prediction performance under four evaluation metrics of seven methods in the BRCA dataset. Pink bar represents the final performance of M-GCN;
purple bar, orange bar, yellow bar, and green bar refer to the performance of KNN, RF, SVM, and GNB, respectively. Light blue bar is for the performance of DeepCC,
and dark blue bar is for the performance of Li’s method.

TABLE 2 | Classification results of M-GCN on each subtype of BRCA.

Ratio predicted as ER+
(%)

Ratio predicted as HER2+
(%)

Ratio predicted as TNBC
(%)

ER+ 95.9 0.51 3.59
HER2+ 0 80 20
TNBC 7 3 90

The meaning of the bold values provided in Tables 2 and 3 is “the highest prediction ratio in each subtype”.

FIGURE 4 | Prediction performance under four evaluation metrics of seven methods in the STAD dataset. Pink bar represents the final performance of M-GCN;
purple bar, orange bar, yellow bar, and green bar refer to the performance of KNN, RF, SVM, and GNB, respectively. Light blue bar is for the performance of DeepCC,
and dark blue bar is for the performance of Li’s method.

TABLE 3 | Classification results of M-GCN on each subtype of STAD.

Ratio predicted as CIN
(%)

Ratio predicted as EBV
(%)

Ratio predicted as MSI
(%)

Ratio predicted as GS
(%)

CIN 93.64 0 2.72 3.64
EBV 0 100 0 0
MSI 6 0 90 4
GS 20 4 6 70
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(Table 3), M-GCN has a 100% predictive power for EBV stomach
cancer, and a 90% probability of correctly predicting the MSI
type. However, GS is relatively hard to predict, especially not
easily distinguishable from CIN.

Our framework M-GCN achieves best performance in BRCA
and STAD molecular subtypes. The number of samples in BRCA
is greater than that in STAD, and all of these methods in BRCA
have good accuracy. The machine learning–based methods such
as RF, SVM, and GNB have a significant difference between
BRCA and STAD tasks. In addition, these methods in traditional
machine learning–based methods are shallow and cannot learn
the deep and complex representations of sample nodes. The
performance of the neural network–based method DeepCC is
higher than most of these machine learning–based methods,
which shows the deep and non-linear representation are
important. Li’s method may suitable for the task with more
samples. M-GCN still has the better scores in evaluation
metrics than the multiple omic-based methods by utilizing the
cleaned structure information and message passing of
sample nodes.

Contribution of Each Element to Molecular
Subtype Classification in STAD
After assessing the performance compared with other
methods, we conduct three ablation experiments to
evaluate the contributions of feature selection step, SNV
data, and CNV data in STAD, respectively (Figure 5). The
basic idea of ablation experiment is to learn the framework by
removing parts of it and studying its performance. In the first
ablation experiment, without feature selection, we use all the
gene expression features to construct sample–sample
similarity graph and take them as the transcriptomic
feature for training the GCN-based molecular subtyping
model. Under this setting, the prediction performance
decreases by 7%, 8.9%, 12.1%, and 10.6% in terms of ACC,
Precisionmacro, Recallmacro, and F1 − scoremacro when
compared with M-GCN. In the second ablation experiment,

we exclude SNV features from the input data. ACC,
Precisonmacro, Recallmacro, and F1 − scoremacro of the new
trained molecular subtyping model reduce 3.5%, 2.5%,
2.6%, and 2.5%, respectively. In the last ablation
experiment, excluding CNV features from the input data,
the model’s performance has dropped 2.2%, 1.2%, 1.7%,
and 1.4% in ACC, Precisionmacro, Recallmacro, and F1 −
scoremacro metrics.

Overall, the results of ablation experiments in STAD
demonstrate that feature selection, SNV data, and CNV data
are essential. Especially, feature selection makes a more
significant contribution. One possible reason for this is that
selected subtype-related features can help learn good
representations of sample and reduce noise of the
sample–sample graph.

Contribution of Each Element to Molecular
Subtype Classification in BRCA
Similarly, to explore contributions of feature selection, SNV, and
CNV data for molecular subtyping of BRCA, we also perform
ablation experiments. The results of three ablation experiments
are shown in Figure 6. Without the feature selection, the
prediction performance decreases by 4%, 24.1%, and 25.4% in
terms of ACC, Recallmacro, and F1 − scoremacro, respectively.
Under Precisionmacro index, ablation experiment outperforms
M-GCN. Without SNV as the input, the prediction ability
reduces by 0.3%, 1.6%, 0.9%, and 1.2% for ACC,
Precisionmacro, Recallmacro, and F1 − scoremacro metrics.
Without CNV as the input, the model’s performance has
dropped 0.2%, 1.0%, 0.1%, and 0.5% in terms of ACC,
Precisionmacro, Recallmacro, and F1 − scoremacro, respectively.

Biomarkers of Each Subtype of BRCA and
Their Functions
On the basis of selected transcriptomic features that could
accurately classify the breast cancer samples into various

FIGURE 5 | Results of ablation experiment of M-GCN in STAD. Pink bar represents the final performance of M-GCN, orange bar represents the performance of
M-GCNwithout feature selection, green bar is for the performance of M-GCNwithout SNV features, and blue bar is for the performance of M-GCNwithout CNV features.
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molecular subtypes, we further obtained the subtype-
specific genes.

We identify ten genes with highest specificity score of each
subtype, the gene lists are shown in Table 4. These identified
biomarkers can significantly distinguish samples of different
subtypes with the normalized gene expression by z-score
transformation (Figure 7). Among these genes, two thirds of
them have been extensively studied. For example, Robinson et al.

suggested that activating mutations in ESR1 were a key
mechanism in acquired endocrine resistance in breast cancer
therapy (Robinson et al., 2013). In addition, the specific
biomarkers of ER+ subtype, ESR1 (Robinson et al., 2013;
Spoerke et al., 2016), AGR3 (Garczyk et al., 2015), GATA3
(Ciocca et al., 2009), PCSK6 (Venables et al., 2008), BCAS1
(Fenne et al., 2013), PMAIP1 (Putnik et al., 2012), GPR77
(Zhu et al., 2021), and SCGB2A2 (Guan et al., 2003) have

FIGURE 6 | Results of ablation experiment of M-GCN in BRCA. Pink bar represents the final performance of M-GCN, orange bar represents the performance of
M-GCNwithout feature selection, green bar is for the performance of M-GCNwithout SNV features, and blue bar is for the performance of M-GCNwithout CNV features.

TABLE 4 | Specific biomarkers of each BRCA subtype and their enrichment pathways. The listed biomarkers rank in descending order from high to low specific score.

Molecular subtypes Biomarker Pathway and p-value

ER+ ESR1 Response to estradiol (p-value = 1.09E-02)
AGR3
GATA3
PCSK6
FLJ45983
BCAS1
PMAIP1
GPR77
SCGB2A2
C10orf82

HER2+ ERBB2 ERBB2 signaling pathway (p-value = 7.52E-04)
STARD3
GRB7
C17orf37
CRISP3
SERHL2
PGAP3
PSMD3
IDH1
DUSP10

TNBC MFI2 Sequestering of actin monomers (p-value = 6.36E-05)
TFCP2L1
DGCR5
C6orf162
DCLRE1C
FAM90A1
RAD51L1
TTLL4
TM4SF1
ESYT3
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been demonstrated to be associated with breast cancer
development or prognosis. For HER2+ subtype, Prat et al.
have found that HER2+ patients are highly sensitive to
ERBB2-targeted therapy (Prat et al., 2020). In addition,
existing studies have reported that ERBB2 (Lucci et al., 2010;
Alcalá-Corona et al., 2018; Prat et al., 2020), STARD3 (Sahlberg
et al., 2013; Vassilev et al., 2015; Alcalá-Corona et al., 2018), GRB7
(Lucci et al., 2010; Natrajan et al., 2010; Sahlberg et al., 2013;
Alcalá-Corona et al., 2018; Tang et al., 2019), C17orf37 (Natrajan
et al., 2010), PGAP3 (Alcalá-Corona et al., 2018), PSMD3
(Sahlberg et al., 2013), and DUSP10 (Lucci et al., 2010) played
an important role in the development and progression of breast
cancer. For the TNBC subtype, although understanding of the

identified subtype-specific genes is less than other two types, the
roles of DGCR5 (Jiang et al., 2020), RAD51L1 (Stevens et al.,
2011), and TTLL4 (Arnold et al., 2020) in breast cancer are well
studied.

Moreover, specific genes of ER+, HER2+, and TNBC are
significantly enriched in biological processes of response to
estradiol, ERBB2 signaling pathway, and sequestering of actin
monomers, respectively. Some of the findings are also highly
consistent with current understandings. Daniel et al. have found
that estrogen were important drivers of breast cancer
proliferation and PR-B expression increased breast cancer cell
growth in response to estradiol (Daniel et al., 2015). Shah et al.
reported that HER2+ subtype of breast cancer is associated with

FIGURE 7 | Heatmap of the z-score normalized gene expression of the molecular subtype-specific biomarker genes in BRCA. Green bar, pink bar, and blue bar at
the top represent ER+, HER2+, and TNBC subtype, respectively.

FIGURE 8 | Heatmap of the z-score normalized gene expression of the molecular subtype-specific biomarker genes in STAD. Green bar, pink bar, blue bar, and
purple bar at the top represent CIN, EBV, GS, and MSI subtype, respectively.
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gene amplification and/or protein overexpression of ERBB2,
which leads to aggressive tumor growth and poor clinical
outcome (Arora et al., 2008; Shah and Osipo, 2016). Other
enriched pathways of subtype-specific genes of BRCA are
listed in Supplementary Table S1.

Biomarkers of Each Subtype of STAD and
Their Functions
Compared with BRCA, the current understanding of subtype
markers and biological mechanisms of STAD is much less and
our analysis is expected to provide more insight. From the gene
expression heatmap across all the samples, it can be concluded that
biomarkers of STAD perform well in distinguishing EBV, GS, and
MSI (Figure 8). Through functional enrichment analysis, we find
genes in CIN are usually enriched in regulation of cellular response
to insulin stimulus, response to radiation, and telomere
maintenance. Telomere maintenance in cancer cells is often
accompanied by activated telomerase to protect genetically
damaged DNA from normal cell senescence or apoptosis (Basu
et al., 2013). Moreover, we also identify the specific gene CCNE1,
which was reported as one of potential targets in the CIN subtype
(Wang et al., 2019). For the EBV subtype, we infer their specific
genes mainly involve in cilium organization and Herpes simplex
virus 1 infection. It is well known that EBV is a gamma-herpes
virus, and EBV subtyping accounts for nearly 10% of gastric
carcinomas (Shinozaki-Ushiku et al., 2015). Identified specific
genes of MSI are related to regulation of microtubule
cytoskeleton organization and positive regulation of I-kappaB
kinase/NF-kappaB signaling. Gullo et al. analyzed 55
differentially expressed genes in microsatellite unstable cases
and found these genes associated with microtubule cytoskeleton
organization (Gullo et al., 2018). Identified specific genes of GS are
enriched in the biological process of fatty acid oxidation, protein
targeting to peroxisome, and AMPK signaling pathway. He et al.
discovered that mesenchymal stem cells promoted stemness and
chemoresistance in stomach cancer cells through fatty acid
oxidation (He et al., 2019). Detailed pathways related with
molecular subtyping of STAD are listed in Table 5 and
Supplementary Table S2. As the identified biomarkers by our
method for breast cancer are greatly consistent with the current

clinical consensus, we infer that the predicted biomarkers for
STAD are also promising to provide guidance for researchers
on the further studies of stomach cancer.

DISCUSSION

The generation of large amounts of multi-omics data and
development of deep learning methods offer a more effective
mean to study the personalized diagnosis and treatment options
of complex diseases, such as cancer (Ades et al., 2017; Krzyszczyk
et al., 2018). In this study, we propose a new frameworkM-GCN for
molecular subtyping of cancer, which is empowered by integrated
multi-omics data and a robust graph convolutional network. In two
case studies, that are molecular subtyping of breast and stomach
cancer, M-GCN achieves best classification performance under
almost all the metrics when compared with six advanced
methods. As we all known, although GCN is a powerful end-to-
end model, it usually ignores the noise of data and graph which
makes GCN unstable. M-GCN first learns subtype-related features
to denoise data and construct a relatively pure sample–sample
similarity graph. HSIC Lasso, which is recognized as an effective
feature selectionmethod, is used in our study. Furthermore,M-GCN
assigns higher weights to similar nodes and utilizes layer-wise graph
memory to limit the network to improve the robustness of themodel
based on GNNGUARD. To learn multi-view representations of
multi-omics data, M-GCN then re-maps denoised three types of
data into their feature spaces. Furthermore, to fuse multi-view
representations of multi-omics data, M-GCN utilizes information
transfer among samples in the same class and over different classes,
respectively. In addition these three types of data, in the future, other
omics data will be added to our framework.

Ablation experiments demonstrate that subtype-dependent
feature selection contributes most to the improvement of
classification performance of cancer molecular subtypes.
Furthermore, we verify the stability of the feature selection process
to ensure that obtained features are reliable. When shuffling the
samples and using 90% of them to perform feature selection, we find
the intersection of features picked out by the 10 rounds of feature
selection processes are very large for both BRCA and STAD. This is
extremely beneficial to train a stable GCN-based model.

TABLE 5 | Specific biomarkers of each STAD subtype and their enrichment pathways. The listed biomarkers rank in descending order from high to low specific score.

Molecular
subtypes

Biomarker Pathway and p-value

CIN DDX27, OPN3, F11R, MORC2, TMEM117, CCNE1, SMG5,
CIB2, RPL39L, ZNF480

Regulation of cellular response to insulin stimulus (p-value = 2.43E-03), response to
radiation (p-value = 1.28E-02), and telomere maintenance (p-value = 1.37E-02)

EBV ATP2C1, BCL2L1, SYT13, ZNF8, EPB41L1, ZNF486,
C12orf75, IQCB1, HABP2, RCN1

Cilium organization (p-value = 1.88E-02)
Herpes simplex virus 1 infection (p-value = 8.63E-04)

MSI TMEM52, DNAJA4, DAZAP2, PAK6, MIB2, KCMF1, RAD51C,
PARP3, ATP5A1, METRN

Regulation of microtubule cytoskeleton organization (p-value = 6.63E-03); positive
regulation of I-kappaB kinase/NF-kappaB signaling (p-value = 1.14E-02)

GS MLYCD, CISD1, PRMT2, CRABP2, ALPL, ECHDC2, C2CD4B,
CAMTA2, SH3BP5, IRS2

Fatty acid oxidation (p-value = 3.30E-06); protein targeting to peroxisome (p-value =
2.10E-03)
AMPK signaling pathway (p-value = 3.13E-03)
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On the basis of subtype-related features, we further identify a
few subtype-specific features which can potentially be used for
diagnostic biomarkers. In our study, ESR1, ERBB2, and MFI2 are
predicted as the subtype-specific biomarkers because they have
the highest specificity scores for ER+, HER2+, and TNBC
samples, respectively. It is worth noting that ESR1 and ERBB2
are well accepted markers for ER+ and HER2+ breast subtype,
indicating our prediction is highly consistent with current
understanding. Although MFI2 has not been demonstrated as
biomarkers of TNBC subtype by wet lab and clinical experiments,
its encoding protein shares sequence similarity and iron-binding
properties with members of the transferrin superfamily. Public
studies have demonstrated these iron-binding properties serve
iron uptake and promote cell proliferation, and high expression
of these proteins are associated with the decreased overall survival
of patients in many cancer types (Torti and Torti, 2013; Sun et al.,
2018). As we know, TNBC patients show the poorest prognosis
with a low survival time compared with other types of breast
cancer. Moreover, DGCR5, having the third highest score under
our prediction, reportedly incudes tumorigenesis of triple-
negative breast cancer by affecting the Wnt/β-catenin signaling
pathway. Overall, our study can accurately identify the subtype-
specific biomarkers which are helpful to personalized diagnosis.
So far, for many cancer types, there are still not effect means to
predict their molecular subtyping. Our method is expected to be
an important tool for effectively predicting molecular typing with
very few genes. Moreover, the proposed framework can be used
for other tasks, such as prediction of cancer staging and grading.

CONCLUSION

Large amount of multi-omics data generated by rapid
development of high-throughput technologies has enabled
data-driven methods to apply in molecular subtyping of
cancer. We proposed a robust GCN-based framework M-GCN
for molecular subtyping of cancer by integrating gene expression,
SNV, and CNV data. In addition to comprehensive information
of individual samples, M-GCN fully considers message
aggregation among samples for subtype classification.
Compared with other six advanced computational methods,
M-GCN achieves the best classification performance for
molecular subtyping of breast and stomach cancer. Through
ablation experiments, we demonstrate subtype-related
transcriptomics features obtained by HSIC Lasso method
highly contribute to sample classification, which is probably
because the selected features eliminate data noise and facilitate

the construction of purified graph. On the basis of the graph
structure constructed by HSIC Lasso, M-GCN further
strengthens connections between new features and the graph
by assigning weights. By assigning higher weights, M-GCN aims
to successfully pass message in GCN. Furthermore, the identified
molecular subtype-specific marker of breast cancer is highly
consistent with clinical cognition, so the predicted biomarkers
of stomach cancer are promising to be used for molecular typing
diagnosis of patients, filling in the current gap.
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