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Pytim is a versatile python framework for the analysis of interfa-
cial properties in molecular simulations. The code implements
several algorithms for the identification of instantaneous inter-
faces of arbitrary shape, and analysis tools written specifically
for the study of interfacial properties, such as intrinsic profiles.
The code is written in the python language, and makes use of
the numpy and scipy packages to deliver high computational
performances. Pytim relies on the MDAnalysis library to analyze
the trajectory file formats of popular simulation packages such
as GROMACS, CHARMM, NAMD, LAMMPS or Amber, and can be used to

steer OpenMM simulations. Pytim can write information about
surfaces and surface atomic layers to VTK, CUBE, and PDB files for
easy visualization. The classes of Pytim can be easily customized
and extended to include new interfacial algorithms or analysis
tools. The code is available as open source and is free of charge.
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Introduction

The interface between two fluids is not a well-defined concept
as soon as one leaves the continuum description and reaches
the molecular detail level.[1] The determination of atoms belong-
ing to an interface is intrinsically dependent on the scale at
which the observer probes the interface itself. In addition, ther-
mally activated capillary waves, by corrugating the interfaces, are
adding further complexity to the determination of the physico-
chemical properties of fluids in these boundary regions.

Historically, several algorithms were devoted to the calcula-
tion of the accessible surface (to the solvent or other small mol-
ecules) of macromolecules,[2] and several approaches were
developed to compute what is now known as the solvent
accsssible surface area (SASA)[3,4] or the connolly surface.[5,6]

More recently, the field has been stirred up by the necessity of
investigating the structure of fluid/fluid interfaces from an
intrinsic point of view, namely, by removing the smearing effect
of thermal capillary waves,[7] and several methods focused on
liquid/liquid interfaces were developed, such as Willard and
Chandler instantaneous liquid interfaces method,[8] the circular
variance method of Mezei,[9] the method of Škvor and col-
leagues[10] or the method of Yesylevskyy and Ramseyer for the
calculation of the local curvature.[11]

The Pytim package includes a series of algorithms to identify
phases and surfaces or surface atoms, and perform various
types of analyses related to interfaces. The main algorithms
implemented in Pytim are: (1) the identification of truly interfa-
cial molecules[12] (ITIM) for macroscopically planar systems;
(2) the generalized ITIM

[13] (GITIM), for arbitrarily shaped systems;
(3) the algorithm of Willard and Chandler,[8] to compute contin-
uous surfaces based on a smoothed estimate of the atomic vol-
umetric density; (4) the Lee-Richards algorithm[3] to compute
the SASA and the associated solvent-exposed molecules; (5) an
efficient cutoff-based clustering algorithm to distinguish liquid

and vapor phases,[14] and (6) an improved, density based clus-
tering algorithm for highly miscible systems.[15]

All algorithms that identify surface atoms can be used not only
to compute the interfacial layer, but also the successive layers
beneath it. The algorithms and the peculiarities related to their
implementation in Pytim are briefly reviewed in the next section.

The underlying philosophy of Pytim is to provide a flexible,
extendable, and easily scriptable system for the calculation of
interfaces and interfacial properties in molecular systems that
free the user from the burden of writing ad hoc code for differ-
ent simulation packages. Pytim is built on top, and extends, the
MDAnalysis library,[16] which provides the backend for reading
different trajectory formats. All algorithms are implemented by
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making use of the efficient numerical libraries wrapped by
numpy and scipy that take advantage of the SIMD architec-
ture of modern processors. Multiprocess parallelization has
been implemented, when possible and Cython has been used
to speed up inner loops. The resulting code has a speed com-
parable to that of a compiled one. The user interface has been
designed to be intuitive and straightforward, in the spirit of the
python language, and allows to perform the fundamental ana-
lyses using just a couple of scripting lines. This task is also facili-
tated by providing meaningful default values for all options.
However, the user has complete control over the details of the
algorithms and can quickly perform complex tasks by combin-
ing the basic building blocks of Pytim. In particular, the struc-
ture of the interface is meant to encourage the user to
experiment with the possibilities offered by combining Pytim
with other libraries and create their own analysis tools. MDAna-
lysis has been chosen for its high level of abstraction, which
allowed to reduce development time and simplicity in imple-
menting other backends. In particular, the pytim code can be
used in a transparent way with MDTraj,[17] and compute interfa-
cial properties online during OpenMM[18] simulation runs.

Methods
Algorithms to compute interfaces and interfacial atoms

ITIM. This algorithm[12] can be loosely described as a molecu-
lar version of the popular pinscreen toy. It consists in determin-
ing the atoms in contact with a virtual surface made of probe
spheres bound to move perpendicularly to the surface plane
along test lines. The present implementation follows that of
Jorge et al.,[19] which is based on sorting atoms according to
their distance from the center of mass of the slab. Then, start-
ing from the furthermost atom, one finds which test lines allow
a sphere of radius α, which moves along the line, to touch the
atom with a radius σ/2. Here, σ corresponds typically to the
Lennard-Jones parameter.[20] The sorting of N atoms can be
performed in O N logNð Þ steps, while finding which of the Ntl

test lines are within a given radius requires O logNtlð Þ steps
using a kd-tree.[21] As the test lines are usually 10 times more
than the surface atoms (for the algorithm to work accurately),
one has typically Ntl ’ 10N2/3, and in the worst case Ntl ’ 10N.
Therefore, the algorithm scales globally like O N logNð Þ. By
assuming convergence at a large number of test lines, this
method is left with one free parameter, the probe sphere radius
α, which sets the scale at which the interface is probed.

Figure 1 reports an example of how to use the ITIM algorithm
in Pytim.

GITIM. In this generalization of the ITIM algorithm, no macro-
scopic orientation is assumed. The touching spheres, instead of
“raining down” along probe lines, can be thought of as being
“inflated” at all points in space, up to their maximum radius α

(in which case the surrounding atoms are considered to be
interfacial ones) or until they start touching neighboring atoms.
This procedure is realized in GITIM using a modification of the
alpha-shapes algorithm[22] that takes into account the excluded

volume of the atoms,[13] and implements in its essence a filter
of the Delaunay[23] triangulation of atomic positions. In other
words, all the triangular faces belonging to those tetrahedra,
whose inner touching sphere has a radius larger than α, are
considered to be interfacial ones, and so are considered the
atoms at the vertices of those triangular faces. The present
implementation of GITIM can calculate the Delaunay triangulation
using the scipy library, which uses, in turn, a wrapper to the
Quickhull[24] implementation Qhull. In addition, it can use the
faster pytetgen python wrapper to the tetgen software.[25]

Both algorithms scale on average as O N logNð Þ and in the worst
case as O N2ð Þ, setting, therefore, the scaling of GITIM. Also in this
case the only free parameter is the probe sphere radius α.

Figure 2 reports an example of how to use the GITIM algorithm
in Pytim.

Willard and Chandler’s instantaneous liquid
interface. This algorithm[8] defines a continuous interface as
the isodensity surface of a Gaussian kernel density esti-
mate.[26,27] A continuous Gaussian density function, with given
height hG and width wG, is associated with each atom. Sum-
ming over the contributions of all atoms, one obtains a continu-
ous density field, which is usually sampled on a regular grid.
The isosurface where the density is in the neighborhood of a
given, target density (typically half between the maximum and
the minimum) is then used as the definition of the interface
itself. In the present implementation, we use both an exact
method, by deriving a class from scipy.stat.gaus-

sian_kde that implements periodic boundary conditions, and
an approximated one that calculates the Gaussian contribution
from points closer than 2.5wG. We make use of the topologically
consistent version[28] of the marching cubes algorithm[29] as
implemented in scikit-image[30] to extract the isosurface
from the kernel density estimate. The computation of the ker-

nel density estimate scales like O NNg
� �

. Here, Ng is either the

Figure 1. Usage of the ITIM class to identify the first four molecular layers in
a water/vapor interface. The image has been generated in a jupyter
notebook using nglview. [Color figure can be viewed at
wileyonlinelibrary.com]
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number of grid points in the simulation box (in the exact imple-
mentation) or the number of grid points within the sphere of
radius 2.5wG (in the approximated implementation). The march-

ing cube algorithm scales like O Ng
� �

, so that O NNg
� �

is the

global scaling. In the most common scenario, the grid spacing
is kept constant, independently on the system size, meaning
that the computational complexity of the exact implementation
scales like O N2ð Þ, while the approximated one scales like O Nð Þ.

The algorithm has in principle three free parameters, namely
wG, hG, and the target density. However, by choosing the target
density as half of the maximum one, hG becomes irrelevant.
The algorithm does not directly determine surface atoms, but
one could define them as those within a certain distance from
the isodensity surface. The Willard–Chandler algorithm is not
restricted to planar surfaces.

Lee-Richards SASA algorithm. The algorithm first cre-
ates, for each of the atoms, a list of neighbors within a cutoff
radius, which is twice the sum of the largest atom radius and
the probe sphere radius. The spherical volume associated to
each atom that has as radius the sum of the atomic and of the
probe sphere radii is then sliced in several discs along a cho-
sen direction. Using simple geometrical considerations, one
can calculate the total arc length of each disc, which happens
to overlap with the corresponding discs associated to neigh-
boring atoms. In this way, it is possible to compute an approx-
imation of the area that is (or is not) accessible by a probe
sphere. Atoms with nonzero accessible surface area are con-
sidered to belong to the interfacial layer. As the neighbor
search algorithm scales like O N logNð Þ, and the calculation of
the exposed area scales like O 1ð Þ for each atom, the global
scaling is O N logNð Þ.

Algorithms to determine phases

To determine the interface between two phases containing the
same chemical compound, it is, of course, necessary to assign
which atoms belong to that phase. This task can be in principle
trivial for liquid/vapor interfaces far from the critical tempera-
ture, as typical simulated system sizes are small, and often the
vapor phase is just empty. For liquid/liquid interfaces, the
equivalent condition is that of a perfectly demixing system. In
these cases, it is in principle not necessary to perform any par-
ticular prefiltering of the particles before proceeding to the
identification of surfaces or surface molecules using any of the
above algorithms. One has to be careful, however, that the
presence of a single molecule either in the vapor phase or sol-
vated in the opposite phase, can jeopardize the whole interfa-
cial determination. This problem is, of course, even more
serious when getting closer to the critical temperature.

One of the most straightforward ways to separate molecules
in the vapor phase from those in the liquid is to group all
atoms in clusters and consider the biggest cluster as the liquid
phase.

Simple clustering. A simple yet effective strategy is to con-
sider molecules to be in the same cluster if any of their atoms are
closer than a chosen cutoff distance.[14] Usually, a reasonable
choice for the cutoff value is the position of the minimum after
the first peak of the pair distribution function in the bulk liquid.
This way, one is sure to include in the cluster all atoms belonging
to the first solvation shell. In this case, the liquid fraction will form
a percolating network of connected molecules, whereas the mole-
cules in the vapor phase will be part of smaller, separated clusters.

Figure 2. Usage of the GITIM class to identify three solvation shells of a
glucose molecule. The image is a section cut of the system, as visualized
using nglview. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Usage of the WillardChandler class to identify the isodensity
continuous surface of a solvated dodecylphosphocholine (DPC) micelle. The
image (water not shown) is a section cut of the micelle along with the
continuous surface, as visualized using paraview. [Color figure can be
viewed at wileyonlinelibrary.com]
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DBSCAN. The simple cutoff clustering scheme is limited to
the case of low temperatures and low miscibilities. At high
enough temperatures, for example, the density of the vapor
phase can become high that the whole system percolates using
any choice of cutoff. In this case, it is more effective to look at
the local density rather than at the connectivity. The DBSCAN
density-based cluster algorithm[31] is well-suited for this task,
and has been already used to study supercritical fluids[32] and a
two phase system of highly miscible fluids.[15] The main idea of
the algorithm is to include in a cluster all atoms with overlap-
ping neighborhoods where the density is higher than a given
threshold. In Pytim, we implemented an approach for the auto-
matic determination of the density threshold, based on a k-
mean analysis[33,34] of the density distribution.[15]

Algorithms to compute interfacial properties

Once the surface atoms are determined, these are available
through the python interface for further analysis. In the Pytim
package, we provide the user with an extendable set of classes
for the computation of observables, suited both for the calcula-
tion of bulk properties, and interfacial ones. In particular, one
can combine each observable with the calculation of intrinsic
and non-intrinsic density profiles, as well as pair distribution
and time correlation functions of atoms within the interfacial
layers. The (non-intrinsic) profile of observable O across a mac-
roscopically planar interface is computed in the simulation box-
fixed reference frame as

ρO zð Þ¼ 1
S

X
i

Oiδ z−zið Þ
* +

,

where h…i represents an ensemble average, δ(z) is the Dirac
delta function, and the sum is extended over the set of atoms
of interest. This corresponds to the ordinary notion of a density
profile, where the bin width is given by SΔz. Here the discre-
tized version of the Dirac delta function is δ(z) ’ 1/Δz if
|z| < Δz/2.

The intrinsic profile, on the contrary, is obtained by referring
the position of the particles to the surface capillary waves,
obtaining in this way the local, interfacial structure of the fluid
without the smearing effect of the capillary waves themselves.
If a particle is located at ri = (xi, yi, zi) in the box reference
frame, we denote the position of the local reference frame on
the corrugated surface as (xi, yi, ξ(xi, yi)). In this way, the intrinsic
profile can be written as[7,35]

ρIO zð Þ¼ 1
S

X
i

Oiδ z−zi + ξ xi ,yið Þð Þ
* +

:

Notice that z can be either negative or positive, depending
on the location with respect to the interface, and can be, there-
fore, thought of as a signed distance.

This concept can be generalized to nonplanar macroscopic
interfaces by choosing the distance of an atom i located at ri
from the surface as its distance to the closest surface atom, j.

However, care has to be taken in determining the bin width
and its sign. Although there is, in the general case, no analytical
expression for the area of the iso-distance surfaces, we estimate
the bin volume numerically, by using a simple Monte Carlo
scheme.[13] The second point one has to take care of is the
determination of the sign of the distance that determines
whether a point is located below or above the interface. While
in the planar case this is straightforward, in the general case,
we resort to the following. We compute the center of mass of
the local environment around the closest surface atom, rcm, and
determine the sign of the distance as the sign of the scalar
product (ri − rj) � (rcm − rj). This choice is made because if both
ri and rcm are on the same side with respect to the atom repre-
senting the location rj of the local surface, one could consider
the i-th atom to be within the liquid phase.

Results
Computational performances

We have analyzed the computational complexity of the three
main algorithms implemented in Pytim, and of the cluster
search. As a test system, we have taken a macroscopically pla-
nar water/vapor interface. Starting from an initial configuration
of 216 water molecules, we generated larger systems by repli-
cating the simulation box in the two directions of the surface
plane, obtaining systems up to 55.296 water molecules. In this
way, we increased by the same proportion both the system size
and the surface area determined by the different algorithms.

In Figures 4–6, we report the time needed to perform the
surface analysis with itim, gitim, and the Willard–Chandler
algorithm. In Figure 4, we report also the time needed to assign
molecules to the liquid cluster. All algorithms are roughly fol-
lowing the linear scaling for large system sizes, as expected
from the theoretical analysis of the average cases. For small sys-
tem sizes, sublinear scaling is sometimes observed. The exact
calculation of the kernel density estimate in the Willard–
Chandler algorithm scales also, as expected, worse than its fast,
approximated version, although slightly better than quadratic.

The probe sphere radius was the same (2 Å) in all tests with
itim and gitim; for the instantaneous interface calculation

Figure 4. Computational complexity of the ITIM algorithm as implemented in
Pytim. The time needed to identify the surface atoms in one configuration
is separated into the time to perform the cluster analysis and the actual
time for the identification. [Color figure can be viewed at
wileyonlinelibrary.com]
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using the Willard–Chandler algorithm, we used a gaussian
width wG = 3 Å and a grid spacing of 2 Å.

Regarding the prefactors, it is worth noticing that, while
itim turned out to be the fastest one, gitim performed com-
paratively well, being only a factor 2–3 slower than itim. The
performances of the Willard–Chandler algorithm are affected by
the density field discretization (i.e., linear scaling in the number
of grid points, or, equivalently, cubic scaling in the inverse grid
spacing), but for the reasonable choice of 2 Å for the grid spac-
ing, the performances were only slightly worse than those of
gitim.

All tests were performed on a laptop with an Intel(R)
Core(TM) i7-4650 U CPU at 1.70 GHz.

Installation instructions

The latest development code can be retrieved from the address
https://github.com/Marcello-Sega/pytim as a git repository, or
as a zipped archive. From the source code, the command
python setup.py install -–user will install the package
in the user’s directories. Requirements for the installation are
the setuptools and numpy python package and Cython.
The setup.py script will automatically download and install
other required dependencies.

On the other hand, the user can install the latest stable ver-
sion from the Python package index (https://pypi.python.org)

by invoking pip install -–user pytim, or from Anaconda
(https://anaconda.org/conda-forge/) with conda install -c

conda-forge pytim.

Usage examples

The simplest script that can be used to compute the interfacial
atoms is the following:

import MDAnalysis as mda

import pytim

from pytim.datafiles import WATER_GRO

u = mda.Universe(WATER_GRO)

inter = pytim.ITIM(u)

The script above starts with importing the MDAnalysis and
Pytim modules, and one of the example files present in the dis-
tribution. Next, the configuration is loaded, and the interfacial
atoms are computed using ITIM with default values. The interfa-
cial atoms are accessible in a number of ways, one of which
being the array inter.atoms that lists all of them, irrespec-
tive of the layer/side in which they are located.

In addition to the usual properties that are available for the
Atom and AtomGroup classes of MDAnalysis, Pytim introduces
new ones, namely, layers, sides, and clusters. These
properties can be accessed from each atom in the system, for
example, as u.atoms.layers, and give access to which layer
the atoms have been assigned to (layers), to which side of a
planar interface the atoms are (sides, ITIM only) and whether
the atoms are in the main cluster or in one of the smaller ones
(clusters). These properties can be used to quickly select the
atoms of interest. For example, one can access the atoms in the
first layer as u.atoms[u.atoms.layers==1].

Some usage examples involving the different methods have
been already presented in Figures 1–3. Here, we describe two
typical scripts that can be used to compute intrinsic and non-
intrinsic profiles.

Figure 7 shows an example of how one can compute an
intrinsic density profile in Pytim. Note that the Pytim distribu-
tion provides several sample configurations and trajectories
(in this case, the configuration of the Lennard-Jones system is
pointed at by the label LJ_GRO). Some larger trajectories,
which would be too big for the distribution, can be retrieved
from the online repository using the pytim_data.fetch()

function, as, in this case, for the LJ_BIG_XTC binary trajectory.
This script initializes first the interface calculation using ITIM,
then instantiates a Profile object. The interface option sig-
nals that the profile has to be computed relative to the inter-
face itself, that is, it will be an intrinsic profile. Because no
observable is passed to the Profile constructor, this defaults
to the number density profile calculation. In the successive
lines, the code iterates over the trajectory frames, computing
the surface atoms automatically every time a new frame is
loaded, and sampling the intrinsic profile. The profile is stored
internally with 0.01 Å resolution, and can be accessed through
the get_values() function with the desired binning, result-
ing in the plot shown in Figure 7, with the liquid part located
on the left (negative position values) of the interface (a delta
function centered at zero, not shown) and the vapor part on its

Figure 5. Computational complexity of the GITIM algorithm as implemented
in Pytim. The calculation of the intrinsic surface atoms has been performed
on the same systems as the in Figure 4: GITIM is only about 2–3 times slower
than ITIM. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 6. Computational complexity of the Willard–Chandler algorithm, with
the variant of the scipy.stats.gaussian_kde (squares) and with the
approximated fast kernel (circles). In both cases, the grid spacing was set to
2 Å. [Color figure can be viewed at wileyonlinelibrary.com]
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right (positive values). The distinction between liquid and vapor
is performed by prefiltering the configurations used by ITIM

using the simple cluster search, which is switched on by using
the cluster_cut option. The DBSCAN cluster search is, instead,
switched on by using, additionally, the cluster_threshold

option.
Another example, on how to compute the distribution of the

surface layers along the interface normal is shown in Figure 8.
In this case, one instantiates five different profiles (without
specifying an interface option, the code will compute the
non-intrinsic profile), and passes to the sample() function a
selection of atoms corresponding to those in the different
layers.

As a final example, in Figure 9 we show the analysis of the
intrinsic curvature at the surface of the DPC micelle, together
with the calculation of the local normal vector, using the
method of Yesylevskyy and Ramseyer.[11]

Other examples are provided on the github page of the pro-
ject, in the online manual, and in the example files in the Pytim
distribution, including details on how to compute time correla-
tion functions or how to use the pytim tools on top of MDTraj
or in an OpenMM simulation run.

List of functionalities

The code, thanks to the use of the MDAnalysis, allows to per-
form several surface-related analyses of many popular trajecto-
ries and configuration file formats. The full list is available on
the website of MDAnalysis (http://www.mdanalysis.org). Both
Python 2.7 and Python 3 are supported. The functionalities of
the code can be grouped in the following classes:

Interface/surface identification.

1. ITIM algorithm for macroscopically planar interfaces
2. GITIM algorithm for arbitrary interfaces
3. Willard–Chandler algorithm for arbitrary interfaces
4. Lee–Richards SASA algorithm for arbitrary interfaces

Clustering/filtering.

1. simple clustering of nearest neighbors
2. DBSCAN density based clustering with automatic

threshold tuning

Output/Export. In addition to all the file formats available
through MDAnalysis, Pytim can save information about the
interfaces in some additional ones, namely:

1. PDB format for particles with information on layering
2. VTK format for particles
3. VTK format for volumetric densities
4. VTK format for surface triangulation
5. CUBE format for particles and volumetric density
6. Wavefront OBJ format for surface triangulation

Observables. Pytim provides also an abstract class for cod-
ing new observables. A set of basic atomic/molecular properties
(density, charge, molecular orientation, ...) are already provided
in the code, and we plan to expand the set of available observ-
ables with time. All observables derived from the abstract class

Figure 7. Calculation of the intrinic density profile of a Lennard-Jones liquid/
vapor interface. [Color figure can be viewed at wileyonlinelibrary.com] Figure 8. Calculation of the distribution of the first four molecular layers in a

water/vapor interface. [Color figure can be viewed at wileyonlinelibrary.com]
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are suitable to be used in the calculation of the following corre-
lations/distributions:

1. Intrinsic and non-intrinsic profiles
2. Three- and two-dimensional radial distribution functions
3. Time correlation functions, also for variable sets of

atoms (both in the continuous and intermittent
variants)

Test systems. Several configurations and small trajectory
files are provided for testing purposes: the present set of sys-
tems includes so far as follows:

1. Water/vapor interfaces at different temperatures
2. Water/CCl4 interface
3. Methanol/vapor interface
4. Ionic liquid/benzene mixture
5. A glucose molecule in water
6. DPC micelle
7. DPPC bilayer
8. Fullerene

API documentation and tests

Pytim code has been written using docstrings for all public
classes/functions, and for the most important private ones.
The code reference manual, generated automatically from the
code, is available at https://marcello-sega.github.io/pytim/.

Along with the reference manual come several tutorials,
which cover several topics ranging from the installation to trou-
bleshooting, and include common usage of the main modules.
In the source distribution, there is a directory that includes sev-
eral python example files that show how to use the main mod-
ules and the analysis tools. In addition, jupyter notebooks are
also present, and can be visualized (statically) directly from a
web browser, without needing to run the code, from https://
github.com/Marcello-Sega/pytim.

Code snippets within the documentation of the code are
used to provide a testing framework using the doctest mod-
ule in combination with Sphinx (http://www.sphinx-doc.org/).
Any new update of the code, to be incorporated in the main
branch, has to pass all tests (more than 200, with a code cover-
age larger than 85%) using different versions of Python, of the
underlying libraries (MDAnalysis) on Linux and Mac OS-X sys-
tems. Automated testing is performed using Travis-CI (https://
travis-ci.org/Marcello-Sega/pytim).

Conclusions

We presented Pytim, a new package for the interfacial analysis of
molecular systems. Pytim, is based on the python scripting lan-
guage and provides the user with a number of analysis tools dedi-
cated to the properties of fluid interfaces. Being built on top of the
MDAnalysis library, Pytim allows to analyze trajectory files in the
native formats of the most common simulation packages, freeing
the user from the burden of conversion. The package implements
three main surface analysis algorithms, namely, ITIM, GITIM, and the
Willard–Chandler instantaneous liquid interface algorithm, as well
as two different clustering algorithms to be used for identifying dif-
ferent phases. All algorithms have been carefully optimized using
either fast, vectorized functions from the numpy and scipy librar-
ies, or by writing, when necessary, Cython code, as well as parallel,
multiprocess code. All algorithm have a linear or quasi-linear scal-
ing with respect to the system size. The use of python as the main
coding language for this package also allows the user to easily
modify and extend the package with minimum effort.
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