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Abstract
Statistical iterative reconstruction (SIR) for X-ray computed tomography (CT) under the

penalized weighted least-squares criteria can yield significant gains over conventional ana-

lytical reconstruction from the noisy measurement. However, due to the nonlinear expres-

sion of the objective function, most exiting algorithms related to the SIR unavoidably suffer

from heavy computation load and slow convergence rate, especially when an edge-preserv-

ing or sparsity-based penalty or regularization is incorporated. In this work, to address

abovementioned issues of the general algorithms related to the SIR, we propose an adap-

tive nonmonotone alternating direction algorithm in the framework of augmented Lagrang-

ian multiplier method, which is termed as “ALM-ANAD”. The algorithm effectively combines

an alternating direction technique with an adaptive nonmonotone line search to minimize

the augmented Lagrangian function at each iteration. To evaluate the present ALM-ANAD

algorithm, both qualitative and quantitative studies were conducted by using digital and

physical phantoms. Experimental results show that the present ALM-ANAD algorithm can

achieve noticeable gains over the classical nonlinear conjugate gradient algorithm and

state-of-the-art split Bregman algorithm in terms of noise reduction, contrast-to-noise ratio,

convergence rate, and universal quality index metrics.

Introduction
Statistical iterative reconstruction (SIR) approaches for X-ray computed tomography (CT)
using the penalized weighted least squares (PWLS) criteria [1–6], which model the statistical
properties of the measurements and impose adequate penalty or regularization on objective
function, have shown their sophisticated ability in achieving a superior noise-resolution trade-
off as compared with analytical reconstruction approaches such as the well-known filtered
back-projection (FBP) algorithm. Generally, the SIR methods can be derived from the maxi-
mum a posteriori (MAP) estimator as given the observed data or measurement, and consist
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two terms (i.e., data fidelity and penalty terms) in the associative objective function. Practically,
due to the nonlinear expression of the objective function, PWLS-based SIR methods often suf-
fer from the heavy computational load and slow convergence rate [2, 7].

Up to now, for yielding a high-quality CT image, several types of the statistical iterative
reconstruction algorithms have been proposed. For example, Sauer and Bouman [8] pro-
posed a Gauss-Seidel (GS) algorithm with the flexible ability to incorporate some general
prior models, including Gaussian Markov and non-Gaussian priors, which was successfully
used in low-dose cone-beam CT image reconstruction [2]. Thibault [9] described a coordi-
nate descent algorithm with significant gains over direct analytical methods in terms of noise
reduction, resolution preservation, and artifacts suppression. To achieve fast convergence
rate, Benson et al [10] presented a block-based coordinate descent algorithm and Fessler and
Booth [7] proposed a conjugate gradient preconditioning algorithm. Recently, by facilitating
the objective function optimization in image processing and medical imaging, the variable
splitting approaches have been widely studied with remarkable advantages [4, 11–18]. Specif-
ically, the variable splitting approaches render the resulting constrained problem tractable to
an alternating minimization scheme, which can simplify and decouple the optimization with
respect to auxiliary variables and simplify optimization. A typical example is that, Ramani
and Fessler [4] proposed an accelerated alternating direction method of multipliers for CT
image reconstruction via an improved variable splitting scheme to optimize the PWLS cost
function. The associative experiments demonstrated the variable splitting scheme can achieve
remarkable gains over other general algorithm in CT image reconstruction in term of conver-
gence rate and computation time.

Inspired by the nature of the variable splitting scheme [12], in this work, we propose an
adaptive nonmonotone alternating direction optimization strategy via an efficient augmented
Lagrangian multiplier method, which is termed as “ALM-ANAD”. We apply it to minimizing
the PWLS cost function, aiming to address issues of the algorithms related to the SIR for CT
image reconstruction. The alternating direction technique [19] and adaptive nonmonotone
line search scheme [20, 21] are adapted into the ALM-ANAD algorithm with accelerated con-
vergence rate for CT image reconstruction. Qualitative and quantitative evaluations are carried
out on both the digital and patient data in terms of different image quality measure criteria.

The remaining part of the paper is organized as follows. Section 2 describes the present
ALM-ANAD algorithm. In Section 3, the ALM-ANAD algorithm is applied to solving the
PWLS minimization problem in statistical X-ray CT image reconstruction. The experiments’
setup and evaluation metrics are also presented in this section. In Section 4, the evaluation of
the present algorithm is performed on both digital and physical phantoms, followed by the dis-
cussion and conclusion in Section 5.

Proposed algorithm

Preliminary results
Without loss of generality, we consider the following equality-constrained non-smooth mini-
mization problem

min
x;y

f ðx; yÞ; s:t: hðx; yÞ ¼ 0 ð1Þ

where the vector-valued function h is differentiable with respect to both x and y, but the func-
tion fmay or may not be differentiable with respect to y.

For solving the problem Eq (1), we will propose an algorithm in the framework of the aug-
mented Lagrangian multiplier (ALM) method, first suggested by Hestenes [22] and Powell
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[23]. In the ALM frame, one obtains the k-th iteration xk, yk by minimizing the following aug-
mented Lagrangian function

Lðx; y; lÞ ¼ f ðx; yÞ � lThðx; yÞ þ b
2
hðx; yÞThðx; yÞ; m > 0: ð2Þ

jointly with respect to both x and y for a given multiplier λ = λk − 1, the updates the multiplier
by λk = λk − 1 − βh(xk, yk). In the implementation, the complexity of an ALM algorithm
depends almost entirely on how the augmented Lagrangian function is minimized jointly with
respect to both x and y. Therefore, we concentrate on solving unconstrained optimization
problem as follows:

min
x;y

�ðx; yÞ ð3Þ

where ϕ is differentiable with respect to the block variable x but not necessarily to y. Further-
more, assuming that

yðxÞ ¼ arg min
y

�ðx; yÞ ð4Þ

exists and is unique for each x in a region of interest, then the problem of Eq (3) can be rewrit-
ten as an unconstrained minimization one with respect to x, i.e.,

min
x

cðxÞ≜�ðx; yðxÞÞ ð5Þ

where ψ(x) is generally nonsmooth.

ANAD algorithm
We now present an adaptive nonmonotone line search algorithm for solving the nonsmooth
problem Eq (5), which is an extension to the one in [20] designed for minimizing smooth func-
tion. The reader interested in this line search strategy can find more information in S1 Text.

Since the cost function ψ(x) = ϕ(x, y(x)) is non-differentiable, the nonmonotone line search
algorithm developed by Dai and Fletcher [20] cannot be used directly. To address this issue, we
replace the gradient of ψ(xk) byr1 ϕ(xk, y(xk)), which can be regarded as a subgradient direc-
tion for ψ(x). In the implementation, the search direction was set as dk = −tkr1 ϕ(xk, y(xk)),
and the new BB step-size tk is adaptively determined as

tk ¼
tBB1k ; if

sTk�1yk�1

k sk�1 k2k yk�1 k2
> t;

min ftBB2j jj ¼ max f1; k� hg; :::; kg; otherwise;

8>><
>>: ð6Þ

where τ 2 (0, 1) and h> 0 is an integer. According to [24], the scalar tBB1k and tBB2k are deter-
mined by tBB1k ¼ sTk�1sk�1=s

T
k�1yk�1 and t

BB2
k ¼ sTk�1yk�1=y

T
k�1yk�1 where sk − 1 = xk − xk − 1, yk − 1 =

r1 ϕ(xk, yk) −r1 ϕ(xk − 1, yk).
To suite our situation we need to modify the nonmonotone line search into the following

form

�ðxk þ adk; ykÞ � �r þ adr1�ðxk; ykÞTdk ð7Þ

where yk = y(xk) and ϕr is a reference function value.
In summary, our proposed adaptive nonmonotone alternating direction (ANAD) algorithm

can be described as follows:

ALM-ANADMethod for CT Reconstruction
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Step 1: Given 0 < δ, ρ < 1, 0 < ρmin � ρmax, 0 < θ1 � θ2 < 1,
ρ 2 [θ1, θ2], integer l, h, K, tol > 0, with �r = +1,
�best= �c = (x0,y0). Set k = 0;

Step 2: While kr1�(xk, yk)k � tol is not met;
Step 3: Impose tk such that tk 2 [ρmin, ρmax]. Set dk = −tkr1 �(xk, yk) and α = 1;
Step 4: Compute the step-size αk with αk = max{αρi:i = 0, 1, � � �} such that

�(xk+αρ
i dk, yk)� �r+αδρ

ir1 �(xk, yk)
T dk;

Step 5: Set xk+1 = xk+αk dk;
Step 6: Update the reference function �r:

If �(xk+1, yk)� �best, then �best = �(xk+1, yk), �c = �(xk+1, yk), l = 0;
Else �c = max{�c, �(xk+1, yk)}, l = l + 1;
If l = K, then �r = �c, �c = �(xk+1, yk), l = 0;
End If

Step 7: Compute yk + 1 = y(xk + 1)≜ arg miny �(xk + 1, y);
Step 8: Compute tk with Eq (6);
Step 9: End if stop criterion is satisfy.

The ANAD algorithm differs from the traditional alternating minimization scheme since it
does not require exact (or high precision) minimum in all directions, and it differs from the
block coordinate descent approach [9], since it does not require a monotone decease of objec-
tive function.

ALM-ANAD algorithm
After embedding the ANAD algorithm into the ALM framework, we can obtain the ALM-A-
NAD algorithm for solving the equality-constrained minimization problem Eq (1).

Step 1: Initialize β, γ > 0, x0, y0 = Rx0, λ0 = 0. Set k = 0;
Step 2: While stop criterion is not met;
Step 3: Call ANAD algorithm to minimize �ðx;yÞ≜Lðx;y; lkÞ starting from (xk,
yk),

giving the output (xk+1, yk+1);
Step 4: Update the multiplier: λk+1 = λk − γ(Rxk+1 − yk+1);
Step 5: End if stop criterion is satisfy.

The selection of β and γ in Step 1 will be discussed in next section. The iterative process in
Step 2 is terminated if certain convergence criteria is satisfied for a relatively stable solution [1,
6]. The convergence of ALM-ANAD algorithm will be analyzed in S2 Text.

PWLS CT Image Reconstruction with ALM-ANAD Algorithm

PWLS criteria for statistical X-ray CT reconstruction
The statistical model for X-ary CT projection data after logarithm transform usually follows a
Gaussian approximation with a data-dependent variance [1, 5, 6, 25], and the associative vari-
ance can be determined by the following analytical formula in our previous work [25]

s2
i ¼

1

I0
exp ð�piÞ 1þ 1

I0
exp ð�piÞðs2

e � 1:25Þ
� �

ð8Þ

where I0 is the incident X-ary intensity, �pi is the mean of the sinogram data at bin i and s2
e is

the variance of background electronic noise. As described in detail previously [3], the penalized
weighted least-squares (PWLS) cost function for CT image reconstruction with a penalty term

ALM-ANADMethod for CT Reconstruction
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ψ (Rx) can be expressed as follows:

x� ¼ arg min
x

CðRxÞ þ b
2
ðp� HxÞTW�1ðp� HxÞ ð9Þ

where p = (p1, p2,. . ., pM)
T denotes the line integral data (or sinogram data) after system cali-

bration and logarithm transformation, x = (x1, x2,. . ., xN)
T is the vector of attenuation coeffi-

cients to be estimated, where “T” denotes the matrix transpose. As described in detail
previously [3], operator H represents the system or projection matrix with the size ofM × N.
As described in detail previously [3], the element of hij is the length of intersection of projection
ray i with pixel j. In our implementation, as described in detail previously [3], the element of
matrix H was precalculated with a fast ray-tracing technique [26] and stored as a file.W is a
diagonal matrix with the ith element of s2

i , which can be estimated from the measured projec-
tion data according to Eq (8). β is a hyper-parameter to balance the penalty term (the first term
of Eq (9)) and the data fidelity term (the second term of Eq (9)).

As for ψ (Rx), we consider a general family of penalty with the following form

CðRxÞ ¼
XN1

r¼1

Fr

XP
p¼1

j½Rpx�rjm1

 !
ð10Þ

where F r denotes potential function, [x]
r represents the r-th element of vector x, and the N2 P

× Nmatrix R ¼ ½RT
1 ;R

T
2 ; . . . ;R

T
P �T constitutes shift-invariant operators Rp, p = 1,� � �, P 8p (e.g.,

tight frames, finite differences) with the size of N2 × N. ψ in Eq (10) is specified as a function of
the to-be-reconstructed image x, which includes several popular smooth/non-smooth forms as
described in [4, 14, 21, 27–29]. For brevity, we only concentrate on following two particular
instances of Eq (10) in this study,

• Smooth edge-preserving regularization:m1 = 1, P = 2, R1 and R2 represent horizontal and
vertical finite-differencing matrices, respectively, and F r(μ) = μ/s − log(1 + μ/s), s> 0, where
r indexes the rows of R1 or R2.

• ℓ1-regularization:m1 = 1, P = 2, R1 and R2 represent horizontal and vertical finite-differenc-
ing matrices, respectively, and F r(μ) = μ, where r indexes the rows of R1 or R2.

These regularizers have been successfully applied to PWLS problem in X-ary CT image recon-
struction [7, 30]. We note that the difficulties arise when one uses ℓ1-regularization. This regu-
larizer is not differentiable everywhere precluding optimization by conventional gradient
descent methods. Differentiable approximations can be employed, but such modifications will
lead to slow convergence of conventional gradient descent methods [4].

Implementation details
To separate the non-differentiable penalty term in PWLS cost function, we split variable by
introducing y = Rx. Then the problem of Eq (9) can be transformed to an equivalent con-
strained one with auxiliary constraint variable y

min
x

CðyÞ þ b
2
ðp� HxÞTW�1ðp� HxÞ; s:t: y ¼ Rx: ð11Þ

The problem of Eq (11) can be regarded as a special form of Eq (1), while the non-differentiable
part of the augmented Lagrangian function is easy to solve due to separability.

ALM-ANADMethod for CT Reconstruction
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In the case of solving the problem of Eq (11) with the ALM-ANAD algorithm, we have

�ðx; yÞ≜Lðx; y; lÞ ¼ CðyÞ � lTðRx � yÞ þ g
2
k Rx � yk2

þ b
2
ðp� HxÞTW�1ðp� HxÞ:

ð12Þ

Then, we can easily derive

r1�ðx; yÞ ¼ bHTW�1ðHx � pÞ � RTlþ gRTðRx � yÞ: ð13Þ
Additionally, the minimization of ϕ(x, y) with y can be written as follows

yðxÞ ¼ arg min
y

�ðx; yÞ ¼ arg min
y

CðyÞ � lTðRx � yÞ þ g
2
k Rx � y k2: ð14Þ

For the above two regularizers, Eq (14) can be separated into P × N2 1Dminimization prob-
lems with regard to the component {yi}

arg min
yi

�ðx; yiÞ ¼ arg min
yi

CðyiÞ � li
kð½Rx�i � yiÞ þ g

2
ð½Rx�i � yiÞ2: ð15Þ

For the smooth edge-preserving regularization, the solution of Eq (15) is given with the shrink-
age rule [31]

yikþ1 ¼ sign ½Rxk�i � lik=g
� � zi þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðziÞ2 þ 4sj½Rxk�i � li
k=gj

q
2

ð16Þ

where zi ¼ j½Rxk�i � li
k=gj � s� 1=sg. Similarly, for the analysis ℓ1-regularization, the solution

of Eq (15) is

yikþ1 ¼ max fj½Rxk�i � li
k=gj � 1=g; 0gsignð½Rxk�i � lik=gÞ: ð17Þ

Selection of β and γ

In general, choosing appropriate values for penalty parameter is a nontrivial and application-
dependent task. For the ALM-ANAD algorithm, the penalty parameter β in Eq (9) controls
the relative contributions of the two terms, i.e., the data-fidelity term and penalty term.
Because the data fidelity term is proportional to the noise standard deviation in the
projection domain, β should be increased with the noise increment. In practice, the penalty
parameter β can be determined through an empirical, subjective, and time consuming trial
and error process [32]. In this study, extensive experiments illustrated that the value of β
within the range from 100 to 10000 was proper for both NCG, SB-NCG and ALM-ANAD
algorithms.

For penalty parameter γ, we use an empirical rule that is based on [12]. It was suggested in
[12] that we can therefore choose a value for γ that minimizes the condition number of the
subproblem Eq (5), resulting in fast convergence for iterative optimization methods. Accord-
ing to distance-driven (DD) projector [33] and R in Eq (14), the minimum condition number
υmin � 105, which subsequently resulted in slow convergence of ALM-ANAD in our experi-
ments. Based on our experience with CT image reconstruction experiments, we found the
empirical rule γ = υmin/100 can yield good overall convergence speeds for ALM-ANAD
algorithm.

ALM-ANADMethod for CT Reconstruction
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Comparison methods and other experiments setting
To validate and evaluate the performance of the present ALM-ANAD algorithm for X-ray CT
image reconstruction, the nonlinear conjugate gradient (NCG) [34] and split-Bregman algo-
rithms [12] are adopted for comparison.

The NCG algorithm is an efficient approach that monotonically decrease the PWLS cost
function Eq (9). The search direct dk is generated by the following way

dk ¼
�gk; k ¼ 0

�gk þ bkdk�1; k � 1
ð18Þ

(

where gk is the gradient of the PWLS cost function at xk, bk ¼ gT
k
ðgk�gk�1Þ
gT
k�1

gk�1
.

The split-Bregman iteration for problem Eq (11) is stated as follows:

xkþ1 ¼ arg min
x

b
2
ðp� HxÞTW�1ðp� HxÞ þ g

2
k y � Rx � bk k2; ð19Þ

ykþ1 ¼ arg min
y

CðyÞ þ g
2
k y � Rxkþ1 � bk k2; ð20Þ

bkþ1 ¼ bk þ ðRxkþ1 � ykþ1Þ: ð21Þ

Due to the subproblem Eq (19) is calculated by the NCG algorithm, the split-Bregman algo-
rithm was termed as “SB-NCG” in this paper. The subproblem Eq (20) can also be solved by
the shrinkage rule [31] for the above two regularizers.

The related parameters of above three algorithms in the implementation were selected as
follows: for the ALM-ANAD algorithm, (1) the multiplier λ0 was initialized as zero; (2) the ini-
tial guess x0 is the result from the FBP method with ramp filter; (3) ρmin = 1/ρmax = 1.0 × 10−10,
δ = 10−4, tol = 1.0 × 10−3, ρ = 0.5, K = 5, h = 3, for all the cases; (4) The s, β and γ were selected
empirically for different cases based on quantitative measures and visual inspection. For the
NCG and SB-NCG algorithms, s and β were also selected empirically for different cases based
on quantitative measures and visual inspection. This scheme can also be considered as a trial
and error process. For XCAT phantom, we used the smooth edge-preserving regularization,
while for clinical data we used ℓ1-regularization. Since NCG cannot directly handle non-
smooth regularization without smoothing it, so we used a smoothing value of 10−6 in ℓ1-
regularization.

Experimental data acquisitions
To validate and evaluate the performance of the present ALM-ANAD algorithm in low-dose x-
ray CT image reconstruction, a digital XCAT phantom [35] and an anthropomorphic torso
phantom (Radiology Support Devices, Inc., Long Beach, CA) were used for the experiments.

Digital XCAT phantom. A slice of the XCAT phantom (Fig 1(a) in [28]) was used, which
contains head anatomy structures with a tumor lesion. For the CT projection simulation, we
chose a geometry that was representative of a monoenergetic fan-beam CT scanner setup. The
imaging parameters of the CT scanner were described in detail previously [3]: (1) each rotation
included 1160 projection views that were evenly spaced on a circular orbit; (2) the number of
channels per view was 672; (3) the distance from the detector arrays to the X-ray source was
1040 mm; (4) the distance from the rotation center to the X-ray source was 570 mm; and (5)
the space of each detector bin was 1.407 mm. All the reconstructed images were composed of
512 × 512 square pixels. The size of each pixel was 0.625 mm × 0.625 mm. Each projection

ALM-ANADMethod for CT Reconstruction
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datum along an X-ray through the sectional image was calculated based on the known densities
and intersection areas of the ray with the geometric shapes of the objects in the sectional
image.

As described in detail previously [3], we first simulated the noise-free sinogram data ŷ then
generated the noisy transmission measurement I according to the statistical model of the pre-
logarithm projection data, that is,

I ¼ PoissonðI0 exp ð�ŷÞÞ þ Normalð0; s2
eÞ ð22Þ

where I0 is the incident X-ray intensity and s2
e is the background electronic noise variance. In

the simulation, I0 and s2
e were set to 1.0 × 105 and 11.0, respectively. Finally, the noisy sinogram

data y were calculated by performing the logarithm transformation on the transmission data I.
Anthropomorphic torso phantom. The anthropomorphic torso phantom (Fig 1(b) in

[28]) was used for the experimental data acquisition. The phantom was scanned by a clinical
CT scanner (Siemens SOMATOM Sensation 16 CT) at 40 mAs, 120 kVp. The associated imag-
ing parameters of the CT scanner were described in detail previously [3]: (1) each rotation
included 1160 projection views that were evenly spaced on a circular orbit; (2) the number of
channels per view was 672; (3) the distance from the detector arrays to the X-ray source was
1040 mm; (4) the distance from the rotation center to the X-ray source was 570 mm; and (5)
the space of each detector bin was 1.407 mm. All the reconstructed images were composed of
512 × 512 square pixels. The size of each pixel was 1.2 mm × 1.2 mm.

Performance evaluation
Evaluation by noise reduction. The following metrics were utilized to evaluate the noise

reduction for the quantitative comparison: (1) signal-to-noise ratio (SNR); (2) mean square
error (MSE):

SNR ¼ 10 log 10

PN
m¼1 ðxtrueðmÞÞ2PN

m¼1 ðxtrueðmÞ � xðmÞÞ2 ð23Þ

MSE ¼ 1

N

XN
m¼1

ðxtrueðmÞ � xðmÞÞ2 ð24Þ

where x(m) denotes the voxel value of the reconstructed image at voxelm, xtrue(m) denotes the
voxel value of the true phantom image at voxelm, and N is the total number of voxels in the
image.

Evaluation by contrast-to-noise ratio. The CNR is defined as follows:

CNR ¼ jxROI � xBGjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ROI þ s2

BG

p ð25Þ

where xROI denotes the mean of the voxels inside the ROI, and xBG denotes the mean of the
voxels in the background region. The terms s2

ROI and s
2
BG represent the standard deviations of

the voxels inside the ROI and the background region, respectively.
Image-similarity. To assess the image-similarity between the reconstructed and true

images, the universal quality index (UQI) [36] was used in this study. After selected the aligned
ROI within the reconstructed and true images, the associative means, variances and

ALM-ANADMethod for CT Reconstruction
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covariances over the ROI can be calculated as

�x ¼
PQ

m¼1 xðmÞ
Q

; �x true ¼
PQ

m¼1 xtrueðmÞ
Q

ð26Þ

s2 ¼
PQ

m¼1 ðxðmÞ � �xðmÞÞ2
Q� 1

; s2
true ¼

PQ
m¼1 ðxtrueðmÞ � �x trueðmÞÞ2

Q� 1
ð27Þ

Covðx; xtrueÞ ¼
PQ

m¼1ðxtrueðmÞ � �x trueÞðxðmÞ � �xðmÞÞ
Q� 1

ð28Þ

where x(m) denotes the voxel value of estimated low-dose image and xtrue(m) denote the voxel
value of the original phantom image in the ROI, Q is the total number of voxels in the ROI.
Hence, the UQI can be written as

UQI ¼ 4Covðx; xtrueÞ
s2 þ s2

true

�x � �x true

�x2 þ �x2
true

: ð29Þ

For the UQI measure, its value ranges between 0 and 1 and UQI value more close to 1 indicates
the more similarity between the reconstructed and original images.

Results

XCAT phantom study
Visualization-based evaluation. Fig 1 shows the results reconstructed by four different

algorithms from the same noisy sinogram data. Fig 1(A) shows the image reconstructed by the
FBP method with ramp filter. Serious noise and artifacts can be observed. Fig 1(B), 1(C) and 1
(D) show the results reconstructed by the NCG, SB-NCG and ALM-ANAD algorithms, respec-
tively. We can observe that the present ALM-ANAD algorithm achieves noticeable gains over
other algorithms in terms of both artifacts suppression and edge preservation. Moreover, Fig 2
illustrates the SNR measurements of three algorithms with respect to the iteration number and
CPU time. It can be seen that the ALM-ANAD algorithm can yield fast converges rate than
other two algorithms in terms of SNR measurements. To further visualize the difference
among the three approaches, vertical profiles were drawn across the 296th column, from the
296th row to the 430th row and are shown in Fig 3. The profile from the ALM-ANAD algorithm
matches better with that from the true phantom than those from other algorithms.

Noise reduction measure. Table 1 shows the SNRs and MSEs of the images reconstructed
by four different algorithms. The results suggest that the ALM-ANAD algorithm can achieve
noticeable gains over other three algorithms in terms of the noise reduction.

CNRmeasure. For the calculation of the contrast-to-noise ratio (CNR), we selected four
regions of interest (ROIs) indicated by the squares in the XCAT phantom image, which are
named as the ROIA, ROIB, ROIC, and Background, respectively. Table 2 shows the CNRs of
the images reconstructed by four different algorithms, respectively. It can be seen that the
ALM-ANAD algorithm yields noticeable gains over other algorithms in terms of the CNR
measure. Consequently, the present ALM-ANAD algorithm has the remarkable ability for
identifying low-contrast regions as compared to other algorithms.

UQI measure. Fig 4 shows the zoomed details of four selected ROIs in Fig 1. It can be seen
that the ALM-ANAD algorithm can achieve noticeable gains over other algorithms in terms of
the noise-induced artifacts suppression. Furthermore, the corresponding UQI scores are
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Fig 1. The XCAT phantom results reconstructed by four different algorithms from the same noisy sinogram data. (A) is the result from the FBP
method with ramp filter; (B) is the result from the NCG algorithm with s = 1.0 × 10−2, β = 2.0 × 104; (C) is the result from the SB-NCG algorithm with
s = 1.0 × 10−3, γ = 128, β = 8.0 × 103; and (D) is the result from ALM-ANAD algorithm with s = 1.0 × 10−3, γ = 200, β = 2.0 × 103. All images are displayed with
the same window [0.0048 0.0128] mm−1.

doi:10.1371/journal.pone.0140579.g001
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illustrated in Fig 5, which shows that the gains from the ALM-ANAD algorithm are noticeable
over those from the other three algorithms in terms of the UQI measure in four regions.

Anthropomorphic torso phantom study
Visualization-based evaluation. Fig 6 shows the results reconstructed by four different

algorithms from the sinogram acquired with a protocol of 40 mAs and 120 kVp. Fig 6(A)
shows the image reconstructed by the FBP method with ramp filter. Fig 6(B) shows the image
reconstructed by the NCG algorithm. Fig 6(C) shows the image reconstructed by the SB-NCG
algorithm. Fig 6(D) shows the image reconstructed by the present ALM-ANAD algorithm. To
further display the gains of the ALM-ANADmethod, the zoomed ROIs are shown in Fig 7. It
can be observed that the ALM-ANAD algorithm achieves noticeable gains over other two algo-
rithms in terms of successfully noise-induced artifacts suppression and edges preservation.

CNRmeasure. To quantitative evaluation of the reconstructed images, we selected two
different ROIs for the calculation of the contrast-to-noise ratio (CNR). Fig 8 shows the CNRs

Fig 2. SNR andMSEmeasurements of three algorithms vs iteration number and CPU time, respectively. (A) is the SNRmeasures vs iteration
number; (B) is the MSEmeasures vs iteration number; (C) is the SNRmeasures vs CPU time; and (D) is the MSEmeasures vs CPU time.

doi:10.1371/journal.pone.0140579.g002
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of the images reconstructed by four different algorithms, respectively. It can be seen that the
ALM-ANAD algorithm yields noticeable gains over other algorithms in terms of the CNR
measure. Consequently, the present ALM-ANAD algorithm has the remarkable ability for
identifying low-contrast regions as compared to other algorithms.

Fig 3. Vertical profiles (296th column) of the images reconstructed from different algorithms. (A) is the result from the FBP algorithm with ramp filter;
(B) is the result from the NCG algorithm; (C) is the result from the SB-NCG algorithm; and (D) is the result from ALM-ANAD algorithm. The ‘dashed line’ in
each sub-figure denotes the profile from the true phantom.

doi:10.1371/journal.pone.0140579.g003

Table 1. SNRs and MSEs of the images reconstructed by four different algorithms.

Methods FBP NCG SB-NCG ALM-ANAD

SNR(dB) 25.30 27.39 27.47 27.76

MSE(10−8) 9.40 5.72 5.70 5.33

doi:10.1371/journal.pone.0140579.t001
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Fig 4. Zoomed details of the four ROIs in Fig 2.

doi:10.1371/journal.pone.0140579.g004

Fig 5. UQI measures on the four ROIs in Fig 5.

doi:10.1371/journal.pone.0140579.g005

Table 2. CNRs of the images reconstructed by four different algorithms.

Methods FBP NCG SB-NCG ALM-ANAD

CNR (ROIA) 4.36 11.30 17.97 22.75

CNR (ROIB) 6.43 18.20 35.14 39.53

CNR (ROIC) 0.73 1.88 3.65 4.27

doi:10.1371/journal.pone.0140579.t002
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Fig 6. The anthropomorphic torso phantom scanned with a protocol of 40 mAs and 120 kVp. (A) is the
result from the FBP algorithm with ramp filter; (B) is the result from the NCG algorithm with β = 1.0 × 105; (C)
is the result from the SB-NCG algorithm with γ = 25, β = 29; and (D) is the result from the ALM-ANAD
algorithm with γ = 25, β = 29. The zoomed ROIs indicated by the rectangle are also displayed for visual
appealing. All images are displayed with the same window [0.0017 0.024] mm−1.

doi:10.1371/journal.pone.0140579.g006

Fig 7. Zoomed details of the ROI in Fig 6. (A) FBPmethod; (B) NCGmethod; (C) SB-NCGmethod; and
(D) ALM-ANADmethod.

doi:10.1371/journal.pone.0140579.g007
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UQI measure. Fig 7 shows the zoomed details of selected ROI the anthropomorphic torso
phantom image. It can be seen that the ALM-ANAD algorithm can achieve noticeable gains
over other algorithms in terms of the noise-induced artifacts suppression. Furthermore, the
corresponding UQI scores are illustrated in Fig 9, which shows that the gains from the ALM-A-
NAD algorithm are noticeable over those from the other three algorithms in terms of the UQI
measure.

Discussion and Conclusion
The variable splitting strategy has raised increasing concerns in statistical X-ary CT reconstruc-
tion due to its appealing nature to split the regularization term and data-fidelity term [4, 12, 16,

Fig 8. CNRmeasures of images reconstructed by four different methods.

doi:10.1371/journal.pone.0140579.g008

Fig 9. UQI measures of images reconstructed by four different methods.

doi:10.1371/journal.pone.0140579.g009
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17]. Inspired by the variable splitting strategy, in this work, we proposed an adaptive nonmo-
notone alternating direction optimization strategy via an efficient augmented Lagrangian mul-
tiplier approach, which was named as the ALM-ANAD algorithm. Experimental results in
Section 4 have shown that the present ALM-ANAD algorithm for CT image reconstruction
can achieve noticeable gains over other existing algorithms.

In general, a non-negativity constraint in CT image reconstruction is required to model the
positivity of the attenuation coefficient. In this work, we did not consider this constraint in the
development of the ALM-ANAD algorithm. However, mathematically we can build the follow-
ing cost function with the non-negativity constraint:

min
x

CðRxÞ þ b
2
ðp� HxÞTW�1ðp� HxÞ; s:t: x � 0: ð30Þ

For solving Eq (30), the projected gradient method [37] can first be used by instead of the gra-
dient descent method when updating x in ALM-ANAD algorithm, and after this modification
all other explored techniques in the ALM-ANAD algorithm can be borrowed directly.

For the ALM-ANAD algorithm, three parameters, i.e., s, β, γ, were selected empirically in
the present studies by visual inspection for eye-appealing results with comparison to the true
phantom or the normal-dose image. In general, penalty parameter selection is a nontrivial and
application-dependent task, which is usually determined by time consuming trial and error
process. Meanwhile, the parameters ρmin, δ, ρ, K in the implementation of the ANAD algo-
rithm were adaptively determined using the nonmonotone line search technique described in
[20, 21]. In practice, more theoretical insight in optimizing the parameters is necessary for the
ALM-ANAD algorithm, which is an interesting topic for future research.

All the PWLS-based algorithms in the studies were implemented in Matlab 7.9 (The Math
Works, Inc.) programming environment. The codes were run on a typical desktop computer
with Intel Xeon X5647 Processor, 2.93 GHz and 24 GB of RAMmemory. To reconstruct an
image with size of 512 × 512, the ALM-ANAD algorithm took approximately 0.4 min per itera-
tion while the SB-NCG and NCG algorithm took approximately 0.5 and 0.7 min, respectively.
The gain from the ALM-ANAD algorithm is noticeable over that from the NCG algorithm.
However, it is worth to notice that because the splitting-based algorithms suffer from the cost
of manipulating and storing auxiliary constraint variable [4, 11, 12, 16, 17], the ALM-ANAD
algorithm for CT image reconstruction has the drawback of heavy memory load. Practically,
the present ALM-ANAD algorithm needs additional memory requirements as compared with
the classical NCG algorithm, especially in the case of 3D image reconstruction. In further
research, more advanced accelerate methods based on the ALM-ANAD algorithm should be
explored, such as ordered subset and GPU based speed-up techniques, which is an interesting
topic. Another draw back of the present ALM-ANAD algorithm is that it may lead to over-
smooth around edges or boundaries as described in Fig 3(D). To preserve edges in the recon-
structed images, effective iterative reconstruction method with reasonable parameter selection
is necessary that enables one to achieve a clinically acceptable image with as low as possible
mAs without compromising quality, which is an interesting topic for future research.

In this work, the present ALM-ANAD algorithm was only focusing on low-dose CT image
reconstruction. Meanwhile, the present algorithm can also be used in other applications,
including positron emission tomography (PET) [38], single photon emission CT [39], mobile
landmark search framework [40], codebook compression [41], mobile visual location recogni-
tion [42, 43]. This is an interesting topic for future research.
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