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Despite the fact that an increased amount of survival-related lncRNAs have been found in cancer, few
drugs that target lncRNAs are approved for treatment. Here, we developed a network-based algorithm,
LncTx, to repurpose the medications that potentially act on survival-related lncRNAs in lung cancer.
We used eight survival-related lncRNAs derived from our previous study to test the efficacy of this
method. LncTx calculates the shortest path length (proximity) between the drug targets and the
lncRNA-correlated proteins in the protein–protein interaction network (interactome). LncTx contains
seven different proximity measures, which are calculated in the unweighted or weighted interactome.
First, to test the performance of LncTx in predicting correct indication of drugs, we benchmarked the
proximity measures based on the accuracy of differentiating anticancer drugs from non-anticancer drugs.
The closest proximity weighted by clustering coefficient (closestCC) has the best performance (AUC
around 0.8) compared to other proximity measures across all survival-related lncRNAs. The majority of
the other six proximity measures have decent performance as well, with AUC greater than 0.7. Second,
to evaluate whether LncTx can repurpose the drugs effectively acting on the lncRNAs, we clustered the
drugs according to their proximities by hierarchical clustering. The drugs with smaller proximity (prox-
imal drugs) were proved to be more effective than the drugs with larger proximity (distal drugs). In con-
clusion, LncTx enables us to accurately identify anticancer drugs and can potentially be an index to
repurpose effective agents acting on survival-related lncRNAs in lung cancer.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Non-small cell lung cancer (NSCLC) is a heterogenous disease
with different molecular drivers and genetic aberrations [1,2]. Sur-
veying the druggable targets in each patient can provide better
care and prolong the survival time [3–5]. For instance, patients
having EGFR mutation, one of the most common genetic aberration
in lung adenocarcinoma [6], can benefit from gefitinib, an EGFR
tyrosine kinase inhibitor (TKI), and had favorable treatment
response compared to those without the drug target [3,7–9]. Other
examples include alectinib and crizotinib in ALK-positive NSCLC
[10]; atezolizumab for the first-line treatment of PD-L1-selected
NSCLC patients [11]. However, only certain population can benefit
from the precision therapy. The discovery of more therapeutic tar-
get is thus necessary. Recent years have shown the explosion of
studies on non-coding RNAs [12]. Whether non-coding RNAs can
become therapeutic targets is worth further investigation.

Long non-coding RNAs (lncRNAs) are expected to be promising
drug targets due to characters of tissue specificity, rapid turnover
and low expression abundance [13,14]. These features may be
associated with lower dose of medication and lesser adverse effects
in other organs [14]. Antisense oligonucleotide (ASO) has been
used to target lncRNAs for years [15]. But since ASO is a large
and highly-charged molecule, its drug-likeness makes the delivery
ASO into human body a challenging task [16]. Few, if any, ASO-
based therapies were approved in treating lung cancer patients.
Considering the complex structure of lncRNAs, it was believed that
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a sophisticated pocket structure which is suitable for binding drug-
like molecules can be found [16]; these enable small molecule to
target the special domains of the lncRNAs [17]. However, because
of the dynamic structure of lncRNA, effective small molecules tar-
geting lncRNA have still been limited [18].

Given that roles of most lncRNAs in lung cancer have not been
fully discovered, numerous published literatures have revealed
crucial lncRNAs that are clearly associated with pathogenesis and
prognosis of lung cancer, such as MALAT1 [19–21] and HOTAIR
[22–24]. In one of our recent works [25], we constructed lncRNA
association networks to investigate functionally similar and co-
regulated lncRNAs in lung cancer. Some lncRNA modules within
the lncRNA association networks were correlated with the overall
survival of the patients. In addition, we proved that the modular
signature could be used as a novel prognostic biomarker in lung
cancer. In terms of the biological functions, we found that the
survival-related lncRNA modules were significantly associated
with cancer hallmarks and pathways. However, it was uncertain
whether these modules can become therapeutic targets as well.
Although it is not denying that few drugs can directly target
lncRNAs [18], the rationale of this study is based on the hypothesis
that drugs can indirectly act on a lncRNA through influencing pro-
teins that are highly correlated with that lncRNA.

With the availability of public pharmacogenomic data [26–28],
the predictive modeling techniques, particularly machine learning
[29–31] and deep learning [32–34], have been largely applied in
the prediction of drug response. Combining in vitro datasets and
patients’ samples is even more powerful in analyzing pharmacoge-
nomic data [35]. Network science is another pivotal discipline
dealing with complex biological systems [36–39]. The application
of network biology in pharmacology brings new insights into early
drug discovery, optimal drug combination regimen [40] and drug
repurposing [41,42]. The advantages of using network pharmacol-
ogy include unraveling disease mechanisms through topology-
based pathways, and prioritizing the candidate targets considering
their network effects [43–47]. Network proximity was proved to be
an effective measure for predicting drug efficacy, particularly in
Parkinson’s disease and several inflammatory disorders [41]. It
was revealed that protein targets of the effective drugs tend to
localize close to the disease-related proteins in the interactome
[41]. Novel drug-disease association can be predicted considering
the proximity as well [41].

The network-based drug repurposing strategy is expected to
identify potentially effective drugs acting on cancer-related
lncRNAs. Meanwhile, it is also questioned that whether properties
of the network (e.g., node degree) are important factors in predict-
ing the effectiveness of a drug. Therefore, we developed a network-
based method, LncTx, which measures the proximity between the
drug targets and lncRNA-correlated proteins in the interactome.
We accentuated the effects of the network properties by weighting
the interactome with various different network parameters. Eight
survival-related lncRNAs discovered in our previouswork [25] were
selected as the therapeutic targets. LncTxwas used to repurpose the
drugs that are potentially effective at targeting these lncRNAs.
2. Materials and methods

2.1. Data sources and data pre-processing

The interactome was derived from the open-access data pro-
vided by Guney et al [41] who collected the experimentally vali-
dated protein–protein interactions from various databases [48–
55].

Two drug lists were used in this study. One was adapted from
the public data created by Guney et al [41], which included 237
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drugs. Since both anticancer and non-anticancer drugs were
included in this list, it was used to assess the performance of pre-
dicting the indication of anticancer drug. The other drug list was
derived from Genomics of Drug Sensitivity in Cancer (GDSC)
[27,56], which consists of two datasets (GDSC1 and GDSC2). All
drugs within this list are anticancer drugs, either clinically
approved or under pre-clinical assessment. Because the improved
screening techniques and procedures were used in GDSC2, we
removed the duplicates shown in GDSC1, combined the two data-
sets, and selected the drug response of the non-small cell lung can-
cer cell lines. There are 429 anticancer drugs in total and their
protein targets. We referred to DRUGBANK [57] for protein targets
of chemotherapy agents because such information was not
revealed in GDSC.

The basal gene expression of the cancer cell lines was derived
from the Cancer Cell Line Encyclopedia (CCLE) [26]. Reads per kilo-
base million (RPKM) of the cancer cell lines was retrieved. The pre-
processing process was detailed in our previous work [58]. In brief,
genes with empty expression value across more than 20% of the
samples were removed. The remaining empty expression was
imputed with the minimal expression value in the dataset. RPKM
was then log2 transformed. Finally, 188 lung cancer cell lines were
selected for subsequent analysis.

The analyses were implemented with R packages dplyr and
ggplot2 [59].
2.2. Survival analysis and functional enrichment analysis

The clinical data of lung cancer patients were downloaded from
the lung adenocarcinoma (LUAD) project in the Cancer Genome
Atlas (TCGA-LUAD) [60]. Log rank test was used to assess the effect
of lncRNA expression on the survival probability in the subgroups
(lncRNA = high v.s. lncRNA = low) of TCGA-LUAD patients. The med-
ian of the lncRNA expression was used to define the patient sub-
group. The univariate survival analysis was visualized with a
Kaplan-Meier plot. Cox proportional hazard (Cox PH) model [61]
was used for multivariable analysis to adjust the factors that poten-
tially influence the survival, including age and cancer stage.Weused
binary classification in cancer stage where patients with stage I and
II were assigned to early stage, and stage III and IV were assigned to
late stage. Thehazard ratio of the effect of high lncRNAexpressionon
overall survival was calculated and visualized with a forest plot.

The biological functions of the lncRNAs were deduced from the
function enrichment analysis. Under the norm of ‘‘guilt by associ-
ation” [62], which is commonly used in inferring the functions of
unknown genes [63], top 200 lncRNA-correlated mRNAs were
selected to predict functions of the lncRNAs. Hypergeometric test
was used for hypothesis testing. We implemented the analysis
on a web-based platform, The Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) v6.8 [64]. Concerning the
multiple hypothesis testing, Benjamini-Hochberg procedure were
used to correct p-value. The significant level of the adjusted p-
value was set at 0.05.
2.3. Calculation of the edge weights

The following network properties were used in the calculation
of edge weights in the interactome, including degree, betweenness
centrality, and clustering coefficient. In addition, we integrated
information from differential expressed analysis (DEA) into edge
weights. DEA was conducted by comparing the gene expression
of tumor and adjacent normal tissues in TCGA-LUAD. The analysis
was implemented by limma [65] and edgeR [66]. The HTSeq counts
were downloaded from TCGA-LUAD by TCGAbiolinks [67]. The fold
change and p-value derived from DEA were used to calculate the
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edge weights. We used �1� log10ðp� valueÞ as the p-value (PVal)
weight and log2 fold changeð Þ as the fold change (LogFC) weight.
The edge weights (w) between node i and node j (Eij(w)) were
defined as follow:

� Degree weight: Eij(Degree) = ½12 ðDegree node ið Þ þ Degree node jð ÞÞ��1

� Betweenness centrality (BC) weight: Eij(BC) = ½12 ðBC node ið Þþ
BC node jð ÞÞ��1

� Clustering coefficient (CC) weight: Eij(CC) =½12 ðCC node ið Þþ
CC node jð ÞÞ��1

� P-value (PVal) weight: Eij(PVal) =½12 ðPVal node ið Þ þ PVal node jð ÞÞ��1

� Fold change (LogFC) weight: Eij(LogFC) =½12 ðLogFC node ið Þþ
logFC node jð ÞÞ��1

where i and j are nodes in the interactome.

2.4. Calculation of the proximity in the interactome

The proximity was defined as the shortest path length between
the protein target(s) of a drug and the proteins of interest in the
interactome. To deduce the proximity between the drug targets
and the survival-related lncRNAs, we used top 20 correlated pro-
teins of each survival-related lncRNA. Specifically, the choice of
selecting negatively- or positively- correlated proteins is based
on the association network from which the lncRNAs were derived
[25]. Seven different proximity measures are defined as below. Of
note, the shortest proximity and the closest proximity were adapted
from Guney et al [41].

Let T= {t|t 2 drug targets}; G={g|g 2 lncRNA correlated proteins};
W = {w|w 2 weighting methods (BC, CC, PValue, LogFC, Degree)};
l (a,b)w = the proximity betweeb node a and node b under w
weighing method.

� Shortest proximity = 1
jTjj j

P
t2T

1
Gj jj j l t; gð Þunweighted

� Closest proximity = 1
jTjj j

P
t2Tming2Glðt; gÞunweighted

� ClosestBC proximity = 1
jTjj j

P
t2Tming2Glðt; gÞBC

� ClosestDegree proximity = 1
jTjj j

P
t2Tming2Glðt; gÞDegree

� ClosestPVal proximity = 1
jTjj j

P
t2Tming2Glðt; gÞPVal

� ClosestLogFC proximity = 1
jTjj j

P
t2Tming2Glðt; gÞLogFC

� ClosestCC proximity = 1
jTjj j

P
t2Tming2Glðt; gÞCC

where closestBC is the closest proximity weighted by between-
ness centrality; closestDegree is the closest proximity weighted by
degree of nodes; closestCC is the closest proximity weighted by
clustering coefficient; closestPVal is the closest proximity
weighted by p-value from DEA; closestFC is the closest proximity
weighted by fold-change from DEA.

The network analysis was implemented with pandas and net-
workX [68] in Python.

2.5. Evaluation of the proximity as a predictor of anticancer drugs

The drug list from Guney et al [41] contains 237 drugs with
diverse indications. In this study, the indications were grouped into
two categories (anticancer or non-anticancer drugs) or three cate-
gories (anti-lung cancer, anti-other cancer or non-anticancer
drugs) by the consensus of two licensed medical doctors based
on the latest clinical guidelines [57]. We then built the receiver
operating characteristic (ROC) curve by examining different prox-
imity threshold and calculated area under the receiver operating
characteristic (AUC) curve. The analysis was implemented with R
packages pROC [69] and ROSE [70].
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The proximity is correlated with the mean degree of drug tar-
gets (Supplementary Fig. S2A–H). To reduce the effect of the degree
on the proximity, we transformed the proximity into z-score. To
begin with, we randomly selected nodes with similar degree as
the drug targets, and calculated the proximity between these
nodes and lncRNA-correlated proteins. More specifically, to derive
the nodes with similar degree as the drug targets, the nodes in the
interactome were sorted on the basis of the node degree, and were
collected in the bins where the number of nodes within one bin did
not exceed 100. We then randomly selected the nodes from the
bins that the drug targets belong to. By doing so, the degree of
the selected nodes will be very close (or equal) to the drug targets.
We repeated the procedure 100 times and calculated the mean and
standard deviation of these degree-adjusted proximities. A z-score
of the proximity can then be derived by

� z ¼ p� lpðrandÞ
rpðrandÞ

where p is the proximity of interest; p(rand) is the proximity
derived from the randomly selected nodes in similar degree; l is
themean of the samples;r is the standard deviation of the samples.

To visualize the relation between seven proximity measures
and drug categories, we reduced the seven dimensions (proximi-
ties) into three dimensions by principal component analysis
(PCA). Top three principal components were selected. The 3-D
PCA analysis was performed with R packages rgl and plot3D [71].

2.6. Evaluation of the proximities as a predictor of drug effectiveness

Drug effectiveness based on lncRNA expression was quantified
by the correlation between lncRNA expression and drug IC50 or
AUC under IC50. We took the absolute value to Spearman’s correla-
tion coefficient (SCC) to model two possible biological mecha-
nisms. 1) if SCC is positive (i.e., lncRNA expression is positively
correlated with drug IC50 or AUC under IC50), the drugs may act
on the proteins that are negatively correlated with these lncRNAs;
and 2) if SCC is negative, the drugs might potentially act on these
lncRNAs via off-target effects since no known lncRNAs are the
direct targets of the drugs when we conducted this study. There-
fore, the absolute value of SCC between drug IC50 and lncRNA
expression (absIC50SCC) as well as the absolute value of the SCC
between drug AUC under IC50 (absAUCSCC) were used to quantify
the sensitivity of the drug toward certain lncRNA.

To categorize the drugs, we conducted hierarchical clustering
(HC) to identify drug clusters based on seven proximity measures.
Specifically, Euclidian distance between the proximities of drugs
was used as distance measure, and complete linkage was used as
the agglomerative method. Drugs within the clusters that have
smaller proximities are defined as proximal drugs, while those
with larger proximities are defined as distal drugs.

To test whether the proximities can predict drug sensitivity, we
arranged drug clusters as the same order in hierarchical clustering
and visualized the absIC50SCC or absAUCSCC in each cluster with
box plots. A cubic polynomial was fitted to observe the trend of
proximity and drug sensitivity. Next, we compared the absIC50SCC
or absAUCSCC between proximal drugs (clusters with lower prox-
imities) and distal drugs (clusters with higher proximities) by Wil-
coxon rank-sum test. Significant level was set at p � 0.05.

3. Results

3.1. An overview of the analytical pipeline

The flowchart of this study was shown in Fig. 1. To predict effec-
tive drugs acting on the survival-related lncRNAs in lung cancer,
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we derived eight lncRNAs candidates from our previous study [25],
basal gene expression of cancer cell lines from CCLE [26], and two
public drug lists from Guney et al [41] and GDSC [27]. We first
examined the accuracy of proximity in predicting the correct drug
indication (e.g., anticancer or non-anticancer drugs), and bench-
marked seven different proximity measures. Second, we used hier-
archical clustering to categorize drug clusters into proximal drugs
and distal drugs. Finally, we validated the results by analyzing the
correlation between the drug response and lncRNA expression.

3.2. The survival-related lncRNAs are associated with cancer hallmarks

We selected eight lncRNAs from the modular signature of lung
adenocarcinoma in our previous study [25], and examined the
association between lncRNA expression and patients’ overall sur-
vival (Fig. 2A, Supplementary Fig. S1). The results showed that
higher expression of lncRNAs is associated with favorable progno-
sis. We also investigated roles of lncRNAs in lung cancer with func-
tional enrichment analysis which revealed crucial cancer
hallmarks such as cell cycle and cell–cell adhesion. (Fig. 2B–H).

3.3. The weighted proximity can accurately predict the indication of
anticancer drugs

We calculated the proximity by seven different measures
(Shortest, Closet, ClosestBC, ClosestDegree, ClosestPValue, Clos-
estLogFC, and ClosestCC). When categorizing drugs into anticancer
or non-anticancer drugs, closestCC had the best performance com-
pared to other proximity measures, with AUC greater than 0.8
across eight survival-related lncRNAs. The result implied that clos-
estCC may be an optimal proximity measure to predict anti-
neoplastic agents (Fig. 3A).

Degree of nodes in the interactome is an important factor in
cancer network biology. Nodes with high degree tend to be hubs
and play pivotal roles in the network [36–38,63]. Considering the
importance of hub genes in cancer, it was speculated that the
degree of drug targets may influence the prediction of anti-
neoplastic drugs. In other words, the drug that can target hub pro-
Fig. 1. The workflow of the study. Seven proximity measures were used to calculate the s
proteins in the interactome. Performance of the drug indication prediction was compared
cluster drugs on the basis of seven proximity measures. The proximal drugs were validate
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teins in the interactome may be a more potent anti-neoplasm
agent than the drug that target low-degree proteins. In fact, we
found that the diagnostic accuracy of the mean degree of drug tar-
gets was acceptable (AUC = 0.743) (Fig. 3B). Further, degree was
found being negatively correlated with proximity (Supplementary
Fig. S2). To investigate the net effect of proximity on diagnostic
accuracy of drug indication without the influence of degree, we
transformed the proximity into the z-score (ClosestZScore) (See
Materials and Methods). We then re-examined the correlation
between ClosestZScore and the mean degree of drug targets (Sup-
plementary Fig. S2). It was found that the degree effect in all
lncRNAs diminishes. Particularly, in lncRNAs ENSG00000232611,
the degree effect can be completely adjusted (Supplementary
Fig. S2J). Compared to other proximity measures, ClosestZScore
proximity has the lowest AUC in predicting drug indication, partic-
ularly in ENSG00000232611 whose degree effect was completely
removed (Fig. 3A). We further compared the ClosestCC proximity
and ClosestZScore proximity in anticancer and non-anticancer
drugs. In ENSG00000232611, the anticancer drugs had signifi-
cantly lower closestCC proximity than the non-anticancer drugs
(Wilcoxin P = 3.9e�11) (Fig. 3C), but showed no significant differ-
ence in the ClosestZScore proximity (Fig. 3D). Similar results were
found as well when classifying the drug indications into three cat-
egories (i.e., anti-lung cancer, anti-other cancer, or non-anticancer
drugs) (Fig. 3E and F). 3D-PCA also revealed distinct distribution of
the drugs in these three categories (Supplementary Fig. S3). The
above findings suggest that the degree may interact with the prox-
imity and have an effect on predicting the indication of anticancer
drugs.
3.4. Drugs with low proximity tend to be effective

To quantify the effectiveness of the drugs that act on lncRNAs,
we computed the absolute value of Spearman correlation coeffi-
cient (SCC) between the lncRNA expression and the cell response
to drugs (absIC50SCC or absAUCSCC). Here, we assume that the
drug response will be significantly correlated with the lncRNA
expression if that drug is acting (either directly or indirectly) on
hortest path length between the protein targets of a drug and the lncRNA-correlated
among different proximity measures. An unsupervised learning method was used to
d by the correlation of the response of the cell lines and the lncRNA gene expression.



Fig. 2. The roles of eight survival-related lncRNAs in lung cancer. (A) The patients from TCGA-LUAD project were divided into two subgroups according to the median
expression of each survival-related lncRNA. Cox PH model was used to conduct multivariable survival analysis, adjusting cancer stage and patients’ age. Hazard ratio (HR) of
high lncRNA expression and the confidence interval of HR were calculated. (B-H) Functional enrichment analysis was conducted by querying top 200 lncRNA-correlated
mRNAs. Significantly enriched biological processes and their fold enrichment were shown in the plots. The color key represents the Benjamin-corrected p-value.
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that lncRNA. To prove that the proximity can be an index in survey-
ing the drugs acting on a lncRNA, we examined the relation
between the proximity and the absIC50SCC or absAUCSCC of eight
survival-related lncRNAs across seven proximity measures with
scatter plots. A cubic polynomial was fitted to reveal the trend
(Supplementary Fig. S4–11). We found that the drugs with higher
absIC50SCC or absAUCSCC tend to have smaller proximity, while
the drugs with larger proximity tend to have lower absIC50SCC
or absAUCSCC. In other words, many drugs with low proximity
tend to be effective, while few drugs with high proximity are effec-
tive. Most of the fitted lines showed a decreasing trend, suggesting
that there may exist a negative correlation between proximity and
drug efficacy.

However, it was also noted that not all proximity measures
have the same trend. For instance, the fitted line in the shortest
proximity is concave up (Supplementary Fig. S6G). Hence, to ana-
lyze the similarity of the proximities calculated by different mea-
sures, the correlation between proximity measure was compared
(Fig. 4). The results showed that the shortest proximity have rela-
tively low correlation with other measures, implying the dissimi-
larity of shortest proximity.

3.5. Proximal drugs are more effective than distal drugs

According to the above findings, the drugs with higher
absAUCSCC or absIC50SCC tend to have lower proximity. However,
whether proximity can be a predictor of drug sensitivity based on
lncRNA expression still need to be proved. In ENSG00000268650,
we used hierarchical clustering (HC) to define new drug clusters
according to their proximities derived from seven different mea-
sures (Fig. 5A). The scaled proximities and clusters were shown
in the heatmap. Cluster 1 and 3 had smaller proximities and were
defined as proximal drugs, while cluster 7, 8, and 9 were defined as
distal drugs due to larger proximities. Since the proximities calcu-
lated from the seven measures are highly collinear (Fig. 4), we used
principal component analysis (PCA) to reduce seven proximity
measures (dimensions) into two main principal components. We
found that all clusters identified by HC can be clearly distin-
guished. Specifically, proximal drugs (cluster 1 and 3) localize in
the area with smaller value in both PC1 and PC2, while distal drugs
(cluster 7 to 9) have larger values (Fig. 5B).

We next examined the distribution of absAUCSCC in different
drug clusters identified by HC (Fig. 5C). We arranged the clusters
as the same order in HC and found a clear decreasing trend from
cluster 1 through cluster 9 (Fig. 5C). This result suggests that drug
clusters with lower proximity tend to be more effective in treating
cell lines with aberrant expression of the lncRNA
(ENSG00000268650). To validate whether proximal drugs are
more effective than distal drugs, we further compared the
absAUCSCC of these drugs clusters. We discovered that proximal
drugs have significantly higher correlation with lncRNA expression
(absAUCSCC) than distal drugs (Wilcoxin p = 0.0094) (Fig. 5D). We
also noticed that a larger proportion of proximal drugs have signif-
Fig. 3. Prediction of the indication of the anticancer drugs using seven different proximi
path length between survival-related lncRNAs and the drug targets. The label of th
characteristic (ROC) curve was constructed by setting different threshold of the proximit
curve (AUC) was then calculated by summing the area under the ROC curve. The AUC of
(B) ROC curve was constructed considering the mean degree of the drug targets. (C) Co
ENSG00000232611. (D) Comparison of the ClosestZScore between anticancer drugs a
between anti-lung cancer drugs, anti-other cancer drugs and non-anticancer drugs in E
drugs, anti-other cancer drugs and non-anticancer drugs in ENSG00000232611. closest
closest proximity weighted by degree of nodes; closestCC: the closest proximity weight
from DEA; closestFC: the closest proximity weighted by fold-change from DEA. closestZ
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icant correlation between AUC of IC50 and lncRNA gene expression
(Fig. 5E and F). Within the significant proximal drugs, some of the
drugs have been currently used in treating lung cancer, such as
topotecan [72–74] (Fig. 6A); the others are not currently available
in treating lung cancer but have potential to be applied in
the future, such as saracatinib [75] and voxtalisib [76] (Fig. 6B
and C). The results from the other survival-related lncRNAs were
shown in Supplementary Fig. S12–15 and Supplementary Table 1.
In some lncRNAs, such as ENSG00000271646, proximal drugs do
not have higher absAUCSCC or absIC50SCC compared to distal
drugs (data not shown), implying that not all survival-related
lncRNAs in our study are ideal therapeutic targets. All in all, the
above results suggest that some, but not all, prognostic lncRNAs
can be the therapeutic target as well. Furthermore, drug candidates
within proximal clusters may be effective medications acting on
the lncRNA (Table 1).
4. Conclusions and discussion

With the accessibility of next-generation sequencing technol-
ogy in clinical practice, it is expected that more and more genes,
including lncRNAs, will be found to be involved in cancer progres-
sion [77], patients’ prognosis [78], pathological subgroups [79], and
drug resistance [80]. It is also clear that the speed of new anti-
cancer drugs approved annually would be far less than the new
targets or biomarkers being discovered. Therefore, drug repurpos-
ing is of importance to provide more treatment opportunities to
patients.

A study by Guney et al [41] in 2016 revealed that proximity
between drug targets and disease-related proteins can accurately
predict drug indication across different diseases and provide a
new insight into drug repurposing. We adapted and applied their
method to discover drug targets and the lncRNA-related proteins
in the interactome in order to reveal effective drugs acting on the
survival-related lncRNAs in lung cancer.

Previous studies showed that the hub genes in biological net-
works may be important targets in cancer [36,37]. In this study,
we found that the proximity is negatively correlated with the
degree. Further, both proximity and degree of drug targets
involved in the prediction of drug indication, providing another
clue that degree is an important network property in cancer biol-
ogy. Apart from degree, parameters in the networks, including
clustering coefficient and betweenness centrality, quantify the
characteristics of the nodes or the neighbors of the nodes. Under
the assumption that network structure plays important roles in
cancer biology, we integrated these parameters by adding weights
in the interactome. In terms of drug indication prediction, we
found that the weighted proximity measures outperformed the
non-weighted measures, particularly the closest proximity
weighted with clustering coefficient (closestCC).

When assessing the performance of proximity in predicting
effective drugs targeting lncRNA expression (data not shown),
ty measures across eight survival-related lncRNAs. (A) The proximity is the shortest
e drug is dichotomous (i.e., anticancer or non-anticancer). A receiver operating
y to assess the diagnostic accuracy. Area under the receiver operating characteristic
different proximity measures were compared across eight survival-related lncRNAs.
mparison of the ClosestCC between anticancer drugs and non-anticancer drugs in
nd non-anticancer drugs in ENSG00000232611. (E) Comparison of the ClosestCC
NSG00000232611. (F) Comparison of the ClosestZScore between anti-lung cancer
BC: the closest proximity weighted by betweenness centrality; closestDegree: the
ed by clustering coefficient; closestPVal: the closest proximity weighted by p-value
Score: the closest proximity transformed to z-score.



Fig. 4. Correlation of the seven proximity measures. Spearman correlation coefficient (SCC) was calculated between proximities from different proximity measures. The
values in heatmaps represent SCC.
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however, we found ambiguous results. First, given the same prox-
imity measure, the value of AUC varies across different lncRNAs,
and most of the AUCs are close to 0.5. Second, closestCC proximity
was not better than other proximity measures. The above findings
suggest that, when predicting drug sensitivity toward lncRNA, it
may be less proper to simply consider the proximity calculated
from a single measure, because the results may not be robust.
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Therefore, considering seven different proximity measures, we
performed hierarchical clustering to define clusters of proximal
and distal drugs.

The design of this study was not to systematically reveal novel
lncRNA therapeutic biomarkers, where comparing the genome
between responsive and non-responsive cohorts may be necessary.
In fact, we were more interested in investigating whether the
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Fig. 6. The correlation between the expression of the survival-related lncRNA and the cell response to the repurposed drugs. Three drugs were selected from the proximal
clusters (cluster 1 and 3). The expression of ENSG00000268650 was plotted against the AUC of the IC50curve (AUC) of topotecan (G), saracatinib (H), and voxtalisib (I). Linear
regression was used to calculate the fitted line. R: The Spearman correlation coefficient (SCC); p: the p-value of SCC.

Table 1
Summary of the results in this study.

lncRNA Biomarker Accuracy of the drug
indication prediction (AUC)

Prognostic Therapeutic

ENSG00000268650 Yes Yes High (0.801)
ENSG00000272402 Yes Yes High (0.802)
ENSG00000258365 Yes Yes High (0.828)
ENSG00000273226 Yes Yes High (0.845)
ENSG00000271828 Yes Equivocal High (0.827)
ENSG00000232611 Yes No High (0.829)
ENSG00000230163 Yes No High (0.833)
ENSG00000271646 Yes No High (0.825)
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known survival-related lncRNAs can be the therapeutic targets as
well. Considering the dynamic structure and the metabolism of
lncRNAs, it is not expected that all prognostic lncRNA biomarker
can be therapeutic biomarkers.

We conducted literature search for some of the identified prox-
imal drugs. For example, six effective drugs within the proximal
drugs (cluster 1 and 3) were revealed acting on
ENSG00000268650. Among them, topotecan in cluster 1 was found
having positive results in treating NSCLC [74]. Being a cytotoxic
agent, topotecan was revealed to kill cancer cells by interrupting
the cell cycle through upregulating CDKN1A-encoded p21 in the
lung cancer cell line [81]. Given the low objective response rate
with single-agent, topotecan still showed high stable disease rate
and, when in combination with other chemotherapy agents and
radiotherapy, showed encouraging results [82]. Hence, according
to Vennepureddy et al [74], topotecan in combination with other
agents was recommended as the first-line advanced NSCLC therapy
if the patient cannot tolerate the standard platinum-based therapy.
Saracatinib is a Src-kinase inhibitor used to treat NSCLC in vivo
Fig. 5. Prediction and evaluation of the drugs acting on ENSG00000268650. (A) Seven m
(ENSG00000268650)-correlated proteins. The proximities were scaled to conduct hierar
from seven measures were dimensionally reduced to two main components by PCA. The
cluster were shown in a box plot. A fitted cubic polynomial line was added to observe the
drugs (clusters 1 and 3) and distal drugs (cluster 7–9). (E) The correlation between lncR
volcano plot by plotting -log(p-value) against AUCSCC. The percentage of significant dr
clusters identified by hierarchical clustering; AUCSCC: The spearman correlation coefficie
of spearman correlation coefficient between lncRNA expression and AUC of drug IC50.

3999
[83]. Saracatinib seemed to be able to restore the epithelial-
mesenchymal transition and disrupt spheroidogenesis in ovarian
cancer cell lines and the subcutaneous xenograft model [84]. A
phase II trial showed that 4 out of 37 patients had stable disease
for at least four months, and an additional two patients had partial
response. This result suggested that a subset of NSCLC patients
may have benefitted from saracatinib given that the molecular
subtypes have been unclear [75]. Therefore, using
ENSG00000268650 as a saracatinib therapeutic response biomar-
ker may be worth further investigations in the future. Voxtalisib
is another drug in the proximal drug cluster acting on
ENSG00000268650. It is a dual-PI3K/mTOR kinase inhibitor and
showed promising results in follicular lymphoma [76]. In glioblas-
toma multiform, voxtalisib combined with temozolomide can sig-
nificantly decrease the intracranial xenograft tumor size compared
with temozolomide alone [85]. Although limited anti-solid-tumor
activity was revealed in a phase Ib trial [86], its brain-penetrant
character [87] may still be promising in treating lung cancer with
brain metastasis.

In ENSG00000272402, we revealed four effective drugs within
the proximal drug cluster acting on this lncRNA (Supplementary
Fig. S12G-J). Vinblastine and vinorelbine are chemotherapy origi-
nally used in NSCLC [88]. Meanwhile, we revealed two potential
agents targeting ENSG00000272402 in lung cancer. Serdemetan,
a novel tryptamine derivative, showed potent in vitro and in vivo
antiproliferative activity. A phase I clinical trial [89] suggested its
association with p53 induction and modest clinical activity despite
the side effect of exposure-related QTc prolong [89]. AZD7969 is a
potent inhibitor of glycogen synthase kinase 3 (GSK3b) undergoing
preclinical toxicity assessment [90]. The above results showed that
some of the proximal drugs are currently used to treat NSCLC,
easures were used to calculate the proximities between drug targets and lncRNA
chical clustering where nine drug clusters were identified. (B) Proximities derived
identified nine clusters were plotted on PC1 and PC2. (C) The absAUCSCCs of each
trend. (D) Wilcoxin rank sum test was used to compare the absAUCSCC of proximal
NA expression and drug response (AUC) in different drug clusters were shown on a
ugs (p � 0.05) in proximal and distal drug clusters was shown in (F). hc_cluster:
nt between lncRNA expression and AUC of drug IC50; absAUCSCC: the absolute value
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while many of them are under investigation. Our findings can pro-
vide even more insight to these drugs, particularly in cell lines/pa-
tients with over- or under-expression in these survival-related
lncRNAs. More detail regarding the drug clusters in each
survival-related lncRNA can be found in Supplementary Table 1.

In conclusion, LncTx is a network-based method to repurpose
drugs acting on the survival-related lncRNAs. In this study, we
revealed that the proximity between drug targets and the
lncRNA-correlated proteins can be a decent predictor of anticancer
drug (Table 1). Furthermore, we found that some of the survival-
related lncRNAs are more susceptible to proximal drugs, suggest-
ing that proximity can be used to predict the treatment response
(Table 1). This result, as far as we know, is the first study using
weighted biological network to repurpose the drugs targeting the
survival-related lncRNAs. Given the limitation that our results
were only validated on GDSC/CCLE datasets, it is still expected that
the method can be applied to other cancers and diseases to select
effective drugs for lncRNA-based treatment in the future.
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