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Abstract

The substantial use of triclosan (TCS) has been aimed to kill pathogenic bacteria, but TCS

resistance seems to be prevalent in microbial species and limited knowledge exists about

TCS resistance determinants in a majority of pathogenic bacteria. We aimed to evaluate the

distribution of TCS resistance determinants in major pathogenic bacteria (N = 231) and to

assess the enrichment of potentially pathogenic genera in TCS contaminated environments.

A TCS-resistant gene (TRG) database was constructed and experimentally validated to

predict TCS resistance in major pathogenic bacteria. Genome-wide in silico analysis was

performed to define the distribution of TCS-resistant determinants in major pathogens.

Microbiome analysis of TCS contaminated soil samples was also performed to investigate

the abundance of TCS-resistant pathogens. We experimentally confirmed that TCS resis-

tance could be accurately predicted using genome-wide in silico analysis against TRG data-

base. Predicted TCS resistant phenotypes were observed in all of the tested bacterial

strains (N = 17), and heterologous expression of selected TCS resistant genes from those

strains conferred expected levels of TCS resistance in an alternative host Escherichia coli.

Moreover, genome-wide analysis revealed that potential TCS resistance determinants were

abundant among the majority of human-associated pathogens (79%) and soil-borne plant

pathogenic bacteria (98%). These included a variety of enoyl-acyl carrier protein reductase

(ENRs) homologues, AcrB efflux pumps, and ENR substitutions. FabI ENR, which is the

only known effective target for TCS, was either co-localized with other TCS resistance deter-

minants or had TCS resistance-associated substitutions. Furthermore, microbiome analysis

revealed that pathogenic genera with intrinsic TCS-resistant determinants exist in TCS con-

taminated environments. We conclude that TCS may not be as effective against the majority

of bacterial pathogens as previously presumed. Further, the excessive use of this biocide in

natural environments may selectively enrich for not only TCS-resistant bacterial pathogens,

but possibly for additional resistance to multiple antibiotics.
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Introduction

The surge of pathogenic bacteria resistant to antimicrobials is a major concern for global pub-

lic health [1], which calls for a need to develop effective antibiotics [2]. Previous reports suggest

that microbial resistance to antimicrobial compounds is directly correlated with biocide and

antimicrobial use [3].

The biocide triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol] (TCS) is widely used in a

variety of personal care products [4–6]. TCS blocks bacterial fatty acid biosynthesis by target-

ing the highly conserved enoyl-acyl carrier protein (ACP) reductase (ENR) [7]. However,

various mechanisms are known that confer TCS resistance in bacteria, namely (i) ENR overex-

pression [8]; (ii) the presence of mutated and/or TCS tolerant ENR [9]; (iii) modulation of the

outer membrane [10]; and (iv) upregulation of efflux pumps [8, 11]. In addition, studies have

found that TCS exerts selective pressure and induces co- or cross-resistance to other antibiot-

ics [9, 12–16]. The mechanisms that underlie TCS-associated co- or cross-resistance are either

unknown or attributed to different co-localized antibiotic resistance genes (ARGs) and/or

efflux pumps [17]. Excessive use of this biocide has resulted in various environmental and

human health concerns [4–5]. In September 2016, U.S. Food and Drug Administration

banned over-the-counter antiseptic wash products containing TCS and 18 other antimicrobial

agents based on the safety concerns of their long-term use and insufficient evidence demon-

strating protection against pathogenic organisms to reduce the spread of illnesses and infec-

tions [18]. Other countries, including the members of European Union, have banned or

restricted use of this biocide in certain consumer products [19]. In addition, recent reports

suggest that TCS is a potential endocrine disrupter [20], inhibitor of various important

enzymes of the human body [21–22], elicitor of skin and pulmonary allergies [23–24] and

occupational asthma [25]. TCS can potentially alter the microbiome of newborns [26] and was

reported to enrich the gut bacterial genes related to TCS and other antibiotic resistance [27].

The majority of enzymes involved in type II fatty acid synthesis are relatively conserved

among bacteria [28] with the exception of ENR, which catalyzes the final enoyl reduction step

of the fatty acid elongation cycle. To date, four ENR isozymes have been reported from bacte-

ria, FabI [29], FabL [30], FabV [31], and FabK [32]. All ENR isozymes are members of the

short-chain dehydrogenase reductase (SDR) superfamily with the exception of FabK [33].

Despite sharing minimal sequence identity (15–30%), these ENRs not only have significantly

conserved structures, but also a largely conserved folding pattern. These characteristics allow

specific sequence motifs to be assigned, the most important of which are for coenzyme binding

and the enzyme active site [34–36]. FabI is the only effective target ENR for TCS, however,

substitutions at key amino acids in FabI can confer the organisms either resistant or refractory

to TCS. Natural or induced mutations in FabI associated with TCS resistance include G93V,

G93S, G93A, M159T, F203L, F203C, F203A, and S241F [17, 37–39]. Other ENRs are either

partially TCS resistant (FabL) or completely tolerant to TCS, such as FabV [31], 7-αHSDH,

and FabG-like ENR homologues [17] whereas only FabK ENR has shown either moderate

resistance [17] or complete tolerance [32]. ENRs have been potential targets for the develop-

ment of new antibiotics for decades, and a variety of synthetic ENR inhibitors have been devel-

oped or are under development [40].

For over 40 years, TCS has been globally incorporated into a variety of consumer products

[5] under the premise that it confers protection against pathogenic bacteria. However, studies

evaluating the effectiveness of TCS have been limited to examining a few pathogenic microor-

ganisms. Most studies on TCS effectiveness/resistance were performed using either laboratory

grown Escherichia coli or a few other human pathogens, the majority of which were resistant to

TCS because of the presence of TCS resistance determinants in their genomes. However, our

Triclosan-resistant genes in pathogenic microorganisms

PLOS ONE | https://doi.org/10.1371/journal.pone.0192277 February 8, 2018 2 / 18

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0192277


understanding of TCS resistance and TCS resistance determinants among the majority of

other human pathogens and soil-borne plant pathogens, which constitute pools of potentially

transferrable resistance determinants, is limited. Considering the excessive ongoing use of this

biocide, there is a dire need to determine whether the majority of human pathogenic bacteria

are resistant to TCS.

In silico genome-wide studies have been widely used to uncover various aspects of the

genome, such as antimicrobial resistance [41–43] and antimicrobial targets [44–45]. In this

study, we used in silico genome analysis of the 183 FabI carrying most common human patho-

gens [46, 17] and 48 soil-borne plant pathogenic bacteria [17] to investigate the distribution of

genes that may confer TCS resistance, which is a potential threat for human and plant health

with the continued use of TCS. Further, we extends our study to evaluate the abundance of

potential pathogenic genera in TCS contaminated environments. To our knowledge, this is the

first study investigating TCS resistance determinants in the most common human pathogens

and soil-borne plant pathogens.

Methods

Bacterial strains, culture conditions, and DNA isolation

The bacterial strains used in this study were listed in S1 Table and Table 1. These bacterial

strains were routinely grown at their optimal growth temperature (refer to S1 Table) and in

their optimal growth media (agar or broth) supplemented with appropriate antibiotics. The

Table 1. Evaluation and comparison of the observed phenotype with predicted genotype for TCS resistance.

Strain Potential

TCSRD

Genotype Observed

phenotype

MIC� (μg/ml)

Aeromonas salmonicida subsp. salmonicida CIP 103209 FabV(2), AcrB CTT CTT 600�

Bacillus subtilis subsp. subtilis 168 FabIm, FabL MODR MODR 30

Bacillus subtilis subsp. subtilis JH642 FabIm, FabL MODR MODR 30

Bacillus velezensis G341 FabIm, FabL€ MODR MODR 135

Burkholderia pyrrocinia CH-67 FabIm, FabV, FabK€, AcrB CTT CTT 600�

Chromobacterium violaceum ATCC 31532 FabIs, FabK, AcrB CTT/MODR CTT 600�

Escherichia coli DH5a FabIs, AcrB LR/SUS LR/SUS 1

Escherichia coli BL21(DE3) FabIs, AcrB LR/SUS LR/SUS 1

Escherichia coli DH10B FabIs, AcrB LR/SUS LR/SUS 1

Escherichia coli MG1655 FabIs€, AcrB LR/SUS LR/SUS 1

Pectobacterium carotovorum subsp. carotovorum PCC21 FabIm, AcrB MODR MODR 115

Pseudomonas fluorescens 2–79 FabV, AcrB CTT CTT 600�

Pseudomonas putida KT2440 FabV, FabK, AcrB CTT CTT 600�

Pseudomonas syringae pv. tomato DC3000 FabIs, FabK, AcrB CTT/MODR MODR 75

Ralstonia solanacearum GMI1000 FabIs, AcrB€ LR/SUS LR/SUS 1

Ralstonia solanacearum K60-1 FabIs, AcrB LR/SUS LR/SUS 1

Xanthomonas oryzae pv. oryzae KACC 10331 FabV(2)€, AcrB CTT CTT 600�

Symbols and abbreviations: FabIs, TCS sensitive FabI without previously known TCS resistance associated substitution(s); FabIm, TCS resistant FabI with previously

known TCS resistance associated substitution(s); LR/SUS, low resistance/susceptibility (MIC in the range of 0.5–2 μg/ml); MODR, Moderate resistance (MIC in the

range of 10–350 μg/ml); CTT, completely triclosan tolerant (MIC in the range of �600 μg/ml); CTT/MODR, completely triclosan tolerant or moderate resistance;

TCSRD, Triclosan resistance determinants

�, The levels of TCS resistance of all bacterial strains were determined up to the maximum level of 600μg/ml TCS

€, Selected TCSRD for In Vivo TCS resistance test in E. coli DH5α.

https://doi.org/10.1371/journal.pone.0192277.t001
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antibiotic concentrations used were as follows; TCS, 0.5–600 μg/ml and ampicillin 100 μg/ml.

Genomic DNA was isolated from selected strains using Dokdo-PrepTM Bacterial Genomic

DNA Purification Kit (ELPIS BIOTECH) according to the manufacturer’s protocol. pGEM-T

Easy (Promega) vector was used for further subcloning of representative TCS resistant deter-

minants in E. coli DH5α. Recombinant plasmid DNA was isolated using FavorPrep plasmid

extraction mini kit (Favorgen Biotech Corp).

General DNA manipulations

Standard recombinant DNA techniques were carried out as described previously [47]. Primers

used in this study were synthesized commercially at the DNA sequencing facility of MacroGen

(Seoul, Korea). Nucleotide and amino acids sequences of the selected pathogenic and non-

pathogenic bacterial genomes and their TCS resistance determinants were analyzed using the

BLAST and ORF finder online services provided by the National Center for Biotechnology

Information (NCBI) [48]. Multiple alignment analysis was performed using BioEdit software

in combination with GeneDoc, DNA club and Genome Compiler.

TCS resistance and determination of minimum inhibitory concentration

(MIC)

To test if TCS resistance of bacterial pathogen can be inferred from the presence of putative

TCS resistance genes, 17 different laboratory strains were selected for which the whole genome

sequence (WGS) information was available (S1 Table). Comparative genomic analysis and

search for TCS resistance determinants in these organisms were carried out using TCS-resis-

tant gene (TRG) database (see below for details). In summary, to identify TRG sequence reads,

a similarity search was performed between individual human-associated pathogenic bacteria

or soil-borne plant pathogen genomes (subject sequences) and the TRG reference database

(query sequences) using NCBI BLASTp analysis. Annotated sequence reads were selected that

had� 27% amino acid sequence identity with the query sequence and were further analyzed.

According to the presence, absence or various combinations of TRG homologues, the bacterial

strains were classified into various categories of TCS resistance genotypes and predictable phe-

notypes, such as low resistance/susceptibility, moderate resistance and complete TCS toler-

ance. These bacterial strains were examined for TCS resistance in their corresponding growth

media with various concentrations of TCS (see details below). TCS resistance of the bacterial

strains was compared with predicted genotype of the corresponding bacteria.

The MIC of TCS for the selected bacterial strains was determined in a similar way as previ-

ously described [17]. Briefly, bacterial cells were first grown to an OD600 of 1.0, and the bacte-

rial suspensions were further serially diluted 1×105 colony-forming units (CFU)/ml. These cell

suspensions (1×105 CFU/ml) were spreaded onto corresponding growth media containing

TCS in the range of 0.5–600 μg/ml. The culture plates were incubated at optimal growth tem-

perature (S1 Table) for 3 days to one week depending on the growth pattern of the bacterial

strains. This experiment was carried out in triplicates for various TCS concentrations. TCS

resistance profiling data for all tested bacterial strains in this study were deposited in the

National Center for Biotechnology Information (NCBI), under BioProject PRJNA387628.

Subcloning of TCS resistance determinants

To validate whether the predicted potential TCS resistance determinants confer resistance to

TCS, candidate TCS resistance determinants including FabL, FabK, FabI, AcrB and FabV

from selected bacterial strains were cloned and investigated for TCS resistance in E. coli DH5α
(Table 1, S2 Table). All of the five selected genes (along with their corresponding Shine-
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Dalgarno sequence) were amplified from genomic DNA of bacterial strains using gene-specific

primers (S2 Table). PCR amplification was performed as follows: an initial denaturation step

at 95˚C for 5 min; 30 cycles of denaturation at 95˚C for 30 s, annealing at the specified temper-

ature (S2 Table) for 30 s, and extension at 72˚C for 1 min; and a final extension step at 72˚C

for 5 min. The amplified PCR products were subsequently cloned into pGEM-T Easy vector

(S3 Table). Recombinant pGEM-T Easy plasmids were introduced into E. coli DH5α. TCS

resistance of E. coli DH5α carrying the recombinant plasmid were investigated on LB agar sup-

plemented with various concentrations of TCS (0.5–600 μg/ml). A negative and positive con-

trol E. coli DH5α carrying either pGEM-T Easy alone or a metagenomic TCS resistant

7-AHSDH like ENR in pGEM-T Easy, respectively were also included in the experiment.

Selection of human-associated pathogens and soil-borne plant pathogenic

bacteria

To identify TCS resistance determinants, in silico analysis was performed on selected human

pathogenic bacterial strains (N = 183) and soil-borne plant pathogenic bacteria (N = 48).

Many of the human pathogens selected are well-known pathogens that have been previously

listed [17, 46]. These common human-associated pathogenic and few non-pathogenic bacteria

include bacteria of the oral cavity, skin-associated bacteria, food and water-borne bacterial

pathogens, zoonotic bacterial pathogens, nosocomial bacteria, emerging pathogens, and some

beneficial resident flora (S4 Table). Along with reports of TCS accumulation from wastewater,

wastewater treatment plants, sewage sludge [49–50] and sediments [51], in some Asian coun-

tries such as Vietnam, the use of sediment as fertilizer was also reported [52]. Therefore, we

hypothesized that the sewage sludge from wastewater treatment plants and sediment contain-

ing TCS may selectively enrich soil-borne plant pathogens as pathogens may carry TCS resis-

tance determinants. Hence, we extended our in silico study to include 48 soil-borne plant

pathogens (S5 Table) that cause serious plant diseases across many species, to examine whether

they contain TCS resistance determinants.

Construction of a TCS-resistant gene (TRG) database for similarity search

A previously published TRG database [17] was used in this study for similarity search, [53]

(Supplementary Data 2, sheet 2 named as TRG-Reference database of the mentioned paper).

However, this database was slightly modified to contain the deduced full-length amino acid

sequences of well known prototypic and metagenomic ENRs and the AcrB efflux pump sub-

unit (S6 Table). The prototypic ENRs of the TRG database included: (i) TCS-sensitive FabI

from E. coli [54], (ii) mildly TCS-resistant FabL from Bacillus subtilis [30], (iii) TCS-tolerant

FabV from Vibrio cholera [31], (iv) TCS-refractory FabK from Streptococcus pneumonia [32],

(v) TCS-tolerant metagenome-derived 7-αHSDH ENR [17], and (iv) multidrug efflux pump

subunit AcrB from E. coli [11]. The AcrB efflux pump subunit of the TRG database shared sig-

nificant identity with the well-known TCS resistant efflux pump protein homologues [55]

retrieved from BacMet [56] and NCBI databases (S7 Table). This indicates that the AcrB efflux

pump subunit of TRG database is a good candidate for genome wide searches of similar efflux

pump homologues which may confer resistance to TCS.

Comparative search for TCS resistance determinants using a TRG database

TRG sequence reads were identified by performing a similarity search between individual

human-associated pathogenic bacteria or soil-borne plant pathogen genomes (subject

sequences) and the TRG reference database (query sequences) using NCBI BLASTp analysis.

Annotated sequence reads were selected that had� 27% amino acid sequence identity with

Triclosan-resistant genes in pathogenic microorganisms
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the query sequence [34–36]. Protein homologues, which were homologous to the proteins in

the TRG database, were selected for further comparative analysis, while other homologues,

which were similar to hypothetical proteins, were not included in further analysis. Since TCS

is purposely used against human pathogens, and FabI is the only known effective target of

TCS, human pathogens were further analyzed in silico based on either the presence of FabI

alone or with other TCS-resistant determinants. Human pathogens that lacked FabI ENR were

excluded from this study. However, no such criteria were applied in the analysis of soil-borne

plant-associated pathogens. FabI homologues in these organisms underwent an additional

search for previously known TCS resistance-associated substitutions such as G93V, G93S,

G93A, M159T, F203L, F203C, F203A, and S241F [17, 37–39].

Sample collection for microbiome analysis

Previously collected soil samples dated 19th August 2009 from alluvial soil (AS) and industri-

ally contaminated soil (ICS) were stored in sterile zipper bags at -80˚C and processed for DNA

extraction and subsequent MiSeq sequence analysis [17]. ICS samples were collected from the

Gam-geon stream (Sasang-Gu, Busan, Republic of Korea), which is a highly contaminated

stream receiving the combined sewer effluent from many industries, and is in an area that has

been highly urbanized by a number of industries, including machine accessories manufactur-

ers, chemical plants, cosmetics, plywood and lumber processing among others, since 1968

[17]. AS samples were collected from Eulsukdo Island, which is a unique ecosystem where the

Gam-geon stream joins the Nakdong River and converges into the East Sea, which is a mar-

ginal sea of the Pacific Ocean. Each soil sample was processed in duplicate (two technical repli-

cates for each soil type), and both AS and ICS samples were tested previously to be TCS

contaminated where TCS was detected at approximately 0.66–1.29μg/L in these samples [17].

DNA extraction and MiSeq sequence analysis

Soil samples were homogenized and metagenomic DNA isolation was performed using the

Fast DNATM SPIN kit for soil (MP Biomedicals, USA) according to the manufacturer’s proto-

col. Extracted DNA samples were quantified using a NanoDrop 2000 spectrophotometer

(Thermo Fisher Scientific, Wilmington, DE, USA). PCR amplification of the 16S rRNA gene

was performed from extracted DNA of each sample using barcoded PCR forward (5'- TCG
TCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3') and reverse (5'-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3') uni-

versal primers [57] containing the A and B adaptor sequences targeting the hypervariable

V3-V4 region of the 16S rRNA gene. PCR amplicon products from all samples were purified

using Agencourt AMPure beads (Agencourt, USA), and sequencing was performed on an Illu-

mina MiSeq platform (NICEM, Republic of Korea). The raw fastq files were processed using

the ‘quantitative insights into microbial ecology (QIIME)’ pipeline [58] Chimera and sequence

reads< 200 bp and> 600 bp were removed. Gene sequences were separated from barcodes

and primers. High-quality sequence reads were clustered into operational taxonomic units

(OTUs) using a threshold of 97% pair-wise nucleotide sequence identity. OTUs were taxo-

nomically classified using BLASTn against a curated GreenGenes database (May 2013 release),

and using the Ribosomal Database Project (RDP) classifier (Sep 2016 release). Final data analy-

sis was performed using OTUs assigned to specific taxonomic groups, excluding 47% OTUs

not assigned to any taxonomic group. Relative abundance of OTUs at phylum level was com-

pared among samples using the normalized OTU reads. To compare the bacterial community

among samples, unconstrained principal coordination analysis (PCoA) was performed using

the Bray-Curtis dissimilarity measures and plots were generated with R software (version

Triclosan-resistant genes in pathogenic microorganisms
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3.2.2) (http://www.r-project.org/) using Vegan and ggplot2 packages. Details regarding the

ICS and AS samples, raw sequence data, and analyzed data are provided in SI (S8–S15 Tables).

Accession numbers

Nucleotide accession numbers for the TCS resistance determinants of the TRG database were

previously deposited [17] in the National Center for Biotechnology Information database and

are included in tables and supplementary data where necessary. Moreover, information regard-

ing FabI ENR substitutions associated TCS resistance were deposited to The Comprehensive

Antibiotic Resistance Database (CARD) and can be accessed using the provided URL [59].

Results and discussion

TCS resistance determinants predicted by in silico confer TCS resistance

To confirm if the presence of potential TCS resistance gene can be used to predict TCS resistant

phenotypes, we selected putative TCS resistance genes from WGS of five selected pathogenic

bacteria and examined for contribution on TCS resistance in E. coli. WGS analysis of the

selected 17 bacterial strains revealed the presence of various TCS resistance determinants (S1

Table) which might be associated with TCS resistance (Table 1). TCS resistance for the bacterial

strains revealed that TCS resistant phenotype could be accurately predicted from the presence

of putative TCS resistance genes, with high specificity-and sensitivity. Introduction of five

selected TCS resistance determinants in an alternative host E. coli DH5α conferred expected lev-

els of TCS resistance (S3 Table) with high specificity-and sensitivity. In our previous study, we

successfully predicted bacterial TCS resistance based on the presence of putative TCS resistance

gene [17], where genes encoding TCS tolerant metagenomic 7-α-HSDH in Helicobacter pylori
and Campylobacter jejuni conferred significant levels of TCS resistance in a tested alternative

host. WGS information of bacterial strains has been previously used to predict antimicrobial

resistance profiles with high sensitivity and specificity [60–62]. Taken together, our results sug-

gest that TRG database-based selection of TCS resistance is suitable to predict TCS resistance of

bacterial pathogen. Other publicly available antibiotic resistant gene databases, either lack

updated information about TCS resistance determinants or some of those information is redun-

dant. For example searching various terms for “triclosan resistance” in the Antibiotic Resistance

Genes Database (ARDB) [63] and The Comprehensive Antibiotic Resistance Database (CARD)

[64] resulted in zero or single hits respectively. The BacMet database [56] on the other hand

though contains many candidate TCS resistant gene homologues, however it has not been

updated since January 18, 2014 and some of the genes such as Acra, OprJ, OprN, TolC among

others, lack direct experimental evidence to confer TCS resistance individually.

Majority of human and plant pathogens carry TCS resistance determinants

In silico analysis of the genomes from 183 human-associated pathogenic/non-pathogenic and

48 soil-borne plant pathogenic bacteria revealed that the majority of these bacteria carried a

variety of TCS resistance determinants (S4 and S5 Tables), Tables 2 and 3). Among the listed

organisms, 78% of human-associated and 98% of soil-borne plant pathogens carried potential

TCS resistance determinants in their genomes (Fig 1). These resistance determinants included

completely TCS-tolerant ENR homologues such as FabV or 7-αHSDH, completely or moder-

ately TCS resistant FabK, TCS-resistant FabI, or FabL, or acrB homologues. We found different

combinations of these TCS resistance determinants, and furthermore, TCS resistant genes were

either present as a single copy or co-occurred with other TCS resistance determinants. Based on

the occurrence of these TCS resistance determinants in microorganisms, we identified certain

Triclosan-resistant genes in pathogenic microorganisms
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resistance patterns (Tables 2 and 3). Organisms carrying either single or multiple copies of TCS

tolerant ENRs such as FabV or 7-αHSDH homologues were categorized as being completely

TCS refractory, whereas organisms with FabK ENR homologues were presumed either as

completely TCS tolerant or moderately TCS resistant. Organisms carrying FabL, AcrB homo-

logues, or FabI homologues carrying substitutions at key amino acid residues were considered

TCS resistant at a specific concentration. Organisms solely possessing FabI without TCS resis-

tance-associated substitutions were categorized as potentially susceptible. In fact, our in silico

Table 2. Summary of TCS resistance determinants in 183 human-associated pathogenic and non-pathogenic

bacteria.

TCS resistance determinants Percent relative

abundance

Expected phenotype

AcrB 58.4 Potentially resistant

FabL 9.8 Potentially mildly resistant

FabK 20.7 Potentially completely or

moderately TCS tolerant

FabV 1.6 Potentially completely TCS

tolerant

7-α-HSDH 23.4 Potentially completely TCS

tolerant

FabI 100 Potential resistance in case of

substitution at key enzyme sites

FabIG93A 42 Potentially resistant

FabIF203 24.5 Potentially resistant

FabI + AcrB 58.4 Potentially resistant

FabI + FabL 9.8 Potentially mildly resistant

FabI + FabV 1.6 Potentially completely TCS

tolerant

FabI + FabK 20.7 Potentially completely or

moderately TCS tolerant

FabI + 7-α HSDH 23.4 Potentially completely TCS

tolerant

FabI + FabV + FabK + AcrB 0.5 Potentially completely TCS

refractory

Organisms with two or more than two TCS resistance

determinants

58.4 Potentially resistant

Organisms with at least one completely TCS resistance

determinant homologue

42.6 Potentially completely TCS

tolerant

Organisms with only FabI ENR homologue 33.3 Potential resistance in case of

substitution at key enzyme sites

Organisms with only FabI ENR homologue which did not

carry any substitution associated with TCS resistance

63 Potentially susceptible

Organisms with only FabI ENR homologue which carried

substitution associated with TCS resistance

36 Potentially resistant

Among 183 FabI, which did not carry any TCS resistance

associated substitutions

27.3 -

Among 183 FabI, which carried TCS resistance associated

substitutions (Known, metagenomic, unknown)

72.6 Potentially resistant

Among 183 FabI, which carried TCS resistance associated

substitutions (Known and metagenomic)

56.8 Potentially resistant

Potentially susceptible organisms among 183 human

pathogens

21.3 1/4th of the total organisms were

potentially susceptible

Potentially resistant organisms among 183 human

pathogens

78.6 3/4th of the total organisms were

potentially resistant

https://doi.org/10.1371/journal.pone.0192277.t002
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analysis found that 42% of human-associated pathogens and 52% of soil-borne plant pathogens

had at least one TCS-tolerant ENR homologue (Tables 2 and 3), and that 57% of human-associ-

ated pathogens and 83% of soil-borne plant pathogens possessed multiple resistance determi-

nants (Tables 2 and 3) that may confer complete tolerance to TCS. Bacteria with FabI ENR

without any TCS resistance-associated substitutions were classified as potentially susceptible,

and comprised a small proportion of bacterial pathogens (21% of human-associated pathogens

and approximately 2% of soil-borne plant pathogens).

Table 3. Summary of TCS resistance determinants in 48 soil-borne plant pathogenic bacteria.

TCS resistance determinants Percent relative

abundance

Expected phenotype

AcrB 58.4 Potentially resistant

FabL 9.8 Potentially mildly resistant

FabK 20.7 Potentially completely or

moderately TCS tolerant

FabV 1.6 Potentially completely TCS

tolerant

7-α-HSDH 23.4 Potentially completely TCS

tolerant

FabI 100 Potential resistance in case of

substitution at key enzyme sites

FabIG93A 42 Potentially resistant

FabIF203 24.5 Potentially resistant

FabI + AcrB 58.4 Potentially resistant

FabI + FabL 9.8 Potentially mildly resistant

FabI + FabV 1.6 Potentially completely TCS

tolerant

FabI + FabK 20.7 Potentially completely or

moderately TCS tolerant

FabI + 7-α HSDH 23.4 Potentially completely TCS

tolerant

FabI + FabV + FabK + AcrB 0.5 Potentially completely TCS

refractory

Organisms with two or more than two TCS resistance

determinants

58.4 Potentially resistant

Organisms with at least one completely TCS resistance

determinant homologue

42.6 Potentially completely TCS

tolerant

Organisms with only FabI ENR homologue 33.3 Potential resistance in case of

substitution at key enzyme sites

Organisms with only FabI ENR homologue which did not

carry any substitution associated with TCS resistance

63 Potentially susceptible

Organisms with only FabI ENR homologue which carried

substitution associated with TCS resistance

36 Potentially resistant

Among 183 FabI, which did not carry any TCS resistance

associated substitutions

27.3 -

Among 183 FabI, which carried TCS resistance associated

substitutions (Known, metagenomic, unknown)

72.6 Potentially resistant

Among 183 FabI, which carried TCS resistance associated

substitutions (Known and metagenomic)

56.8 Potentially resistant

Potentially susceptible organisms among 183 human

pathogens

21.3 1/4th of the total organisms were

potentially susceptible

Potentially resistant organisms among 183 human

pathogens

78.6 3/4th of the total organisms were

potentially resistant

https://doi.org/10.1371/journal.pone.0192277.t003
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Mutations are predominant in FabI ENRs the single known effective target

for TCS

TCS inhibits prototypic FabI ENR [54]; however, FabI is mutation-prone, and point mutation

or combined mutations of the important catalytic residues in FabI ENRs confer TCS resistance

[37–39]. Nevertheless, there is limited literature on TCS resistance-associated substitutions in

FabI ENRs in other human pathogens and in the huge diversity of environmental microorgan-

isms. Our in silico genome analysis revealed that most FabI ENRs from pathogenic organisms

had specific amino acid substitutions, which may be associated with TCS resistance. Of those

pathogenic microorganisms with FabI, we found that 56% of FabI ENRs in human-associated

and approximately 69% of FabI ENRs in soil-borne plant pathogens had such substitutions

(Tables 2 and 3, and S4 and S5 Tables). These substitutions were either present as point muta-

tions or in combination. We found that the G93A substitution was abundant both in FabI

ENRs from human-associated pathogens and from soil-borne plant pathogens. In addition to

previously known substitutions, FabI ENRs from these organisms had novel substitutions, but

whether these mutations confer resistance to TCS is not known. Substitutions at key amino

acid residues in FabI ENR affect TCS binding efficacy in the active site pocket of ENR by

changing conformation of the TCS binding site [65]. We hypothesize that the high structural

diversity of FabI ENRs and various amino acid substitutions of the ENR are associated with

TCS resistance, and will lead to different patterns of TCS resistance. This diversity and varied

patterns of amino acids may alter the affinity of FabI ENRs to bind TCS, which may affect TCS

activity in the organism. For instance, the diversity of amino acids constituting the TCS bind-

ing pocket may enhance or reduce binding of TCS to the ENR, and the subsequent resistance.

Additionally, the frequent exposure of human-associated microorganisms and microorgan-

isms in the environment to TCS may have already led to adaptations in these organisms by

amino acid substitutions in FabI ENRs because of selective pressure.

FabI is not always present as a single target ENR and is frequently co-

localized with mild or completely TCS-resistant ENRs or AcrB efflux

pumps

Another major concern associated with FabI-mediated TCS resistance is that FabI is not

always present as a single ENR in a number of microorganisms [32]. Our in silico study reveals

that only 33% of human-associated pathogens and approximately 2% of soil-borne plant

Fig 1. Triclosan resistance determinants were predominant in human-associated pathogenic bacteria and soil-

borne plant pathogens. Organisms which carried or lack TCS resistance determinants were termed as potentially TCS

resistant (PTCSR) or potentially TCS susceptible (PTCSS) respectively. Relative abundance of TCS resistance

determinants in human-associated pathogenic bacteria and in soil-borne plant pathogenic bacteria; majority of the

organism carried TCS resistance determinants.

https://doi.org/10.1371/journal.pone.0192277.g001
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pathogens carried FabI as a single target, and most of those FabI orthologues carried TCS resis-

tance-associated substitutions (Tables 2 and 3, S4 and S5 Tables). Many of the microorganisms

carry FabI ENR in combination with either mildly or completely TCS- resistant ENR homo-

logues. Co-localization with mildly TCS-resistant ENRs might confer moderate resistance to

this biocide, whereas FabI co-localized with TCS-refractory ENRs may render the organism

fully resistant to TCS. Our results indicate that the majority of microorganisms have various

combinations of ENRs in their genome. We found a predominant (23%) co-occurrence of FabI

ENR with 7-αHSDH ENR in human-associated pathogenic organisms (Table 2). Other TCS-

refractory/TCS-resistant ENRs that co-localized with FabI in human-associated pathogens

include FabK (20%), FabV (1.6%), and FabL (9%) (Table 2). In regards to soil-borne plant path-

ogenic bacteria, we found that the AcrB efflux pump was predominantly (52%) co-localized

with FabI, while FabV (approximately 8%) and FabK (approximately 11%) also occurred with

FabI ENRs (Table 3). Because our findings indicated the presence of multiple TCS-resistant

determinants in a number of single microbial genomes, we propose that the use of FabI inhibi-

tors or TCS against such microorganisms may not be effective because of the presence of addi-

tional ENRs in their genomes. In fact, previous studies identified organisms with FabI that had

mild or completely TCS-resistant ENRs, or AcrB efflux pumps such as Pseudomonas aeruginosa
(FabI and FabV) [66–67], Bacillus subtilis (FabI and FabL) [68], and Enterococcus faecalis (FabI

and FabK) [32]. These organisms exhibited significantly increased TCS resistance because of

the presence of additional TCS tolerant or resistant ENR homologues.

In silico analysis may accurately predict TCS tolerant superbugs

Our in silico genome comparisons revealed that completely TCS-tolerant ENRs were predomi-

nant in most examined pathogens both in human-associated (42%) and soil-borne plant path-

ogens (52%) (S4 and S5 Tables, S16 and S17 Tables). We found that the majority of human-

associated bacteria that carried TCS-tolerant ENRs were pathogens (S4 Table, S16 Table), and

that some had multiple TCS resistance determinants in the genome. These pathogenic bacteria

were well-known human pathogens that cause various infections such as enteric diseases,

opportunistic infections, skin and nosocomial infections, and gastric ulcers. Similarly, most of

the plant pathogenic bacteria, which cause diseases in a variety of plants, carried TCS-tolerant

ENRs in their genomes, such as FabV and FabK ENR homologues (S5 and S17 Tables). We

propose that those organisms with TCS-tolerant ENR homologues likely confer resistance

against TCS similar to that in previously identified organisms that have completely TCS-resis-

tant ENRs [31–32, 66–67].

Co-localized AcrB with FabI or with other ENRs is predominant in the

genomes of most organisms—a potential determinant for co- and cross-

resistance

The homotrimer AcrB, which acts as a tripartite complex, is the principal multidrug trans-

porter in Gram-negative bacteria and confers antibiotic drug tolerance [68]. Our in silico anal-

ysis revealed that genes encoding the AcrB efflux pump were present in the majority of the

human pathogenic bacteria (58.4%) and plant pathogens (87.5%) examined in this study

(Tables 2 and 3). Moreover, AcrB homologues in these organisms were mostly found to be co-

localized with other TCS resistance determinants such as FabI, FabV, FabL, 7-α HSDH, or

FabK ENR homologues. The AcrB efflux subunit confers resistance against TCS [11, 17] in

addition to co- and cross-resistance against other antibiotics [8, 14]. Biocides are known to

potentially co-select for antibiotic resistance in bacteria [69], therefore, the excessive use of
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TCS may selectively enrich those organisms that have intrinsic determinants for TCS and

other types of antibiotic resistance.

Fig 2. Bacterial genera with potentially TCS tolerant pathogenic organisms were present in TCS contaminated

environments. (A) Percent relative abundance of candidate genera from AS and ICS with potentially pathogenic

microorganisms. Clostridium, Arcobacter, Mycobacterium, and Pseudomonas were the major genera among the

potentially pathogenic genera. (B) Percent relative abundance of the top 20 major genera from AS and ICS. Major

genera include Candidatus Solibacter with metagenomic FabG and Clostridium with metagenomic 7AHSDH-like ENR

homologues. Other genera with potentially pathogenic candidates in the top 20% genera included Mycobacterium and

Pseudomonas. (C) Cumulative relative abundance of genera with potentially pathogenic candidates from AS and ICS.

Genera such as Arcobacter, Clostridium, Mycobacterium, Pseudomonas, Bacillus, and Acidovorax represented the major

genera.

https://doi.org/10.1371/journal.pone.0192277.g002
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Microbiome analysis revealed the presence of bacterial genera with

potentially TCS tolerant pathogenic organisms

Microbiome analysis of AS and ICS revealed that bacterial genera with potentially pathogenic

candidates were present and carried TRG homologues (Fig 2A, S13 Table). Those genera with

potentially pathogenic candidates include Clostridium, Arcobacter, Mycobacterium, and Pseu-
domonas. Further, microbial community structure displayed similarity within and difference

among AS and ICS samples, based on Bray-Curtis dissimilarity measures visualized by PCoA

and comparison of relative abundance of bacterial taxa at phylum level (S1 Fig). Microbial

community of two ICS samples were highly similar while that of two AS samples were quite

dissimilar each other. This suggests that AS from the river estuarine may have diverse micro-

bial community dependent on the location. However, our analysis with only two samples per

site has a limitation to make a decisive conclusion on microbial community structure, which

will be a subject of further study. Analysis of the relative abundance of the representative gen-

era showed that Arcobacter (ranked 2nd), Clostridium (ranked 3rd), Mycobacterium (ranked

8th), and Pseudomonas (ranked 12th) were among the top 20 abundant genera (Fig 2B, S14

Table). Cumulative relative abundance analysis of those genera with potentially pathogenic

candidates revealed that Arcobacter, Clostridium, Mycobacterium, Pseudomonas, Bacillus, and

Acidovorax were the major genera (Fig 2C, S15 Table). In silico analysis showed that selected

pathogenic bacterial strains from these genera had various potential TCS resistance determi-

nants (S18 Table), and furthermore, it was found that these representative pathogenic genera

carry potentially TCS-resistant determinants [17]. Previous studies have found that highly

abundant genera such as Candidatus Solibacter, Clostridium, and Pseudomonas have com-

pletely TCS-tolerant ENR homologues [17, 67]. We propose that organisms with intrinsic

TCS-tolerant determinants have additional benefits to flourish and be selectively enriched in

TCS contaminated environments. However, it will be interesting to investigate how the popu-

lation of TCS resistant pathogenic and non-pathogenic bacteria will change over time in a

diverse microbial community under TCS selective pressure.

Conclusions

We conclude that TCS resistance determinants are highly abundant in most human patho-

genic bacteria and in the majority of plant pathogenic bacteria, and that TCS may not be as

effective against those organisms as previously presumed. Since FabI is targeted by other clini-

cally important antimicrobials, and most organisms possess intrinsic TCS tolerance determi-

nants, the continuously escalating use of this biocide may not only exert a selective pressure

for TCS resistance, but also enrich for other antibiotic resistance genes in the environment.

Furthermore, co-localization of a diverse number of TCS resistant ENRs with FabI may render

TCS and TCS-based ENR inhibitors ineffective as antimicrobial agents. Therefore, it is impor-

tant that the diversity of ENRs in pathogenic bacteria should be considered prior to developing

selective ENR inhibitors.

Supporting information

S1 Fig. Community structure displayed similarity within and difference among AS and

ICS samples. (a) Principal coordinate analysis (PCoA) plot representing differences in micro-

bial community among AS and ICS samples. Each point represents individual sample. The

variance explained by the PCoA is indicated on the axes. (b) Percent relative abundance

revealed relatively similar microbial community structure among similar sample types.

(TIF)
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S1 Table. Details of the genome wide analysis of selected 17 bacterial strains to predict

phenotype from genotype in terms of the presence/absence of TCS resistance determi-

nants.

(XLSX)

S2 Table. List of primers used in PCR reaction for predicted TCS resistance determinants

to clone into pGEM-T Easy.

(XLSX)

S3 Table. In vivo TCS resistance patterns of representative TRG homologues from tested

strains cloned into pGEM-T Easy in E. coli DH5α.

(XLSX)

S4 Table. Details of the genome wide analysis of the human pathogens for TCS resistance

determinants.

(XLSX)

S5 Table. Details of the genome wide analysis of the plant pathogens for TCS resistance

determinants.

(XLSX)

S6 Table. Details of the constructed TRG database used for genome wide analysis of the

pathogenic bacteria.

(XLSX)

S7 Table. Rationale for selecting AcrB as a representative of TCS resistant (TCSR) efflux

pump protein homologue.

(XLSX)

S8 Table. Miseq sequence details of the TCS contaminated soil samples, used for micro-

biome analysis.

(XLSX)

S9 Table. Candidate genera from ICS and AS samples determined by Miseq sequence anal-

ysis (OTU count).

(XLSX)

S10 Table. Bacterial genera that carried human and plant pathogenic bacteria and were

present in Elsukdo AS and Sasang ICS are highlighted in bold dark red.

(XLSX)

S11 Table. Relative abundance of bacterial genera in AS and ICS.

(XLSX)

S12 Table. Relative abundance of bacterial genera in AS and ICS.

(XLSX)

S13 Table. This data was used for preparing Fig 2A.

(XLSX)

S14 Table. This data was used for preparing Fig 2B.

(XLSX)

S15 Table. This data was used for preparing Fig 2C.

(XLSX)
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