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PICK1 regulates the trafficking of ASIC1a and
acidotoxicity in a BAR domain lipid binding-
dependent manner
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Abstract

Background: Acid-sensing ion channel 1a (ASIC1a) is the major ASIC subunit determining acid-activated currents
in brain neurons. Recent studies show that ASIC1a play critical roles in acid-induced cell toxicity. While these
studies raise the importance of ASIC1a in diseases, mechanisms for ASIC1a trafficking are not well understood.
Interestingly, ASIC1a interacts with PICK1 (protein interacting with C-kinase 1), an intracellular protein that regulates
trafficking of several membrane proteins. However, whether PICK1 regulates ASIC1a surface expression remains
unknown.

Results: Here, we show that PICK1 overexpression increases ASIC1a surface level. A BAR domain mutant of PICK1,
which impairs its lipid binding capability, blocks this increase. Lipid binding of PICK1 is also required for PICK1-
induced clustering of ASIC1a. Consistent with the effect on ASIC1a surface levels, PICK1 increases ASIC1a-mediated
acidotoxicity and this effect requires both the PDZ and BAR domains of PICK1.

Conclusions: Taken together, our results indicate that PICK1 regulates trafficking and function of ASIC1a in a lipid
binding-dependent manner.

Background
Acid-sensing ion channels (ASICs) are a group of cation
channels that are activated by a decrease in extracellular
pH [1,2]. Four ASIC genes (ACCN1-4) have been identi-
fied, with ASIC1 and ASIC2 each has two splice variants
(a and b). Each ASIC subunit contains two transmem-
brane domains with both N- and C-termini reside inside
the cell and a large cysteine-rich extracellular domain.
Recent crystal structure shows that ASICs are trimers [3].
ASICs are predominantly expressed in the nervous

system. In the central nervous system, ASIC1a is the
major subunit determining acid-activated responses in
neurons [4,5]. ASIC1a localizes to dendritic spines and
regulates acid-induced Ca2+ increase in spines [6,7].
ASIC1a contributes to synaptic plasticity, learning and
fear [5,8-10]. More importantly, ASIC1a plays critical
roles in multiple neurological diseases including ische-
mia [11,12], multiple sclerosis [13], Parkinson’s disease

[14], seizure [15], and pain [16,17]. These studies
demonstrate the importance of ASIC1a in diseases. Sev-
eral studies have examined the modulation of ASIC1a
channel activity by redox reagents, divalent ions, and
peptides [18-24]. However, molecular mechanism regu-
lating ASIC1a trafficking is not well understood.
PICK1 (protein interacting with C kinase 1) is a scaf-

folding protein that regulates trafficking of multiple
membrane proteins [25]. For example, interaction of
PICK1 with GluR2, an AMPA-type glutamate receptor
subunit, is important for synaptic targeting and surface
expression of AMPA receptors during synaptic plasticity
[26-33]. PICK1 also regulates vesicle trafficking between
Golgi and acrosome in spermatids and deficiency of
PICK1 in mice leads to abnormal acrosome formation
and male infertility [34]. Two domains of PICK1 are
important for its function. Its PDZ (PSD-95/Dlg/ZO-1)
domain mediates direct interaction with many proteins
that contain a PDZ binding motif. In addition to the
PDZ domain, the middle portion of PICK1 contains a
BAR (Bin/amphiphysin/Rvs) domain [35], which directly
binds to lipids, mainly phosphoinositols [36]. Both the
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PDZ and BAR domains work together and enable
PICK1 to couple its PDZ domain-binding partners (e.g.
GluR2) to protein trafficking machinery [36,37].
Previous studies show that ASIC1a interacts with

PICK1 and this interaction changes the subcellular clus-
tering of ASIC1a [38,39]. The interaction of ASIC1a and
PICK1 is mediated by the C-terminus of ASIC1a and
the PDZ domain of PICK1. Furthermore, the interaction
of PICK1 with ASIC1a was found to be regulated by
protein kinases [40,41]. However, whether PICK1 regu-
lates ASIC1a trafficking remains unknown.
Given that PICK1 regulates trafficking of several

membrane proteins, and that PICK1 directly interacts
with ASIC1, we hypothesize here that PDZ and BAR
domains of PICK1 cooperatively regulate ASIC1a surface
expression. Our results showed that PICK1 regulates
cell-surface expression of ASIC1a in a lipid binding-
dependent manner. Further, we showed that this inter-
action regulates acidosis-induced cell toxicity.

Results
PICK1 regulates surface levels of ASIC1a
As an ion channel, the number of ASIC1a at cell surface
will determine the magnitude of ASIC1a-mediated
response. To examine if PICK1 regulates the level of
ASIC1a at cell surface, we performed cell surface pro-
tein biotinylation assay to measure the surface level of
human ASIC1a. ASIC1a or ASIC1a with PICK1 were
transfected into HEK293T cells. Surface proteins were
labeled with membrane-impermeable biotin and then
precipitated from cell lysates with immobilized NeutrA-
vidin beads. Surface and total samples were subjected to
Western blot analysis. Figure 1A shows the validation of
an ASIC1a antibody, which was directed against the
C-terminal 61 amino acids of ASIC1a. As shown in Fig-
ure 1B, PICK1 significantly increases surface expression
of ASIC1a. To obtain a quantitative measurement of
PICK1’s effect on surface ASIC1a, we normalized sur-
face ASIC1a to total ASIC1a and obtained the ratio of
ASIC1a at cell surface. This was done by loading differ-
ent amounts of total ASIC1a to obtain a standard curve.
The amount of surface ASIC1a was calculated by fitting
the intensity of the surface ASIC1a to the standard
curve. As shown in Figure 1C, we found that there was
5.05% ± 0.9% of ASIC1a located at cell surface. Co-
expressing with PICK1 increased ASIC1a surface/total
ratio to 7.80% ± 1.4% (n = 5, p < 0.01, paired t-test).
We also noticed that there were multiple species of

ASIC1a on the gel. To answer if this effect is specific
to human ASIC1a, we studied mouse ASIC1a. Co-
expressing of PICK1 with mouse ASIC1a also increased
the population of faster migrating ASIC1a (Figure 1D).
Previous studies show that differential glycosylation
leads to the formation of multiple species of ASIC1a

with different apparent molecular weights on western
blots [9,42]. To assess if glycosylation results in the dif-
ference observed here, we treated ASIC1a transfected
lysates with PNGase F, which removes all N-glycan, or
EndoH, which removes high-mannose N-glycans that
are added early in the secretory pathway [42,43].
PNGase treatment reduced all slower migrating species
to the faster migrating species in both control and
PICK1 overexpressing conditions. In contrast, there was
still a fraction of slow migrating species after EndoH
treatment. These data suggest that PICK1 regulates the
glycosylation and/or maturation of ASIC1a.

PICK1-regulated surface expression of ASIC1a is
dependent on the lipid binding of PICK1’s BAR domain
The BAR domain of PICK1 binds to lipids and this lipid
binding regulates surface expression of AMPA receptors
[36]. We therefore asked whether the effect of PICK1
on ASIC1a surface expression is also dependent on the
BAR domain of PICK1. PICK1 2K-E is a lipid binding-
deficient mutant with two critical residues of the BAR
domain, Lys266 and Lys268, mutated to glutamate [36].
Unlike the wild-type PICK1, PICK1 2K-E did not
increase surface levels of ASIC1a (surface/total ASIC1a
ratio: ASIC1a alone: 5.05% ± 0.9%; ASIC1a + PICK1:
7.80% ± 1.4%; ASIC1a + PICK1 2K-E: 5.18% ± 1.6%,
n = 5, Figure 1C). This result indicates that lipid binding
is required for PICK1-regulated surface expression of
ASIC1a.
To test if PICK1’s effect on ASIC1a surface expression

requires their interaction, we also examined the effect of
a PICK1 PDZ domain mutant, KD-AA, which has two
critical residues in the PDZ domain of PICK1, Lys27
and Asp28, mutated to alanine and renders the mutated
PICK1 unable to interact with ASIC1a [38,39]. As
expected, PICK1 KD-AA had no effect on ASIC1a sur-
face levels (surface ASIC1a ratio with PICK1 KA-AA:
5.42% ± 1.6%, p < 0.05 comparing to ASIC1a + PICK1,
not significant comparing to ASIC1a alone or ASIC1a +
PICK1 2K-E, n = 4, Figure 1C). These results indicate
that both the PDZ and BAR domains are required for
PICK1 to regulate ASIC1a surface expression.

Lipid binding is required for PICK1-induced clustering
of ASIC1a
Next, we asked whether lipid binding of PICK1 affects
ASIC1a subcellular localization. We co-transfected
ASIC1a with wild-type PICK1 or BAR-domain mutant
PICK1 2K-E into HEK293T cells. When expressed alone
in 293T cells, ASIC1a was diffusely localized in cytosol
with a pattern typical of membrane proteins. Similarly,
wild-type PICK1 and PICK1 2K-E were also diffusely
localized in cytosol (Figure 2A). When ASIC1a and
wild-type PICK1 were co-transfected into 293T cells,
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they formed co-clusters in the perinuclear region (Figure
2B, upper panel). This localization pattern is similar to
what has been reported for PICK1 and ASIC2 [38,39].
One interesting phenomenon we observed was that
ASIC1a and PICK1 also formed co-clusters along some
cellular protrusions (Figure 2B, lower panel). The nature
of these co-clusters is not clear at the moment. In con-
trast to wild-type PICK1, when PICK 2K-E mutant was
co-transfected with ASIC1a in 293T cells, we did not

observe any cluster formation (Figure 2C). This result
indicates that PICK1 requires its lipid binding ability to
regulate the subcellular localization of ASIC1a.
To answer the question whether mutating the BAR

domain of PICK1 interferes with its interaction with
ASIC1a, we performed co-immunoprecipitation analysis.
GFP-ASIC1a was co-transfected with myc-tagged wild-
type or mutant PICK1 into HEK293T cells and immu-
noprecipitated with an anti-myc antibody. Consistent

Figure 1 PICK1 increases surface levels of ASIC1a. A, HEK293T cells were transfected with GFP-ASIC1a and cell lysates were subjected to
Western blot analysis. Purified antibody detected a strong band in cells transfected with ASIC1a and this band was blocked by pre-absorbing
with antigen ASIC1-CT (ASIC1a C-terminal 60 amino acids fusion protein). As a position control, GFP antibody detected a band at the same
position, indicating this band is GFP-ASIC1a. B, ASIC1a alone or ASIC1a together with either wild-type or mutant PICK1 were transfected into
HEK293T cells as indicated. Surface ASIC1a proteins were isolated using surface biotinylation assay. Total and surface samples were resolved by
SDS-PAGE and immuno-blotted with the same ASIC1 antibody shown in A. Co-expression with PICK1 increased the band intensity of surface
ASIC1a. C, Quantification data from multiple experiments in B. Surface ASIC1a ratios, expressed as the percentage of ASIC1a on the surface
relative to total ASIC1a, were determined by fitting surface ASIC1a to a standard curve obtained by quantifying different amounts of total
ASIC1a. Wild-type PICK1 significantly increased surface ASIC1a (** p < 0.01). Both the BAR domain mutant PICK1 2K-E and the PDZ domain
mutant PICK1 KD-AA abolished PICK1-induced increase in surface ASIC1a. D, The effect of PICK1 on glycosylation of ASIC1a. Mouse ASIC1a was
transfected alone or together with PICK1 into CHO cells and the lysates were treated with PNGase F or EndoH and analyzed by Western blot.
PICK1 increased the species of faster migrating ASIC1a on the gel. PNGase F treatment reduced almost all slowly migrating ASIC1a to the faster
migrating species. In contrast, there was still a small fraction of slowly migrating species left with EndoH treatment.
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Figure 2 Lipid binding is required for PICK1-induced clustering of ASIC1a. A, ASIC1a and wild-type GFP-PICK1 or lipid binding-deficient
mutant PICK1 2K-E were transfected into HEK293T cells. The cells were fixed and purified anti-ASIC1 antibody was used to stain ASIC1a. When
transfected alone, ASIC1a, PICK1 or mutant PICK1 were all diffusely distributed throughout the cell. B, ASIC1a and GFP-PICK1 were co-transfected
into HEK293T cells and stained with anti-ASIC1 antibody. Wild-type PICK1 and ASIC1a formed co-clusters in the cells. While some cells had big
co-clusters in the perinuclear site of the cell (upper panel), some cells showed small co-clusters along the cellular protrusions (lower panel). C,
lipid binding-deficient mutant PICK1 2K-E did not form any co-clusters with ASIC1a in cell body or cellular protrusions.
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with earlier studies [38,39], the PDZ domain mutant
KD-AA greatly reduced its association with ASIC1a. In
contrast, PICK1 2K-E had no effect on ASIC1a:PICK1
interaction (Figure 3). These results suggest that the
BAR domain is not required for PICK1 to interact with
ASIC1a but is necessary for it to cluster ASIC1a.

PICK1 regulates ASIC1a-mediated acidotoxicity in a
lipid-binding dependent manner
To gain insight into the functional significance of
PICK1-regulated trafficking of ASIC1a, we examined
PICK1’s role in acidosis-induced cell toxicity. We trans-
fected ASIC1a, with or without PICK1, into COS7 cells.
Forty eight hours after transfection, cells were treated
with pH7.4 or pH6.0 solution for 2, 4 or 6 hours. We
then quantified the percentage of cells that show con-
densed nuclei, a marker for apoptotic cell death. Similar
to earlier reports [11,44,45], we found that ASIC1a over-
expression significantly increased cell death upon acid
treatment (ASIC1a transfected cells: 145.8% ± 14.8%,
164.6% ± 8.9%, 187.0% ± 12.8% for 2, 4, 6 hours respec-
tively. n = 7, * p < 0.05, ** p < 0.01 compared to control
groups, Figure 4). Co-expression of PICK1 with ASIC1a
further increased acidosis-induced cell death (ASIC1a +
PICK1 transfected cells: 155.0% ± 11.4%, 192.0% ± 9.0%,
244.0% ± 16.6% for 2, 4, 6 hours respectively. n = 10,
** p < 0.01, *** p < 0.001 compared to control groups;
* p < 0.05 when compared with ASIC1a-transfected
cells, Figure 4). In contrast, in non-transfected cells or
PICK1-only transfected cells, pH6 solution treatment
did not significantly affect cell viability (non-transfected
cells: 104.5% ± 10.0%, 100.8% ± 15.8%, 99.0% ± 12.3%
for 2, 4, 6 hours respectively; PICK1-transfected cells:
90.2% ± 14.0%, 104.4% ± 16.5%, 103.0% ± 17.1% for 2,
4, 6 hours respectively. n = 5, Figure 4). These results
indicate that PICK1 does not increase acidotoxicity by

itself. Instead, it increases the acidotoxicity mediated by
ASIC1a by increasing the level of ASIC1a at cell surface.
Both the PDZ and BAR domains are required for

PICK1’s effect on surface expression of ASIC1a, we
therefore asked if the PDZ and BAR domain mutants
abolish the potentiation effect of PICK1 on acid-induced
cell death. As expected, when co-expressed with
ASIC1a, both PICK1 2K-E (ASIC1a + PICK1 2K-E:
126.9% ± 7.8%, 141.5% ± 10.7%, 164.0% ± 9.6% for 2, 4,
6 hours respectively. N = 6, ** p < 0.01, *** p < 0.001
compared to wild-type PICK1 and ASIC1a co-trans-
fected groups, Figure 5) and PICK1 KD-AA had signifi-
cantly lower death rate comparing to wild-type PICK1
(ASIC1a + PICK1 KD-AA: 115.9% ± 5.8%, 144.3% ±
8.0%, 164.7% ± 4.7% for 2, 4, 6 hours respectively, n = 6,
** p < 0.01, *** p < 0.001 compared to wild-type PICK1
and ASIC1a co-transfected groups, Figure 5). These data
indicate that PICK1 enhanced ASIC1a-mediated cell
toxicity and this enhancement is dependent on PICK1’s
lipid binding ability and its interaction with ASIC1a.

Discussion
ASIC1a-mediated acidotoxicity has emerged as an
important concept for understanding the mechanism of
brain injury in multiple disease paradigms [46,47]. Our
result that PICK1 increases surface levels of ASIC1a and
ASIC1a-mediated acidotoxicity provides an interesting
way to regulate ASIC1a in acid-induced cell toxicity.
The findings here may lead to potential means to alter
surface levels of ASIC1a and subsequently, acid-induced
cell toxicity.
PICK1 interacts with ASICs and this interaction was

proposed to regulate the function of ASICs [38-41].
However, little is known about the mechanism of the
regulation. Our results here provide the first evidence
that two domains (the BAR and PDZ domain) within
PICK1 cooperatively regulate ASIC1a, and consequently
its surface expression. Consistent with earlier results
[38,39], a direct interaction between PICK1 and ASIC1a
through the PDZ interaction is important. In addition,
and similar to our earlier studies on AMPA receptors
[36], the effect of PICK1 on ASIC1a localization and
surface also requires the lipid binding of PICK1. When
the BAR domain of PICK1 was mutated, it can no
longer induce ASIC1a clustering or change its surface
levels, although the interaction between the two proteins
was unaffected.
These findings provide a mechanistic understanding of

PICK1’s role on ASIC1a trafficking and acidosis-induced
cell death. It is possible to change surface levels of
ASIC1a and thus ASIC1a-mediated acidotoxicity, by
perturbing either the protein-protein interaction or pro-
tein-lipid interaction, for instance, via protein kinase or
lipid kinase pathways. In fact, protein kinase A was

Figure 3 BAR domain mutant PICK1 2K-E still interacts with
ASIC1a. HEK293T cells were transfected with GFP-ASIC1a together
with myc-tagged wild-type PICK1, PICK1 2K-E, PICK1 KD-AA or the
vector control, as indicated on the top. Cell lysates were
immunoprecipitated with an anti-myc antibody and immunoblotted
with either a GFP or a PICK1 antibody as indicated. The BAR domain
mutant PICK1 2K-E co-immunoprecipitated with ASIC1a similar to
wild-type PICK1 but the PDZ mutant PICK1 KD-AA could not co-
immunoprecipitate with ASIC1a.
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reported to phosphorylate ASIC1a and inhibit its inter-
action with PICK1 [41], while protein kinase C was
reported to enhance ASIC2a-mediated current via
PICK1 [40]. Of note, the major lipid molecules that
bind to PICK1 are phosphoinositides, which are dynami-
cally modified by lipid kinase and phosphatase on the
cell membrane [36]. It would be interesting to test
whether these protein kinases/phosphatases or lipid
kinases/phosphatases play any role in ASIC1a trafficking
and/or acidotoxicity.
In addition to PICK1, a number of other PDZ domain-

containing proteins have been found to interact with

ASICs. A multivalent PDZ domain containing-
protein CIPP (channel-interacting PDZ domain protein)
was found to interact with ASIC3 and overexpression of
CIPP potentials ASIC3-mediated currents [48]. This
potentiation is also likely due to increased surface expres-
sion of ASIC3. PSD-95 and several other PDZ domain-
containing proteins including Lin-7b, MAGI-1b and PIST
were also found to interact with ASIC2a and ASIC3 [6,39].
While PSD-95 decreased surface ASIC3 and ASIC3-
mediated currents, Lin-7b increased surface ASIC3 and
ASIC3-mediated current. These results, together with
ours, suggest that it could be a general mechanism for

Figure 4 PICK1 enhances ASIC1a-mediated cell toxicity. A, Different constructs were transfected into COS7 cells as indicated. The cells were
treated with pH7.4 or pH6.0 solution for 2, 4 or 6 hours respectively 48 hours after transfection. Hoechst staining was performed to mark cells
undergoing apoptotic cell death, which were identified by their condensed nuclei. The examples after 4 hours of treatment were shown here.
There was more cell death in ASIC1a transfected cells compared with non-transfected cells, while PICK1 co-transfected cells showed further
increase in cell death. B, The percentage of cell death was quantified from multiple experiments. The extent of cell death after acid treatment is
expressed as a percentage of that from pH7.4 solution incubation. ASIC1a transfection significantly increased cell death compared with non-
transfected cells or PICK1-only transfected cells. Co-transfection with PICK1 further enhanced ASIC1a-mediated cell toxicity (* p < 0.05, ** p <
0.01, *** p < 0.001).
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PDZ domain-containing proteins to regulate surface
expression and subcellular targeting of ASICs. Interest-
ingly, while previous studies show that ASIC1a is present
in dendritic spines and enriches in synaptosomal prepara-
tions [5,6], the mechanisms for synaptic targeting of
ASIC1a remain unclear. In two reports, ASIC1a did not
coIP with PSD-95 [6,49]. Our results here may provide
one possible mechanism for regulating ASIC1a targeting
to synapses. It will be interesting to address the question if

manipulating PICK1 changes ASIC1a synaptic localization
in the future.
Previous studies have shown that PICK1 regulates

multiple neuronal receptors/transporters. Similar to
what is reported here, PICK1 increases surface dopa-
mine transporters (DATs) and enhances DAT uptake
[50]. In contrast, overexpression of PICK1 decreases
surface expression of AMPA receptors [31,33,36,51]
and netrin-1 receptor UNC5H1 [52]. The detailed

Figure 5 Lipid binding of PICK1 is required for regulating ASIC1a-mediated acidotoxicity. A, ASIC1a with wild-type PICK1, lipid binding-
deficient mutant PICK1 2K-E or PDZ mutant PICK1 KD-AA were transfected into COS7 cells. Cell toxicity study was then performed as in Fig. 5.
B, The percentage of cell death was quantified from multiple experiments. Wild-type PICK1 co-transfection showed significantly more cell death
in response to acidosis compared with mutant PICK1 co-transfection (** p < 0.01, *** p < 0.001). There was no further increase of cell death in
PICK1 2K-E and PICK1 KD-AA co-transfected cells compared with ASIC1a-only transfected cells (p > 0.05).
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mechanism of PICK1-mediated protein trafficking is not
clear at this moment. One model which could reconcile
these differences is that PICK1 may maintain an intra-
cellular reserve pool of membrane proteins. This pool of
membrane proteins will engage in exchanging with cell
surface proteins in a regulated manner. Consistent with
this speculation, knockout of PICK1 leads to deficiency
in both the insertion of GluR2 to cell surface of cerebel-
lar stellate cells [28] and the removal of GluR2 from cell
surface of cerebellar Purkinje neurons [27]. Upon stimu-
lation, PICK1 can facilitate either endocytosis or exocy-
tosis of its binding partners, depending on the
distribution of these proteins in different pools and the
nature of the stimulation. While the detailed mechan-
isms need more clarification, these findings suggest that
PICK1 is a common protein trafficking regulator that
couples membrane proteins to trafficking machinery via
its unique combination of the PDZ domain and BAR
domain.

Methods
cDNA cloning, mutagenesis and protein purification
Rat PICK1 cDNAs [26] and human ASIC1a (long form
[38], kindly provided by Dr. Garcia-Anoveros and
Dr. Corey) constructs were subcloned into corresponding
expression vectors in frame by restriction enzyme diges-
tion and ligation. Mouse ASIC1a expression constructs
have been described earlier [7,24]. To generate BAR
domain mutants of PICK1, we synthesized PCR (poly-
merase chain reaction) primers containing the desired
mutation. PCR mutagenesis was performed using a Quik-
change site-directed mutagenesis kit (Stratagene, La Jolla,
CA, USA). All constructs were subsequently confirmed
by sequencing. To produce fusion proteins, cDNA con-
structs were transformed into Escherichia Coli BL21 cells
and induced with IPTG (isopropyl-beta-D-thiogalacto-
pyranoside). GST (glutathione S transferase) fusion pro-
teins were affinity-purified by glutathione-Sepharose-4B
(Amersham Biosciences, Uppsala, Sweden) and His
fusion protein was affinity-purified by Ni2+ chelate resin
nickel-nitrilotriacetic acid (Qiagen, Valencia, CA, USA),
according to the manufacturers’ instructions. Purified
fusion proteins were eluted and dialyzed against the cor-
responding buffers for follow-up experiments. Fusion
protein concentrations were determined by Coomassie
assays (Pierce, Rockford, IL, USA).

ASIC1 antibody
An anti-ASIC1 antibody was generated by injecting rab-
bits with a bacterially expressed GST fusion protein
containing the amino acids 513-574 of human ASIC1a.
Antiserum was purified by passing through Affi-Gel 10
(Bio-Rad, Richmond, CA, USA) that was coupled to His
tagged C-terminal ASIC1a fusion protein (containing

amino acids 513-574), washing with Tris-buffered saline
(TBS, pH7.4), eluting with 100 mM glycine-HCl pH 2.8,
and neutralizing with TBS (pH 8.0). A rabbit anti-ASIC1
antibody was kindly provided by Dr. John Wemmie and
has been described earlier [10].

Cell culture, transfection and immunostaining
Human embryonic kidney (HEK) 293T cells or monkey
kidney cells (COS7) were cultured in MEM (modified
Eagle’s Medium) media (Invitrogen-Gibco, Grand Island,
NY, USA) plus fetal bovine serum. For immunostaining,
HEK293T cells were grown on coverslips coated with
0.2% gelatin. cDNA constructs were transfected into the
HEK293T cells by calcium phosphate co-precipitation.
The cells were fixed 36-48 hours after transfection by 4%
paraformaldehyde and 4% sucrose in phosphate-buffered
saline (PBS) for 20 minutes at room temperature. The
cells were then permeabilized by 0.2% Triton X-100 in
PBS for 10 minutes at room temperature. After blocking
with 10% normal donkey serum (NDS) in PBS for
1 hour, the cells were incubated with affinity-purified rab-
bit anti-ASIC1 antibody in 3% NDS for 1 hour at room
temperature, followed by 1 hour of incubation with Red-
X conjugated fluorescence anti-rabbit secondary antibody
(Jackson Immunoresearch; West Grove, PA, USA). After
washing with PBS, the coverslips were mounted with Per-
mafluor (Immunon, Pittsburgh, PA, USA). The cells were
observed with a Nikon Eclipse TE2000 (Nikon Co.,
Tokyo, Japan) inverted fluorescence microscope under a
60x Plan Apochromatic oil lens (NA = 1.4, Nikon Co.).
Pictures were taken by a monochrome low noise cooled
CCD camera (SPOT-RT, Diagnostic Instruments, Sterling
Heights, MI, USA) controlled by Metamorph imaging
acquisition software (Universal Imaging, West Chester,
PA, USA). Images were processed with Adobe Photoshop
to adjust intensity and contrast, to select the region of
interest and to overlay two images. All images were taken
in monochrome gray scale and artificially colored for
presentation.

Co-immunoprecipitation
GFP-tagged human ASIC1a were co-transfected into
HEK293T cells with myc-PICK1, myc-PICK1 2K-E or
myc-PICK1 KD-AA. Two days after transfection, the
293T cells were lysed with 2% Triton X-100 in PBS and
incubated with anti-myc antibody/Protein A complex at
4°C for at least 2 hours. The resin was washed once
with cold PBS and 1% Triton X-100, twice with cold
PBS, 1% Triton X-100 and 500 mM NaCl and three
times with cold PBS. After washing, the resin was eluted
with 1× SDS (sodium dodecyl sulphate) sample buffer
and was analyzed by SDS-PAGE (SDS polyacrylamide
gel electrophoresis) and immuno-blotted with affinity-
purified rabbit anti-GFP or PICK1 antibody.
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Biotinylation assay
HEK293T cells were washed three times with phos-
phate-buffered saline supplemented with 0.5 mM CaCl2
and 0.5 mM MgCl2 (B buffer) and treated with 0.5 mg/
ml sulfo-succinimidyl-6-(biotinamido) hexanoate (sulfo-
NHS-LC-biotin from Pierce) in B buffer for 5 minutes
at room temperature. The free sulfo-NHS-LC-biotin was
removed by rapidly washing the cells two times with
100 mM glycine in B buffer followed by two washes
with B buffer. The biotinylated cells were solubilized
with 1 ml RIPA buffer (10 mM Tris, pH 7.4, 150 mM
NaCl, 1 mM EDTA, 0.1% SDS, 1% Triton X-100, 1%
sodium deoxycholate). The samples were centrifuged at
maxi-speed in a table-centrifuge for 15 minutes at 4°C.
A sample of this supernatant was removed for estima-
tion of the total protein. The remaining supernatant
proteins were incubated with 100 μl 50% slurry of Neu-
trAvidin beads (Pierce) for 1 hour at 4°C with constant
rotation. After several washes, the biotinylated surface
proteins were eluted from the NeutrAvidin beads in 100
μl of 1× SDS sample buffer. The samples were subjected
to SDS-PAGE and Western blot analysis.

Hoechst staining
ASIC1a and myc-PICK1 were transfected into COS7
cells using lipofectamine 2000 (Invitrogen). Forty eight
hours after transfection, the cells were incubated in a
HEPES buffer (10 mM HEPES, 10 mM glucose, 140
mM NaCl, 5 mM KCl, 2 mM CaCl2, 0.8 mM MgCl2)
with pH7.4 or pH6.0 for different times. Chromatin con-
densation was detected by nucleus staining with
Hoechst 33342. Briefly, cultured cells were washed once
with PBS and fixed with 4% paraformaldehyde plus 4%
sucrose in PBS for 15 minutes at room temperature.
The cells were then stained with Hoechst 33342 (5 μg/
ml) for 15 minutes at room temperature and washed
twice with PBS. The nuclei were visualized under a
fluorescence microscope at 20× magnification. The per-
centages of cell death were first calculated for each
group and then normalized to the group incubated with
pH7.4 solution. The extent of cell death after acid treat-
ment was expressed as a percentage of the group that
incubated with pH7.4 solution at the same time.

PNGase and EndoH treatment and western blot analysis
Culture and lipofectamine 2000-mediated transfection of
Chinese hamster oocyte (CHO) cells (purchased from
ATCC) were done as described earlier [24]. Mouse
ASIC1a was co-transfected with eGFP or GFP-PICK1.
Two days after transfection, cells were scraped off in PBS
containing 1%NP40 and 0.5%SDS in the presence of pro-
tease inhibitors (Roche). Cell lysates were homogenized
by brief sonication and cleared by centrifugation. For

deglycosylation, cell lysates were boiled for 10 min at
100°C in 1× glycoprotein denaturing buffer (supplied
by the manufacture), followed by adding 1.5 μl
of PNGase F (= 11.5 mU, New England Biolabs) or 1 μl
of Endo H (= 50 mU, New England Biolabs) to 50 μl of
lysate, and incubated overnight at 37°C. Untreated and
treated lysates were analyzed by western blot, using an
Odyssey imaging system (LiCor) as described earlier
[24].

Statistics
Student t test was used for statistics unless otherwise
specified.
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+/calmodulin-dependent protein kinase II; CIPP: channel-interacting PDZ
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sulfoxide; ENaC/DEG: epithelial Na+ channel/degenerin; GST: glutathione S
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