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Abstract
Purpose Aim of this study was to develop a generalised radiomics model for predicting pathological complete response after 
neoadjuvant chemo-radiotherapy in locally advanced rectal cancer patients using pre-CRT T2-weighted images acquired at 
a 1.5 T and a 3 T scanner.
Methods In two institutions, 195 patients were scanned: 136 patients were scanned on a 1.5 T MR scanner, 59 patients on 
a 3 T MR scanner. Gross tumour volumes were delineated on the MR images and 496 radiomic features were extracted, 
applying the intensity-based (IB) filter. Features were standardised with Z-score normalisation and an initial feature selec-
tion was carried out using Wilcoxon–Mann–Whitney test: The most significant features at 1.5 T and 3 T were selected as 
main features. Several logistic regression models combining the main features with a third one selected by those resulting 
significant were elaborated and evaluated in terms of area under curve (AUC). A tenfold cross-validation was repeated 300 
times to evaluate the model robustness.
Results Three features were selected: maximum fractal dimension with IB = 0–50, energy and grey-level non-uniformity 
calculated on the run-length matrix with IB = 0–50. The AUC of the model applied to the whole dataset after cross-validation 
was 0.72, while values of 0.70 and 0.83 were obtained when 1.5 T and 3 T patients were considered, respectively.
Conclusions The model elaborated showed good performance, even when data from patients scanned on 1.5 T and 3 T 
were merged. This shows that magnetic field intensity variability can be overcome by means of selecting appropriate image 
features.
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Abbreviations
AIC  Aikake information criteria
AUC   Area under curve
GLNU  Grey-level non-uniformity
IB  Intensity based
LARC   Locally advanced rectal cancer
LE  Local excision
LOG  Laplacian of Gaussian
MRI  Magnetic resonance imaging
nCRT   Neoadjuvant chemo-radiotherapy
pCR  Pathological complete response
ROI  Region of interest
T2-w  T2-weighted

TME  Total mesorectal excision
TRG   Tumour regression grade
W&W  Watch and wait
WMW  Wilcoxon–Mann–Whitney

Introduction

Rectal cancer accounts for one third of colorectal cancers 
and is to date one of the leading causes of cancer death in 
the western world [1, 2].

Neoadjuvant chemo-radiotherapy (nCRT) followed by 
total mesorectal excision (TME) represents the standard of 
care for patients affected by locally advanced rectal cancer 
(LARC), defined as stage II (T3 or T4, node-negative, M0) 
and stage III (T3 or T4, node-positive, M0) rectal cancer. * Jacopo Lenkowicz 
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In particular, nCRT reduces the risk of local recurrence 
and downsizes the primary tumour facilitating the subse-
quent successful surgical resection or allowing sphinc-
ter-preserving approaches. In a variable fraction of cases 
(8–30%), the downsizing effect is complete and a pathologi-
cal complete response (pCR) after nCRT is reached [3–5].

The response after nCRT and outcomes are strongly 
correlated, as assessed in several pooled analyses, where 
complete responders show a better prognosis in terms of 
local control and disease free survival, compared to non-
responders [6–8].

New therapeutic approaches, more conservative respect 
to the TME surgery, have currently under investigation for 
patients showed pCR after nCRT, such as local excision (LE) 
or watch and wait (W&W) [9–11].

To increase the number of locally advanced rectal cancer 
(LARC) patients with organ sparing treatment approaches, 
there is a growing interest in realising predictive models able 
to identify patients who will completely respond to nCRT 
before the start of therapy. These predictive models can be 
based on the analysis of clinical parameters, DNA sequences 
or radiomic parameters extracted by diagnostic images [12, 
13].

An increasing number of studies focused on the possibil-
ity to predict pCR analysing magnetic resonance imaging 
(MRI), as this modality is generally the gold standard diag-
nostic imaging technique for rectal cancer [14, 15].

Different radiomics experiences performed on staging pre 
nCRT MRI have demonstrated that it is possible to predict 
complete response to treatment or early disease progression, 
relapse or distant progression in the first 3 months after radi-
cal surgery [16–19].

However, the application of radiomics to MRI is per-
formed less often compared to radiomics on CT or positron 
emission tomography, due to the high complexity of the MRI 
signal processing, that require dedicated filtering and signal 
intensity standardisation procedures [20–22].

Another factor that obstructs the broad implementation 
of radiomics in daily clinical practice is the lack of evidence 
for the general applicability of the models for different MR 
scanner vendors and different magnetic field strengths [23].

Most of the imaging-based predictive models to date 
available are indeed strongly linked to the technical aspects 
of the used MR scanner [23, 24]. Aim of this study is to 
overcome these sources of variability, developing a radiom-
ics model able to predict pCR in LARC patients analysing 
pre-CRT MR images acquired using MR scanners of dif-
ferent vendors and characterised by different magnetic field 
intensities (1.5 and 3 T).

Methods

Patients

A total of 195 LARC patients treated in two different medi-
cal centres (XXX, and YYY) were enrolled.

The cohort coming from Institution A (136 cases) was 
retrospectively enrolled among patients treated between May 
2008 and December 2014; the cohort coming from Institu-
tion B (59 cases) considered patients among those treated 
between November 2008 and March 2012.

The inclusion criteria of this study were: patients affected 
by biopsy proven LARC with no evidence of distant metasta-
ses at staging radiological exams (Chest-Abdomen contrast 
enhanced CT and pelvic MRI); age of 18 years or more at 
the time of diagnosis.

No differences based on gender, age or ethnic group were 
considered for patient selection purposes. Informed consent 
was acquired from all the patients according the two ethical 
committees’ policies.

Treatment workflow and response assessment

All the patients were treated with to the same protocol: neo-
adjuvant long course chemo-radiotherapy followed by total 
mesorectal excision 6–8 weeks after the end of nCRT. The 
25 fractions radiotherapy treatment was administered using 
a simultaneous integrated boost technique (55 Gy in frac-
tions of 2.2 Gy to Gross Tumour Volume (GTV) and cor-
responding mesorectum and 45 Gy in fractions of 1.8 Gy 
to whole mesorectum and selected lymphatic drainage sta-
tions, according to disease stage) or a technique without a 
boost (50 Gy in fractions of 2.0 Gy to GTV, mesorectum and 
elective lymph node stations). Concomitant chemotherapy 
with chronomodulate Capecitabine (1650 mg/mq) or intra-
venous 5-Fluorouracil (5-FU) or an intensified schedule with 
Capecitabine (1300 mg/mq) plus Oxaliplatin (60 mg/mq) 
was prescribed, depending on the clinical stage and general 
conditions of the patient.

The pathological reports included histology, grading and 
tumour regression grade (TRG) according to Mandard clas-
sification [25]. Pathological complete response was defined 
as ypT0N0 or ypT0/ypNx.

Image analysis

The MR images were acquired using a protocol with 
T2-weighted images acquired in the plane orthogonal to the 
tumour longitudinal axis. The data were acquired using a 
1.5 T MR scanner (GE Signa Exite, Little Chalfont, United 
Kingdom) in institution A, and a 3 T MR scanner (Philips 
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Medical System, Eindhoven, The Netherlands) in institution 
B. No intravenous contrast agents were administered for both 
cohorts of patients.

The images had a spatial resolution of 0.703 × 0.703 mm2 
for 1.5 T and 0.45 × 0.45 mm2 for 3 T. Slice thickness was 
3 mm for 1.5 T and 3.5 mm for 3 T MR images.

The field of view was 18 cm for 1.5 T and 14 cm for 3 T 
MR images.

MR images were imported in a radiotherapy workstation 
(Eclipse, Varian Medical System™, Palo Alto, California, 
US) and the GTV was contoured by two experienced radia-
tion oncologists, using the ICRU n.83 guidelines [26].

The DICOM files were imported in Moddicom, an R 
package (R Core Team, Vienna, Austria) designed for 
radiomics analyses of biomedical images [27, 28]. All the 
images were resampled to a spatial planar resolution of 
0.7 × 0.7 mm2 prior to their quantitative analysis.

Feature extraction

A total of 90 radiomic features belonging to four families 
(fractal, statistical, textural and morphological features) 
were extracted from the images. Two image filters have been 
applied to the MR image before the feature extraction.

The intensity-based (IB) image filter proposed by 
Cusumano et al. was applied to the MR images before to 
extract radiomics features [22]. This approach consisted 
of normalising the signal intensity of the pixels inside the 
region of interest (ROI) analysed using as extremes the first 
and 99-th percentile of the grey-levels histogram represent-
ing the ROI. Pixel clusters were then identified consider-
ing two threshold levels (lower and upper level) defined as 
percentages of the maximum intensity level. All the images 
were filtered considered the IB filter with all the possible 
combinations of thresholds “lower level–upper level” for 
levels ranging from 0 to 100% by 10% (55 steps).

Considering the application of all the filters used, a total 
of 496 parameters were assessed.

Data analysis

A database was created combining the image features with 
clinical parameters (sex, age, clinical TNM staging) and out-
come data (complete or not pathological response). Before 
merging the two cohorts of patients to a single training set, 
the homogeneity between the two datasets in terms of clini-
cal parameters and pCR rates was assessed. The homoge-
neity was estimated using the Wilcoxon–Mann–Whitney 
(WMW) and Pearson’s χ2 test, depending on the nature of 
the variable investigated (WMW for continue variables, χ2 
for categorical ones) [29].

Features were standardised with Z-score normalisation 
before features selection. Both cohorts were considered as 

training set for data analysis purposes, using cross-validation 
methods to test the model [29, 30].

Features univariately associated to response (pCR vs no 
pCR) were selected using WMW tests or t test, depending on 
the normality of data distribution, previously assessed using 
Shapiro–Wilk test [16, 22].

These tests were separately applied for the two cohorts 
of patients, and correction for multiple comparisons was 
performed by using the Benjamini–Hochberg method [18].

The correlation between significant features was evalu-
ated in terms of Pearson Correlation Coefficient (PCC) [30].

The significant features were sorted in function of the 
p-value obtained at the univariate analysis. The feature 
showing the lowest p-value in the 1.5 T dataset was com-
bined with the most significant one obtained at 3 T, and 
their combination was considered as starting point of the 
multivariate analysis.

Multiple logistic regression models were created adding 
as third feature one selected among those resulting signifi-
cant at least in one of the two datasets.

The models were trained on the whole dataset, obtained 
merging 1.5 T and 3 T patients, and evaluated in terms of 
AUC and Aikake Information Criteria (AIC) [31]. The 
robustness of the predictive model was then evaluated using 
a tenfold cross-validation analysis with 300 repetitions as 
cross-validation method.

Finally, the model was also applied to the two separate 
datasets to evaluate its performance when used on MR 
images acquired at the same magnetic field intensity. In 
Fig. 1, the adopted workflow for feature selection is graphi-
cally depicted.

Results

The clinical characteristics of the patients enrolled in the 
study are reported in Table 1. The clinical tumour staging 
at the time of diagnosis was reported according to the TNM 
AJCC-UICC classification [32].

No statistically significant difference was observed 
between the two cohorts of patients. A total of 30 patients 
showed pCR (TRG = 1) in institution A, with a pCR rate 
equal to 22%. A similar pCR rate was obtained in institution 
B (25%) where 15 of 59 cases were complete responders.

Table 2 reports the five features showing the highest 
significance at the univariate analysis in the cohort of the 
patients acquired using a 1.5 T MR scanner.

Table 3 reports the same values obtained for patients 
acquired with 3 T MR scanner.

The features and the relative coefficients characterising 
the statistical model able to predict pCR are reported in 
Table 4.
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The first two features selected in the model were the maxi-
mum FD, calculated on the pixel clusters individuated using 
the IB filter with 0% as lower level and 50% as upper level (IB: 
0–50), and the energy calculated on the raw image.

The grey-level non-uniformity (GLNU) calculated on the 
run length matrix (GLNU_RLM) for the same pixel cluster 
chosen for maximum FD (IB: 0–50) was chosen as third fea-
ture, as it ensures the predictive model with the highest AUC.

The AIC value of the developed model was equal to 
192.23, that was the lowest value obtained using 3 features. 
No additional features were added to the model, as the addi-
tion of a fourth feature resulted in increasing the AIC.

Figure 2 reports the ROC curves of the elaborated model. 
The AUC of the model tested on the whole dataset after the 
cross-validation was 0.72. The resulting AUC for the 1.5 T 
cohort was 0.70, while 0.83 for 3 T.

Discussion

In this study, a MR radiomics prediction model for pCR after 
nCRT in LARC was developed. The pCR rates observed in 
the two centres (22% in Institution A and 25% in Institution 

B) were consistent with the clinical data reported in the lit-
erature [7, 33].

To our knowledge, this predictive model is the first model 
able to show promising performances in pCR prediction 
mixing 1.5 T and 3 T MR images.

This study demonstrates that by using appropriate feature 
selection methods, it is possible to elaborate predictive mod-
els able to overcome the variability due to different magnetic 
field intensities.

The small p-values in Table 4 demonstrate that all the 
parameters in the model have discriminating powers. This 
indicates that with the strategy for feature selection and 
model elaboration presented in this study it is possible to 
create predictive models.

Different MR-based prediction models for response 
to nCRT for LARC patients have been published using 
images acquired at fixed magnetic field intensity [14, 
16, 22, 34]. Intven et al. analysed 3 T MR images, com-
bining features coming from different MR sequences 
(T2 weighted, diffusion weighted and dynamic con-
trast enhanced images) and different acquisition timing 
(before and after CRT) to predict pCR [35]. The authors 
obtained a very high accuracy (AUC = 0.93 analysing the 

Fig. 1  Schematic representation of the workflow adopted for data 
analysis: feature A was the most significant feature at 1.5 T; feature 
B was the most significant feature at 3 T; feature C was the feature 

that combined with feature A and B allowed to generate the predic-
tive model with the highest AUC value
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difference on the ADC maps) but the analysis was done 
in a relative limited cohort of patients (55 cases) without 
external validation.

Dinapoli et al. trained a statistical model on an internal 
cohort of 162 patients and then validated the model on an 
external dataset of 49 patients from two different institu-
tions. This model, based on the image intensities of T2 
weighted MR images acquired before CRT with using 1.5 T 
MR scanners belonging to different vendors, reports AUC 
values of 0.73 for the internal and 0.75 for the external data-
set [16]. Cusumano et al. added new features coming from 
fractal analysis to the aforementioned model, aiming to bet-
ter describe the tumour heterogeneity in the case of LARC 
patients. The obtained predictive model integrating such 

Table 1  Patients characteristics 
and descriptive statistics of 
variables in the 1.5 T and 3 T 
cohorts

The Pearson’s χ2 test (χ2 test) for categorical variables and the Mann–Whitney test (MW test) for continu-
ous ones were used as statistical tests

Patient characteristics 1.5 T cohort 3 T pts cohort p-values of differences

Mean Range Mean Range χ2 test MW test

Age (sex)
 M 64.0 28–84 63.0 40–79 – 0.57
 F 61.9 43–80 64.0 49–76 – 0.69

Age (overall)  63 28–84 63 40–79 0.87
Clinical characteristics
 N % N % χ2 test MW test

Response
 pCR 30 22 15 25 0.74 –
 not pCR 106 78 44 75

cT
 3 89 65 49 83 0.13 –
 4 47 35 10 17

cN
 0 6 4 2 3 0.44 –
 1 43 32 5 8
 2 87 64 52 88

Stage
 IIA 6 4 2 3 0.25 –
 IIB 0 0 0 0
 IIIB 97 72 44 74
 IIIC 33 24 13 22

Table 2  Values of significance 
in terms of p-value obtained 
at the univariate analysis for 
the cohort of patients acquired 
using a 1.5 T magnetic 
resonance scanner

Feature (1.5 T Cohort) Filter p value

 Max fractal dimension Intensity based (40–80) 9.308 × 10−3

 Median fractal dimension Intensity based (0–50) 9.744 × 10−3

 Skewness Laplacian of Gaussian (0.7 mm) 1.283 × 10−3

 Variance Intensity based (10–30) 3.623 × 10−3

Table 3  Values of significance in terms of p-value obtained at the 
univariate analysis for the cohort of patients acquired using a 3 T 
magnetic resonance scanner

Feature (3 T 
cohort)

Filter p value

 Energy No 9.028 × 10−7

 Run length 
non-uniform-
ity

Laplacian of Gaussian (0.35 mm) 2.951 × 10−5

 Asphericity Intensity based (10–20) 4.296 × 10−5

 Uniformity Laplacian of Gaussian (0.7 mm) 5.163 × 10−5

 Compactness Intensity based (10–30) 7.393 × 10−5
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fractal features reached AUC of 0.77 ± 0.07 in the internal 
dataset and 0.79 ± 0.09 in the external one [22]. The AUC of 

0.72 obtained in this study combining 3 T and 1.5 T images 
was comparable to those found in the 1.5 T studies.

Table 4  Parameters and relative 
coefficients of the proposed 
predictive model

Feature Coefficient SD p value

Intercept − 1.590 0.218 < 0.001
Max fractal dimension (intensity based: 0–50) − 0.507 0.212 0.005
Grey-level non-uniformity of run length matrix (inten-

sity based: 0–50)
− 0.621 0.264 0.013

Energy − 1.393 0.505 0.015

Fig. 2  ROC curves: in the upper part of the figure the ROC curve of the merged dataset after cross-validation is depicted. The ROC curves of the 
1.5 T and 3 T datasets are shown in the lower part
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The univariate analysis carried out in this work has 
highlighted the superiority of the 3 T MR images in pro-
viding more predictive features respect to 1.5 T MR ones. 
The most significant feature at 1.5 T shows a p-value equal 
to  10−4 (maximum fractal dimension for pixels with inten-
sity lower than 50%), while at 3 T p-value is  10−7 (energy 
without applying any image filter). The higher prognostic 
potentiality of 3 T MR images can be ascribable to the 
tighter spatial resolution of the images and the higher sig-
nal to noise ratio.

One of the limitations of this study is represented by the 
absence of an independent external dataset composed by 
MR images acquired at 1.5 T and 3 T in third institution. 
In absence of these data, the robustness of the model here 
proposed has been confirmed by the results obtained apply-
ing a cross-validation method using a high number of fold-
ers and repetitions. A perspective validation of the model 
proposed will be carried out in the next future, including 
also data from different centres. However, the results of this 
study demonstrate that most of the technical aspects that 
today limit the radiomics diffusion, such as the variability 
of MR scanners in field strengths and manufacturers, can be 
overcome by means of dedicated strategy of data analysis.

Conclusions

In conclusion, a MR radiomics prediction model for pCR 
after neoadjuvant therapy in locally advanced rectal cancer 
was developed: the model showed good performance, even 
when data from patients scanned on 1.5 T and 3 T were 
merged. This demonstrates that the magnetic field intensity 
variability can be overcome by means of selecting appropri-
ate images features.

The possibility to overcome the inter-scanner variability 
and to predict pCR before CRT treatment opens innovative 
scenarios in cancer care, adding new evidence towards fully 
personalised approaches and treatment tailoring based on 
patient-specific tumour heterogeneity description.
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