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MEDICAL IMAGING
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Abstract
Data driven respiratory gating (DDG) in positron emission tomography (PET)
imaging extracts respiratory waveforms from the acquired PET data obviating
the need for dedicated external devices. DDG performance, however, degrades
with decreasing detected number of coincidence counts. In this paper, we
assess the clinical impact of reducing injected activity on a new DDG algo-
rithm designed for PET data acquired with continuous bed motion (CBM_DDG)
by evaluating CBM_DDG waveforms, tumor quantification, and physician’s per-
ception of motion blur in resultant images. Forty patients were imaged on a
Siemens mCT scanner in CBM mode. Reduced injected activity was simulated
by generating list mode datasets with 50% and 25% of the original data (100%).
CBM_DDG waveforms were compared to that of the original data over the range
between the aortic arch and the center of the right kidney using the Pearson cor-
relation coefficient (PCC).Tumor quantification was assessed by comparing the
maximum standardized uptake value (SUVmax) and peak SUV (SUVpeak) of
reconstructed images from the various list mode datasets using elastic motion
deblurring (EMDB) reconstruction.Perceived motion blur was assessed by three
radiologists of one lesion per patient on a continuous scale from no motion blur
(0) to significant motion blur (3). The mean PCC of the 50% and 25% dataset
waveforms was 0.74 ± 0.18 and 0.59 ± 0.25, respectively. In comparison to the
100% datasets, the mean SUVmax increased by 2.25% (p = 0.11) for the 50%
datasets and by 3.91% (p= 0.16) for the 25% datasets,while SUVpeak changes
were within ±0.25%. Radiologist evaluations of motion blur showed negligible
changes with average values of 0.21,0.3,and 0.28 for the 100%,50%,and 25%
datasets.Decreased injected activities degrades the resultant CBM_DDG respi-
ratory waveforms; however this decrease has minimal impact on quantification
and perceived image motion blur.
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1 INTRODUCTION

Clinical positron emission tomography (PET) imaging of
the abdominothoracic regions typically lasts between 2
and 3 min per bed position and can suffer from degraded
image quality due to respiratory motion blur during
data acquisition. Respiratory motion blur can negatively
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impact patient management due to underestimated
activity concentration, decreased lesion detectability,
and overestimated lesion volume measurements.1–3

Multiple methods exist to correct for respiratory
motion blur in PET imaging. The majority of these
methods require the acquisition of a respiratory
waveform.1,4–16 External devices have been primarily
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used to acquire the waveforms. One such system is
the AZ-733V respiratory gating system (Anzai Medical,
Tokyo, Japan) in which an elastic belt with a load cell
is placed around the chest or abdomen of the patient
and measures a signal related to the belt tension as the
patient breathes in and out. External devices such as
the Anzai system, however, have technical challenges
in that they require additional time for setup and trou-
bleshooting and are prone to user setup error and hard-
ware failure.17 In addition, several other studies have
shown that the chest or abdominal wall motion cap-
tured by external devices does not always represent
the motion of the internal anatomy,18–20 rendering such
devices questionable regarding their ability to consis-
tently correct for respiratory motion blur.

Data driven gating (DDG), which relies on determin-
ing the respiratory waveform entirely from the acquired
PET data itself, has been introduced as an alternative to
external devices to record the respiratory waveform.21

DDG is based on the knowledge that organs or lesions,
which exhibit radiotracer uptake and are under the influ-
ence of respiratory motion, will cause periodic changes
in the acquired PET data that can be detected and used
to determine a respiratory waveform.22 DDG eliminates
the need for extra time to set up external devices and
does not depend on the technique or skill of the tech-
nologist attaching hardware to the patient. In addition,
the DDG signal is determined from the motions of the
internal anatomy in areas with radiotracer uptake, as
opposed to the small motions of external surfaces.

Many different types of DDG techniques exist and
have been in development over the past decade.22–30

All of these DDG methodologies have been developed
exclusively for PET data acquired in Step and Shoot
mode.However,no DDG method has been developed for
PET data acquired in continuous bed motion (CBM)31

until very recently by Schleyer et al.32 In CBM acquisi-
tions, available only on Siemens PET Systems with the
Flow Motion option (Siemens Medical Solutions USA,
Inc),33 the patient is continuously translated through the
scanner, while in comparison to Step and Shoot, the
patient is imaged in multiple stationary and overlap-
ping bed positions.34 The approach by Schleyer et al.,32

which uses a spectral analysis method,28 was originally
developed for Step and Shoot, but later adapted to work
with CBM data32 in order to account for the combination
of anatomical motion due to both respiratory motion and
continuous bed motion.

Recently, Büther et al. published the first clinical
study, which characterized the impact of this CBM DDG
(CBM_DDG) algorithm on tumor quantification, wave-
form characteristics, and visual assessment of motion
blur.35 However, their investigation did not assess the
impact of decreased administered activity on the abil-
ity of the CBM_DDG algorithm to extract the respi-
ratory waveform, a situation that has been shown to
degrade the performance of DDG algorithms.30,36 Such
an investigation is also important due to the growing

interest in performing PET studies with low injected
activity (low count rate) with special focus on the
pediatric population,37,38 dual and multi-time point
imaging,39 as well as performing Y-90 radioemboliza-
tion postadministration dosimetry, which has relatively
low count rates.40

In this work, we evaluate the impact of decreased
injected activity or scan duration on this novel
CBM_DDG algorithm in patient studies. The evalu-
ation is based on comparing waveforms, quantitative
tumor measurements, and physician evaluation of
images processed with the CBM_DDG algorithm. To
our knowledge, this investigation is the first to per-
form a comprehensive clinical evaluation while using
the CBM_DDG algorithm with simulated decreased
injected activity. We have previously published the initial
results of this investigation in an abstract form.41,42

2 METHODS

2.1 Continuous bed motion data driven
gating algorithm

The CBM_DDG algorithm has been previously
introduced.32 Here, we briefly describe its general
framework. The algorithm is composed of a two-step
process: Step 1 starts by dynamically framing the list
mode dataset into a time series of 500 ms frames.
Figure 1 shows that for each frame a histo-projection
volume is created by placing each recorded coincidence
event at the center of its respective time of flight window.
Each event is also placed along its respective line of
response. Each one of these histo-projection volumes
is then projected onto the y-axis, and the standard
deviation for each projected 500 ms frame is calculated.
At inspiration, the standard deviation of the collapsed
frames will be highest, and as the patients breathe, the
standard deviation along the anterior posterior direction
will vary periodically. The Fast Fourier Transform of
this y-standard deviation respiratory waveform is used
to estimate the global respiratory frequency, which is
subsequently utilized to define the frequency peak in
step 2 of the algorithm.

In step 2,the 500-ms histo-projection volumes created
from the entire axial extent of the CBM acquisition are
then resampled into 80-mm axial range volumes, which
are overlapped by 70 mm. From each 80 mm volume,
the spectral analysis method28 creates a 3D weighted
mask to include only the signal from regions influenced
by respiratory motion. All masks are then averaged into
one final 3D weighted mask, which encompasses the
entire axial scan range while correcting for phase off-
sets between masks. The 3D weighted mask is then
multiplied by the consecutive 500-ms histo-projection
volumes, and the resultant voxels are summed to gen-
erate one time point value of the DDG waveform. In the
final step, the correct signal polarity is assigned to the
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F IGURE 1 Overview of the continuous bed motion_data driven respiratory gating (CBM_DDG) workflow. WF = waveform. For the
histo-projections, the transaxial dimensions are represented by the x(medio-lateral) and y(anterior-posterior) dimensions, while the axial
dimension is the z(superior-inferior) dimension

CBM_DDG waveform as described in further detail by
Schleyer et al.32

2.2 Patients

Forty patients (19 males and 21 females mean age:63.7
± 13.3; mean body mass index (BMI): 28.1 ± 6.8) hav-
ing at least one lung or liver tumor less than 3 cm in
diameter and located in regions impacted by respiratory
motion were recruited for this study (MD Anderson Can-
cer Center Internal Review Board 2015-0989). Informed
consent was obtained prior to imaging. Patients were
instructed to fast for 6 h before injection of 320.7 ±

54.4 MBq 18F-FDG.The injection to scan delay time was
69.8 ± 9.5 min.

2.3 PET scan and image reconstruction

All patient scans were acquired on a four-ring Siemens
Biograph mCT Flow system33 (Siemens Medical Solu-
tions USA, Inc).A computed tomography (CT) topogram
of 120 kVp and 20 mA, followed by a 3D helical CT scan
using CARE kV(120 reference kV), tube current mod-

ulation with Care Dose4D(90 reference mAs), pitch of
1.4:1, 16 × 1.2 mm beam width, and gantry rotation time
of 0.5 s, was acquired according to our clinical protocol.
The 3D helical CT was acquired with free-breathing,
and the PET data were acquired with CBM using a table
speed of 0.8–1 mm/s depending on the patient BMI. For
the lung/liver region - areas that are affected by breath-
ing motion - a table speed of 0.5 mm/s was prescribed.
The Anzai AZ-733V respiratory gating system (Anzai
Medical Co.) system was used to acquire all external
device respiratory waveforms, while the CBM_DDG
algorithm was used to derive the respiratory waveform
from the PET list data.

The impact of lower injected activity on the
CBM_DDG algorithm was simulated by randomly
removing events from the original list mode-dataset
resulting in data sets, which retained 50% and 25% of
the original list-data. For all patients and their respective
100%, 50%, and 25% list mode datasets, two respira-
tory motion correction reconstructions were performed
using the elastic motion deblurring (EMDB)5 algorithm
which is known commercially as Siemens OncoFreeze.
One of the EMDB recons used the Anzai waveform
(ANZ_EMDB), and the other used the DDG waveform
(DDG_EMDB). In both cases, the EMDB algorithm used
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a 35% duty cycle to reconstruct the HDChest reference
images. For both reconstructions, the following parame-
ters were used: two iterations, 21 subsets, time-of -flight
information, point spread function correction, 200 × 200
matrix, 4.07 mm × 4.07 mm × 2.03 mm voxel size,
and 5 mm full-width at half -maximum isotropic Gaus-
sian postfiltration. The ANZ_EMDB reconstruction was
used only for the subjective radiologist evaluation as
described in the next section. Creation of the list mode
datasets with fewer coincidence events, calculation of
the CBM_DDG waveforms, and image reconstruction
were all performed with the Siemens research e7 tools
software.

2.4 Patient evaluations

Two objective analyses were used to evaluate the
CBM_DDG algorithm: (1) waveform comparisons and
(2) image quantification. Additionally, we performed a
subjective analysis of image quality by detecting the
presence of motion blur in the resultant reconstructed
images as assessed by radiologists.

For the waveform comparison,we calculated the Pear-
son correlation coefficient (PCC) to compare the 100%
to the 50%, the 100% to the 25 %, as well as the 50%
to the 25% CBM_DDG respiratory waveforms for each
patient, and the results were averaged and compared.
The waveforms were compared for the time segment
between the aortic arch and the center of the right kid-
ney because these anatomical locations are impacted
the most by respiratory motion.

To assess the impact of varying injected activity
on tumor quantification when using the DDG_EMDB
motion correction algorithm, the maximum standard-
ized uptake value (SUVmax) and peak SUV (SUVpeak)
were measured, and the percent change of the 50%
and 25% DDG_EMDB reconstructions was calculated
with respect to the 100% DDG_EMBD reconstruction.
At the time of the examination, six patients’ tumors had
resolved with respect to the baseline scans or did not
have discernable uptake and so measurements of FDG
foci (renal medullae (4), spleen (1), and gastrointestinal
(1)) impacted by respiratory motion were made. Only
one measurement per patient was made to avoid bias
from patients with multiple tumors.

To assess the impact that injected activity has on
the ability of DDG_EMDB to visually reduce motion
blur, a subjective assessment was made by three radi-
ologists experienced in PET/CT interpretation. In this
evaluation, the ANZ_EMDB and the DDG_EMDB were
used. The reconstructed images were separated into
three independent groups containing only the: (1) 25%
list-mode images, (2) 50% list-mode images, or (3) the
100% list-mode images. Only one of the groups was
assessed at a time.For each group,only one patient was
assessed at a time and with a custom workflow, coro-
nal images of both the ANZ_EMDB and DDG_EMDB

reconstructions were displayed side by side in a ran-
domized left to right order.DDG_EMDB images of differ-
ent list-mode data fractions were not directly compared
to one another as the stark differences in image noise
could have biased the interpretation. For each patient,
the radiologists were asked to assess if there was any
difference in motion blur for a specific lesion when com-
paring the ANZ_EMDB and DDG_EMDB reconstruc-
tions. If there was no difference, both image series were
assigned a score of zero. If one image series had more
blur, then it was scored on a continuous scale (no motion
blur (0), slightly more motion blur (1), moderately more
motion blur (2), and significantly more motion blur (3)).
The image series with less blur was scored with a zero.
In this regard, a mean score of zero implies that the
DDG_EMDB images are visually similar in quality to
those of the ANZ_EMDB. The intrareader reliability of
each reader was assessed by repeating 10 randomly
selected patient studies. The order of patient presenta-
tion was randomized for all three groups independently.
For each group, the mean motion blur score was calcu-
lated for the DDG_EMDB reconstructions, and the per-
cent change of the 50% and 25% DDG_EMDB motion
blur scores was calculated with respect to the 100%
DDG_EMBD motion blur score.

2.5 Statistical analysis

All statistical analyses were performed using the R com-
puting language (version 3.6.1).Wilcoxon signed ranked
tests with Benjamini–Hochberg corrections were per-
formed to test the statistical significance of differences
between the CBM_DDG results. A two-way random
effects, absolute agreement, multiple raters intraclass
correlation coefficient was used to assess interreader
reliability regarding the respiratory motion blur scores,
whereas a two-way mixed effects, absolute agreement,
multiple raters intraclass correlation coefficient was
used to assess intrareader reliability regarding these
scores.43 The values were interpreted as ICC < 0.5
(poor), 0.5 < ICC < 0.75 (moderate), 0.75 < ICC < 0.9
(good), and 0.9 < ICC < 1.0(excellent).43

3 RESULTS

3.1 Patient waveform comparison
and image quantification

Comparison of the 50% CBM_DDG and the 25% CBM_
DDG waveforms to the corresponding 100% CBM_DDG
as well as comparison of the 50% CBM_DDG to the
25% CBM_DDG waveforms showed that the mean +/−
standard deviation of the PCC decreased as the per-
centage of list mode data used decreased. The mean
(± standard deviation) of the PCCs was 0.74 ± 0.18
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F IGURE 2 Boxplots of the Pearson correlation coefficients of
the waveform from the 50% and 25% datasets continuous bed
motion_data driven respiratory gating (CBM_DDG) in comparison
with the 100% CBM_DDG dataset. The comparison was made on
the time segment of the waveform acquired over the aortic arch to
the center of the right kidney. An x indicates the mean value, and a
star indicates p < 0.002

between the 50% CMB_DDG and the 100% CBM_DDG
waveforms, 0.59 ± 0.25 between the 25% CMB_DDG
and the 100% CBM_DDG waveforms, and 0.56 ± 0.24
between the 50% CMB_DDG and the 25% CBM_DDG
waveforms as seen in Figure 2.The mean PCC between
the 25% and the 100% datasets decreased by −20.27
± 30.17% (p < 0.000) in comparison to the mean
PCC between the 50% and the 100 % datasets. The
mean PCC between the 25% and the 50% datasets
decreased by −5.08 ± 37.24% (p < 0.002) in compari-
son to the mean PCC between the 25% and the 100%
dataset.

The results of the SUVmax and SUVpeak are
shown in Figure 3. The results show that as the per-
cent data decrease to 50% and 25%, the SUVmax

increases by 2.25% (p = 0.11) and 3.91% (p = 0.16),
respectively. However, this increase was not found to
be statistically significant. SUVpeak results showed
that there was negligible change with percent data
decrease.

Figure 4 shows waveforms and images of an exam-
ple patient with decreasing percent data. Figure 4a
shows that the PCC decreases with decreasing percent
data, while Figure 4b shows that SUVmax increases
with decreasing data, while SUVpeak has smaller
increases.

3.2 Physician visual assessment

Table 1 shows the mean, standard deviation, and per-
cent change in the motion blur scores of the physician
reads for the various DDG_EMDB datasets (100,50,and
25%) in comparison to the ANZ_EMDB. These results
show that while the percent change is relatively large,
the differences in the mean motion blurring scores in
comparison to the 100% dataset were less than 0.09
indicating that the differences in motion blur are non-
appreciable, thereby suggesting that there is no differ-
ence in image quality with respect to motion blur as
we decrease the percent of the list mode dataset. For
the motion blur scores of the three list mode datasets,
the inter-reader intraclass correlation coefficients were
0.69 (moderate), 0.37 (poor), and 0.66 (moderate) for
the 100%, 50%, and 25% datasets, respectively. Of the
three readers, the highest intra-rater intraclass corre-
lation coefficients were 1.00 (excellent), 0.78 (good),
and 0.59 (moderate) for the 100%, 50%, and 25% list
mode datasets, respectively, indicating that the readers
ability to repeat their own motion blur scores for 10
patients became more difficult as the amount of data
decreased.

F IGURE 3 Boxplots of SUVmax and SUVpeak for the F18-FDG foci with respect to the 100%, 50%, and 25% datasets. In comparison to
the 100% dataset, the differences in means were not statistically significant for the 50% and 25% datasets, respectively. An x indicates the mean
value
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F IGURE 4 (a) Representative continuous bed motion_data driven respiratory gating (CBM_DDG) respiratory waveforms when using 100
%, 50%, and 25% of the list mode data along with respective correlation coefficients. (b) SUVmax of a lower right lung tumor is measured
showing that as the amount of data used decreases SUVmax and SUVpeak increase

TABLE 1 Summary of the motion blur scores of the F18-FDG foci for the for the 100%, 50%, and 25% list-mode datasets. A value of zero
implies that the data driven respiratory gating_elastic motion deblurring (DDG_EMDB) images are similar to the ANZ_EMDB images. Percent
change in the mean as well as p-values are calculated with respect to the 100% dataset. The interreader intraclass correlation coefficients
(ICC) and the intrareader ICCs are calculated

% Data Used 100% 50% 25%

Mean 0.21 0.3 0.28

Standard deviation 0.43 0.50 0.52

% change 42.86% 33.33%

p-value 0.21 0.21

Inter-reader ICC 0.69 0.37 0.66

Intra-reader ICC (R1, R2, R3) (0.77, 0.79, 1.00) (0.78, 0.61, 0.73) (0.00, 0.59, 0.18)

Abbreviation: ICC, intraclass correlation coefficient.

4 DISCUSSION

In this paper, we evaluated the impact of decreased
injected activity on the performance of a CBM_DDG
algorithm with respect to respiratory waveforms, SUV
quantification, and physician visual assessment of res-
piratory motion blur. To the best of our knowledge, this
is the first comprehensive evaluation of this CBM_DDG
algorithm that has studied the impact of injected activ-
ity (count density) on the algorithm. Our investigation
showed that as the amount of injected activity was
decreased (simulated through removal of PET list mode
dataset events), the CBM_DDG waveforms degraded
as the percentage data used decreased from 100% to

50% and to 25%, respectively. However, the degradation
in waveforms did not have an impact on tumor quan-
tification in the DDG_EMDB images as measurements
of SUVmax and SUVpeak showed small changes in
comparison to the 100% dataset images. Similarly, the
physicians’evaluation of motion blur in the DDG_EMDB
images found that there were negligible differences
between the scores of the 100%, 50%, and the 25% list
mode datasets.

For the analysis of the patient respiratory wave-
forms, our finding that the average correlation coef-
ficients decreased as the amount of list mode data
decreased is in agreement with prior studies that have
demonstrated this result when using different step and
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F IGURE 5 Ideal continuous bed motion_data driven respiratory gating (CBM_DDG) patient with high uptake in liver, kidneys, and tumor
with extensive respiratory motion. (a) CBM_DDG respiratory waveforms when using 100%, 50%, and 25% of the list mode data along with
respective correlation coefficients. (b) SUVmax of a liver tumor is measured showing that as the amount of data used decreases SUVmax and
SUVpeak increases

shoot DDG algorithms.30,36 These waveform results
are of concern because using a respiratory wave-
form that is of poor quality can result in selecting
PET data for the motion corrected images that contain
unwanted respiratory motion blur. This can ultimately
result in underestimated tumor activity quantification
and increased respiratory motion blur in the images. In
Figure 4, the CBM_DDG waveform for the 25% list mode
dataset shows high amounts of noise in the respiratory
waveform, and some respiratory peaks and troughs are
hard to discern in comparison to those from the 100%
and 50% waveforms. For the 25% waveform, it would
be expected that the motion-corrected images would
be negatively impacted. However, for some patients the
simulated decrease in injected activity had very little
impact on the respiratory waveform as seen in Figure 5.
The correlation coefficients were very high at 0.97 and
0.93 for the 50% and 25% list mode dataset wave-
forms, respectively. This patient is an example of the
ideal candidate for DDG as the patient had substantial
amounts of activity in liver tumors, the liver, and kidneys.
In addition, all of these anatomical locations were under
the influence of a large amount of respiratory motion
making it easier for the CBM_DDG algorithm to deter-
mine a respiratory waveform even with decreased count
density.

For patients with degraded DDG respiratory wave-
forms due to decreased injected activity, we expected
to see a corresponding decrease in tumor SUVs due
to an inferior motion blur correction when using the

CBM_DDG waveform. However, this study showed that
as the amount of data used decreased, both SUVmax
and SUVpeak increased, although by only a small
amount for SUVmax and a negligible amount for SUV-
peak. This observation can be attributed to an increase
in image noise with decreasing amounts of percent
data used. Figures 4 and 5 clearly show that the
noise in the 50% and 25% list mode data images has
greatly increased in comparison to the 100% image.
These increases in image noise artifactually increase
SUVmax44 and could have counteracted any decreases
in tumor SUV caused by respiratory motion and uti-
lization of degraded CBM_DDG waveforms. In con-
trast to SUVmax, there were negligible increases in
SUVpeak primarily because this metric averages the
SUVs of pixels rather than selecting the maximum
pixel value and hence is less susceptible to image
noise44 suggesting that the degrading CBM_DDG res-
piratory waveform resulting from decreased injected
activity is perhaps counterbalanced by the increased
noise with a net effect of negligible impact on tumor
quantification.

As the patient waveforms degraded with decreased
injected activity, we also anticipated that the physicians
would note differences in motion blur when evaluat-
ing the DDG_EMDB motion-corrected images.However,
the physician evaluation showed that the differences
between the 100%, 50%, and 25% motion blur scores
were nonappreciable. In addition, the average motion
blur scores of 0.21,0.3,and 0.28 for the 100%,50%,and
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25% images, respectively, suggest that the degraded
DDG waveform had little effect on the visual assessment
of the resultant CBM_DDG motion-corrected images
when compared to the ANZ motion-corrected images.
Given that most of the scores occurred between 0 (no
blur) and 1(slightly more blur) and to that call differences
so small is a difficult task, we expected that the inter-
reader ICCs would decrease as the count density in the
images decreased. We believe this is possibly due to
the increasing levels of image noise making scoring of
the images more difficult. However, the inter-reader ICC
values did not decrease as expected having values of
0.69 (moderate), 0.37 (poor), and 0.66 (moderate) for
the 100%, 50%, and 25% datasets, respectively. In addi-
tion to the low amounts of motion and increasing levels
of noise, this was perhaps caused by the small number
of readers that were used in this study. To assess this
reliability especially when we have small differences in
motion blur,we believe a larger number of readers would
be needed. This however is beyond the scope of this
work. It is important to note however that the intra-reader
ICC did decrease as the count density decreased from
100% to 25% as we expected. These results suggest
that motion blur was not introduced into these images
by the degrading CBM_DDG waveforms and that utiliza-
tion of the CBM_DDG algorithm with decreased injected
activity is not likely to degrade the interpretation of these
images.

For the physician evaluation of motion blur, we chose
not to compare the DDG reconstructions to each other
(such as comparing the 100% to the 50% and 25%
images) as we did for the waveforms and lesion quan-
titation since that would likely be biased by the stark
differences in resultant image noise alone. Rather, we
opted to compare the 100% ANZ_EMDB images to the
100% DDG_EMDB images and likewise for the 50% and
25% list mode data images. Other than the motion blur
evaluation, we chose not to include a comparison of the
Anzai and DDG waveforms as well as the ANZ_EMDB
and DDG_EMDB image quantification has already been
thoroughly investigated.35 Rather,our focus was to deter-
mine the impact of reduced injected activity on the
CBM_DDG algorithm.

The investigation in this study focused on evaluating
the impact of decreased activity on the performance of
the CBM_DDG algorithm and its ensuing results on res-
piratory waveform, lesion quantification, and physician
evaluation of image quality.However,we believe that the
results of this work can also be extended to the impact
of increasing scan speed on the CBM_DDG algo-
rithm. Scan time and injected activity in CBM PET data
acquisition are relatively interchangeable. A decrease in
injected activity results in a decrease in the number of
detected events similar to that achieved with increasing
scan speed.

One limitation of this study was that a free breath-
ing CT was used to perform attenuation correction and

could have resulted in inaccuracies in quantification and
distortions of the radioactive concentration in the foci
when performing attenuation correction due to a mis-
match between the PET and the CT. However, given
that the same free breathing CT was used for the
attenuation correction of all the % DDG images, any
bias from such mismatch effects is expected to be the
same independent of the % DDG data used. It is impor-
tant to note however that recently developed methods
have shown promise to align the PET data to the CT
images.45,46

An additional limitation of this work is that the list
mode datasets with simulated lower injected activity
have different noise profiles in comparison to scans
acquired with lower injected activity. We acquired our
patient scans with 320.7 ± 54.4 MBq 18F-FDG, which
will have a higher randoms fraction, in comparison to
a scan with 50% and 25% of this injected activity. We
created simulated decreased injected activity datasets
by randomly removing a fraction of the coincidence
events in the original list mode dataset through decima-
tion. Unfortunately, this preserves the higher randoms
fraction creating concern that the reconstructed image
noise and quantification will be different than a scan with
lower injected activity. However, a recent publication47

has shown that these differences in the noise profiles
when using this decimation tool to create simulated
lower injected activity datasets have negligible impact
on image noise and quantification. To investigate this,
the paper performed an in-human study that compared
low injected activity PET scans to simulated low injected
activity scans, which were created from a high injected
activity scan.

Another limitation of this work is our lack of evalu-
ating the DDG algorithm in a more controlled environ-
ment such as a phantom study where we could have
physically reduced the amount of activity in the phantom.
This was out of the scope of this work because it would
necessitate the construction of a specialized phantom
that has multiple compartments of various activity con-
centrations that move with respect to one another to
mimic the anterior-posterior motion of the abdominotho-
racic cavity to allow the successful implementation
of the CBM_DDG algorithm. Such a phantom could
also support investigating the impact of lesion size,
lesion contrast, and lesion motion on the CBM_DDG
algorithm.

In this work, only patients scanned with F18-FDG
were included in the research protocol, and future work
should investigate the performance of the CBM_DDG
algorithm with radiotracers that are gaining more
widespread use clinically such as Ga-68 DOTATATE for
neuroendocrine studies and F18-Fluciclovine or PSMA
labeled agents for prostate cancer. The differing biodis-
tributions of these and other tracers in normal and dis-
eased tissue might be beneficial or pose a challenge to
the CBM_DDG algorithm.
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Finally, as future PET scanner technology improves,
so too should the CBM_DDG algorithm. The recently
introduced Siemens Biograph Vision,48 which is capa-
ble of CBM, has a sensitivity that is at least 70.3%
higher than the mCT Flow used in this study and should
improve the quality of the CBM_DDG signal, although
it is likely that the higher sensitivity will be traded in to
reduce the total injected activity. In addition, the time-
of -flight resolution of the Biograph Vision system has
improved substantially from 540 ps to 210 ps, which
should also improve the signal to noise ratio of the
time of flight histo-projections, which are central to the
CBM_DDG algorithm (Figure 1).

5 CONCLUSION

This work shows that although the CBM_DDG wave-
form degrades in quality with decreasing count den-
sity, the resultant respiratory motion-corrected images
have negligible effect on lesion quantification and image
quality.
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